

# dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Data Sheet

High-Performance, 16-bit Digital Signal Controllers

© 2010 Microchip Technology Inc.

#### Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

# QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

#### Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC<sup>32</sup> logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.



#### ISBN: 978-1-60932-027-0

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

# **High-Performance, 16-Bit Digital Signal Controllers**

#### **Operating Range:**

- Up to 40 MIPS operation (at 3.0-3.6V):
  - Industrial temperature range (-40°C to +85°C)
  - Extended temperature range (-40°C to +125°C)

#### **High-Performance DSC CPU:**

- Modified Harvard architecture
- C compiler optimized instruction set
- 16-bit wide data path
- 24-bit wide instructions
- Linear program memory addressing up to 4M instruction words
- · Linear data memory addressing up to 64 Kbytes
- 83 base instructions: mostly 1 word/1 cycle
- Two 40-bit accumulators with rounding and saturation options
- Flexible and powerful addressing modes:
  - Indirect
  - Modulo
  - Bit-Reversed
- Software stack
- 16 x 16 fractional/integer multiply operations
- 32/16 and 16/16 divide operations
- Single-cycle multiply and accumulate:
  - Accumulator write back for DSP operationsDual data fetch
- Up to ±16-bit shifts for up to 40-bit data

#### **Direct Memory Access (DMA):**

- 4-channel hardware DMA
- 1 Kbyte dual ported DMA buffer area (DMA RAM) to store data transferred via DMA:
  - Allows data transfer between RAM and a peripheral while CPU is executing code (no cycle stealing)
- Most peripherals support DMA

#### Digital I/O:

- Up to 85 programmable digital I/O pins
- Wake-up/Interrupt-on-Change for up to 24 pins
- Output pins can drive voltage from 3.0V to 3.6V
- Up to 5V output with open drain configuration
- 5V tolerant digital input pins
- 16 mA source/sink on all PWM pins

#### **On-Chip Flash and SRAM:**

- · Flash program memory (up to 64 Kbytes)
- Data SRAM (up to 8 Kbytes)
- · Boot and General Security for program Flash

#### **Peripheral Features:**

- Timer/Counters, up to five 16-bit timers
  - Can pair up to make one 32-bit timer
- Input Capture (up to four channels):
  - Capture on up, down or both edges
  - 16-bit capture input functions
  - 4-deep FIFO on each capture
- Output Compare (up to four channels):
  - Single or Dual 16-bit Compare mode
  - 16-bit Glitchless PWM mode
- 4-wire SPI (up to two modules):
  - Framing supports I/O interface to simple codecs
  - 1-deep FIFO buffer
  - Supports 8-bit and 16-bit data
  - Supports all serial clock formats and sampling modes
- I<sup>2</sup>C<sup>™</sup> (up to two modules):
  - Supports Full Multi-Master Slave mode
  - 7-bit and 10-bit addressing
  - Bus collision detection and arbitration
  - Integrated signal conditioning
  - Slave address masking

#### **Peripheral Features (Continued)**

- UART (up to two modules):
  - Interrupt on address bit detect
  - Interrupt on UART error
  - Wake-up on Start bit from Sleep mode
  - 4-character TX and RX FIFO buffers
  - LIN bus support
  - IrDA<sup>©</sup> encoding and decoding in hardware
  - High-Speed Baud mode
  - Hardware Flow Control with CTS and RTS
- Enhanced CAN (ECAN<sup>™</sup> module) 2.0B active:
  - Up to eight transmit and up to 32 receive buffers
  - 16 receive filters and three masks
  - Loopback, Listen Only and Listen All
  - Messages modes for diagnostics and bus monitoring
  - Wake-up on CAN message
  - Automatic processing of Remote Transmission Requests
  - FIFO mode using DMA
  - DeviceNet<sup>™</sup> addressing support
- Quadrature Encoder Interface (up to 2 modules):
  - Phase A, Phase B, and index pulse input
  - 16-bit up/down position counter
  - Count direction status
  - Position Measurement (x2 and x4) mode
  - Programmable digital noise filters on inputs
  - Alternate 16-bit Timer/Counter mode
  - Interrupt on position counter rollover/underflow

#### High-Speed PWM Module Features:

- Up to nine PWM generators with up to 18 outputs
- · Primary and Secondary time-base
- Individual time base and duty cycle for each of the PWM output
- Dead time for rising and falling edges:
  - Duty cycle resolution of 1.04 ns
  - Dead-time resolution of 1.04 ns
- Phase shift resolution of 1.04 ns
- Frequency resolution of 1.04 ns
- PWM modes supported:
  - Standard Edge-Aligned
  - True Independent Output
  - Complementary
  - Center-Aligned
  - Push-Pull
  - Multi-Phase
  - Variable Phase
  - Fixed Off-Time
  - Current Reset
  - Current-Limit

- Independent Fault/Current-Limit inputs
- Output override control
- Special Event Trigger
- PWM capture feature
- Prescaler for input clock
- Dual Trigger from PWM TO ADC
- PWMxL, PWMxH output pin swapping
- On-the-Fly PWM Frequency, Duty cycle and Phase Shift changes
- Disabling of Individual PWM generators
- Leading-Edge Blanking (LEB) functionality

#### **High-Speed Analog Comparator:**

- Up to four Analog Comparators:
  - 20 ns response time
  - 10-bit DAC for each analog comparator
  - DACOUT pin to provide DAC output
  - Programmable output polarity
  - Selectable input source
  - ADC sample and convert capability
- PWM module interface:
  - PWM Duty Cycle Control
  - PWM Period Control
  - PWM Fault Detect

#### Interrupt Controller:

- 5-cycle latency
- · Up to five external interrupts
- · Seven programmable priority levels
- · Five processor exceptions

#### High-Speed 10-bit ADC:

- 10-bit resolution
- Up to 24 input channels grouped into 12 conversion pairs
- Two internal reference monitoring inputs grouped into a pair
- Successive Approximation Register (SAR) converters for parallel conversions of analog pairs:
  - 4 Msps for devices with two SARs
  - 2 Msps for devices with one SAR
- Dedicated result buffer for each analog channel
- Independent trigger source section for each analog input conversion pairs

#### **Power Management:**

- On-chip 2.5V voltage regulator
- Switch between clock sources in real time
- · Idle, Sleep, and Doze modes with fast wake-up

#### **CMOS Flash Technology:**

- Low-power, high-speed Flash technology
- Fully static design
- 3.3V (±10%) operating voltage
- Industrial and Extended temperature
- Low power consumption

#### System Management:

- Flexible clock options:
  - External, crystal, resonator, internal RC
  - Phase-Locked Loop (PLL) with 120 MHz VCO
  - Primary Crystal Oscillator (OSC) in the range of 3 MHz to 40 MHz
  - Secondary oscillator (SOSC)
  - Internal Low-Power RC (LPRC) oscillator at a frequency of 32.767 kHz
  - Internal Fast RC (FRC) oscillator at a frequency of 7.37 MHz
- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Power-up Timer (PWRT)
- Oscillator Start-up Timer (OST)
- Watchdog Timer with its RC oscillator
- Fail-Safe Clock Monitor
- Reset by multiple sources
- In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>)
- Reference Oscillator Output

#### **Application Examples:**

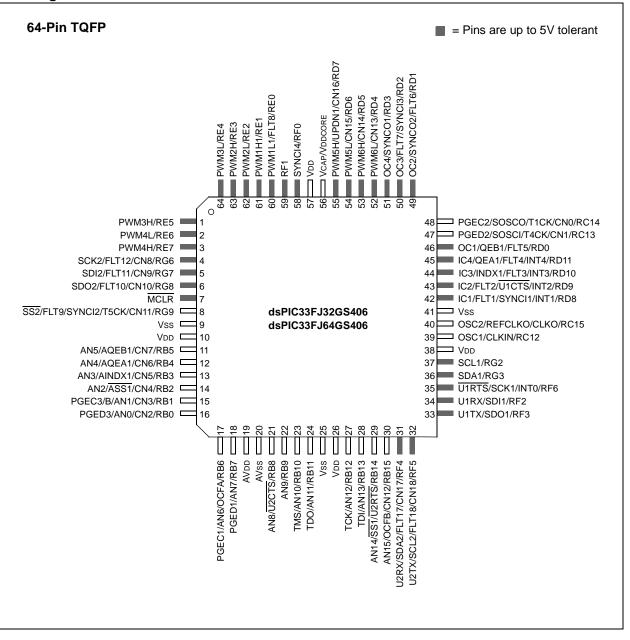
- AC-to-DC Converters
- Automotive HID
- Battery Chargers
- DC-to-DC Converters
- Digital Lighting
- Induction Cooking
- LED Ballast
- Renewable Power/Pure Sine Wave Inverters
- Uninterruptible Power Supply (UPS)

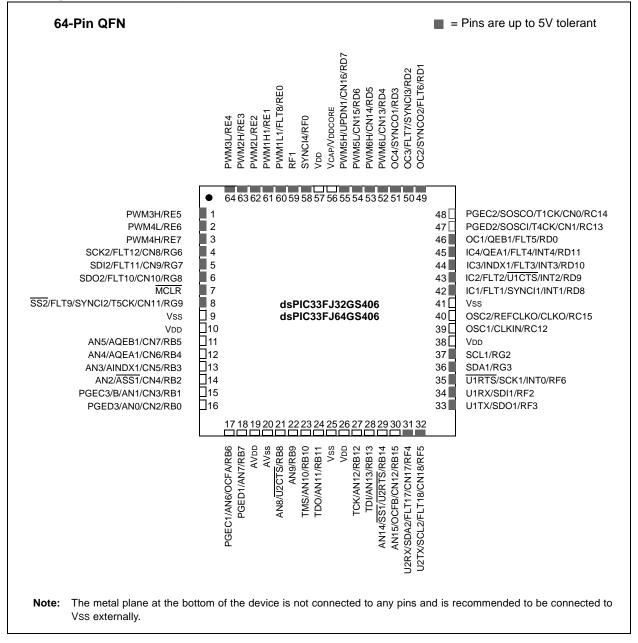
#### Packaging:

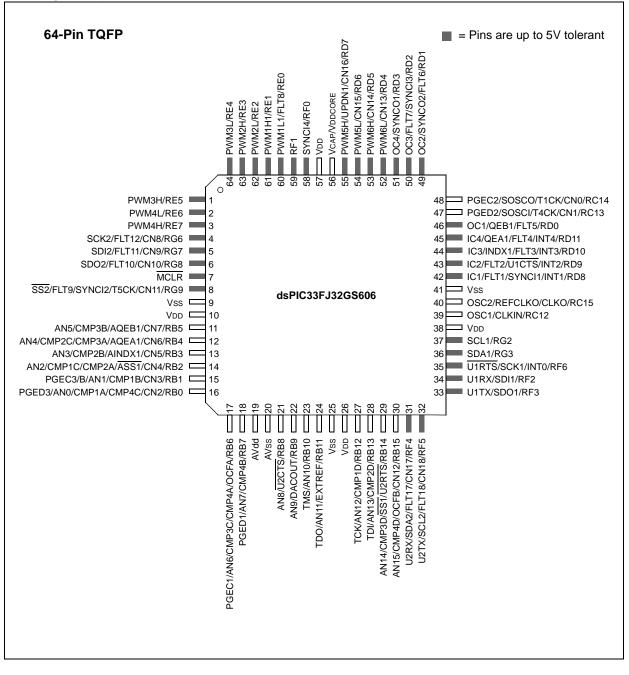
- 64-pin QFN (9x9x0.9 mm)
- 64-pin TQFP (10x10x1 mm)
- 80-pin TQFP (12x12x1 mm)
- 100-pin TQFP (14x14x1 mm and 12x12x1 mm)

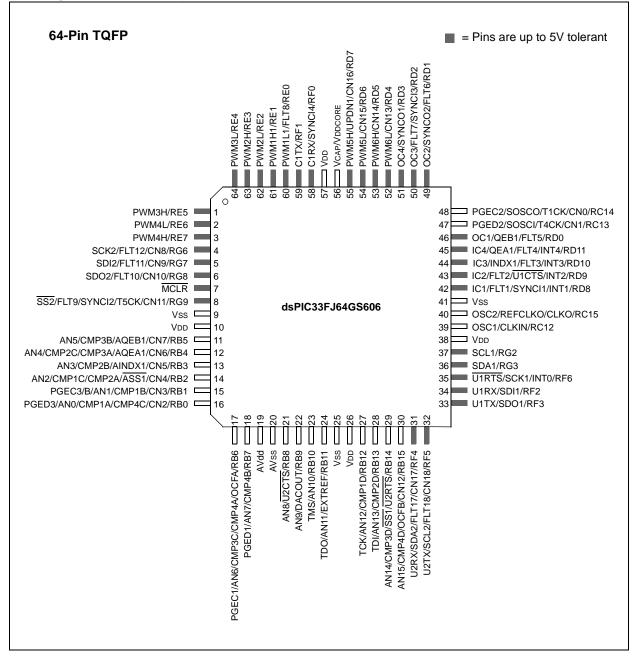
| Note: | See the dsPIC33FJ32GS406/606/608/       |
|-------|-----------------------------------------|
|       | 610 and dsPIC33FJ64GS406/606/608/       |
|       | 610 Controller Families table for exact |
|       | peripheral features per device.         |

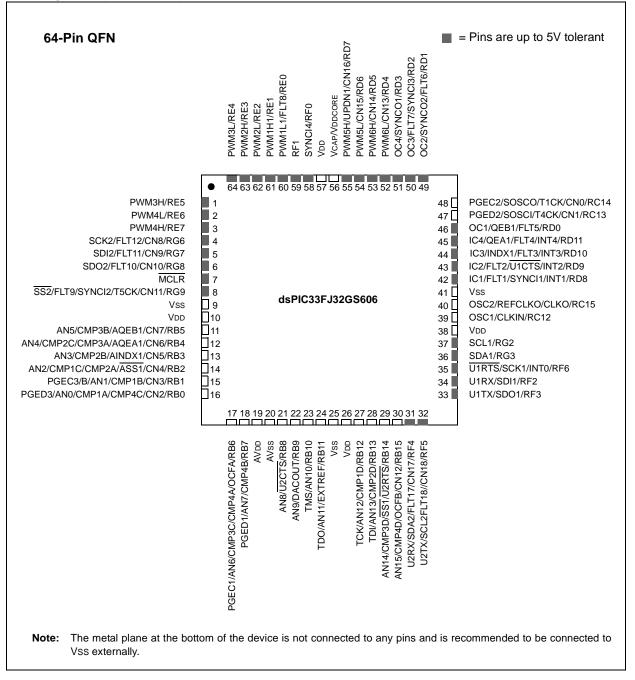
#### dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 PRODUCT FAMILIES

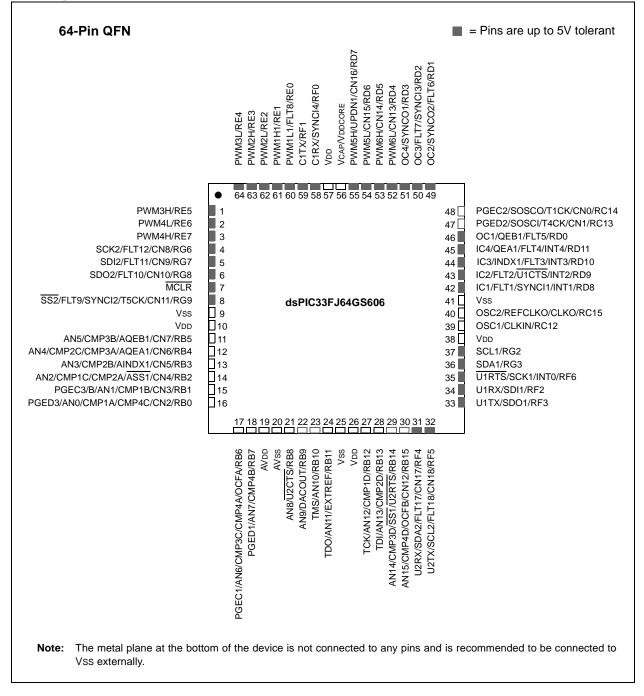

The device names, pin counts, memory sizes, and peripheral availability of each device are listed in Table 1. The following pages show their pinout diagrams.

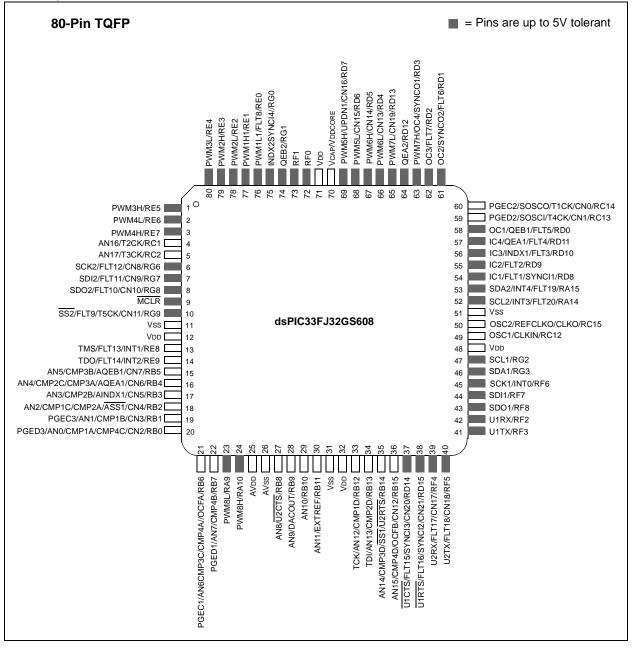

# TABLE 1: dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 CONTROLLER FAMILIES

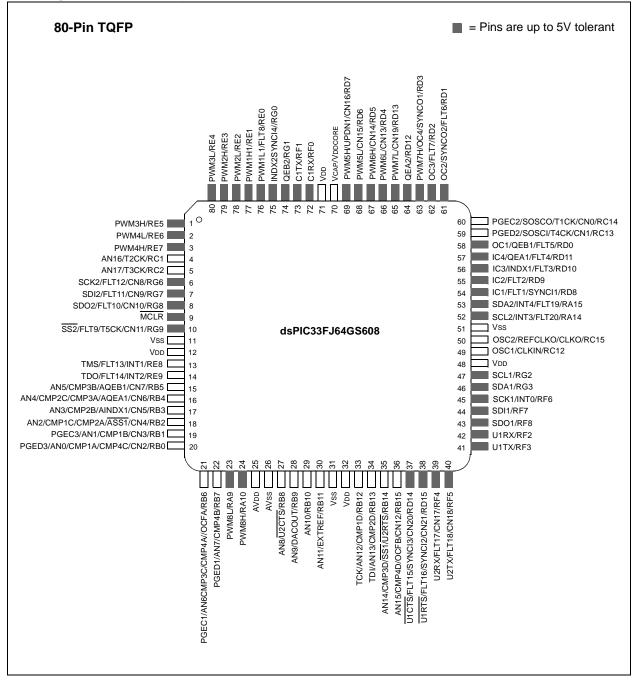

|                  |      | •                             |                   |              |               |                |      |                              |     |       |              |     |                   |                     |            |      |      | ADC                           |                          |          |           |
|------------------|------|-------------------------------|-------------------|--------------|---------------|----------------|------|------------------------------|-----|-------|--------------|-----|-------------------|---------------------|------------|------|------|-------------------------------|--------------------------|----------|-----------|
|                  |      | tes                           |                   |              |               |                |      | ce                           |     |       |              |     |                   |                     |            |      |      | -                             |                          |          |           |
| Device           | Pins | Program Flash Memory (Kbytes) | RAM (Bytes)       | 16-bit Timer | Input Capture | Output Compare | UART | Quadrature Encoder Interface | IdS | ECAN™ | DMA Channels | MWH | Analog Comparator | External Interrupts | DAC Output | I²C™ | SARs | Sample and Hold (S&H) Circuit | Analog-to-Digital Inputs | I/O Pins | Packages  |
| dsPIC33FJ32GS406 | 64   | 32                            | 4K                | 5            | 4             | 4              | 2    | 1                            | 2   | 0     | 0            | 6x2 | 0                 | 5                   | 0          | 2    | 1    | 5                             | 16                       | 58       | PT,<br>MR |
| dsPIC33FJ32GS606 | 64   | 32                            | 4K                | 5            | 4             | 4              | 2    | 2                            | 2   | 0     | 0            | 6x2 | 4                 | 5                   | 1          | 2    | 2    | 6                             | 16                       | 58       | PT,<br>MR |
| dsPIC33FJ32GS608 | 80   | 32                            | 4K                | 5            | 4             | 4              | 2    | 2                            | 2   | 0     | 0            | 8x2 | 4                 | 5                   | 1          | 2    | 2    | 6                             | 18                       | 74       | PT        |
| dsPIC33FJ32GS610 | 100  | 32                            | 4K                | 5            | 4             | 4              | 2    | 2                            | 2   | 0     | 0            | 9x2 | 4                 | 5                   | 1          | 2    | 2    | 6                             | 24                       | 85       | PT,<br>PF |
| dsPIC33FJ64GS406 | 64   | 64                            | 8K                | 5            | 4             | 4              | 2    | 1                            | 2   | 0     | 0            | 6x2 | 0                 | 5                   | 0          | 2    | 1    | 5                             | 16                       | 58       | PT,<br>MR |
| dsPIC33FJ64GS606 | 64   |                               | 9K(1)             |              | 4             | 4              | 2    | 2                            | 2   | 1     | 4            | 6x2 | 4                 | 5                   | 1          | 2    | 2    | 6                             | 16                       | 58       | PT,<br>MR |
| dsPIC33FJ64GS608 | 80   | 64                            | 9K <sup>(1)</sup> | 5            | 4             | 4              | 2    | 2                            | 2   | 1     | 4            | 8x2 | 4                 | 5                   | 1          | 2    | 2    | 6                             | 18                       | 74       | PT        |
| dsPIC33FJ64GS610 | 100  | 64                            | 9K <sup>(1)</sup> | 5            | 4             | 4              | 2    | 2                            | 2   | 1     | 4            | 9x2 | 4                 | 5                   | 1          | 2    | 2    | 6                             | 24                       | 85       | PT,<br>PF |

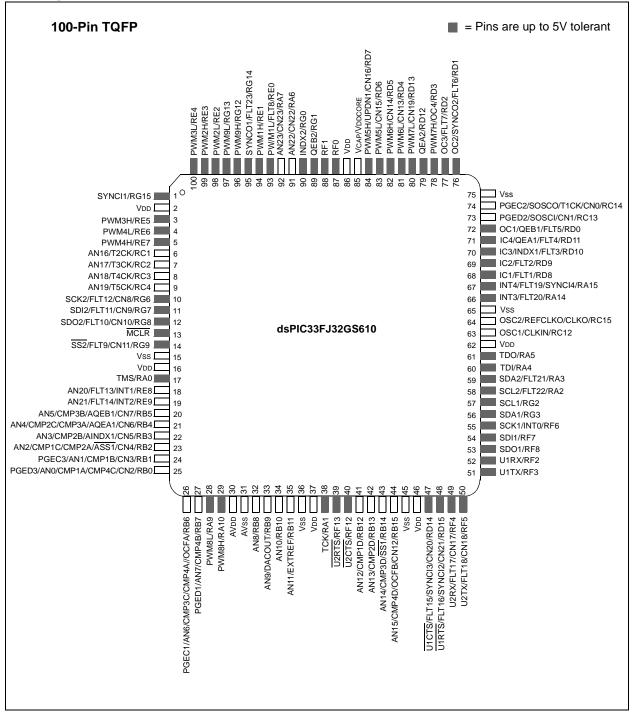

Note 1: RAM size is inclusive of 1 Kbyte DMA RAM.


#### **Pin Diagrams**

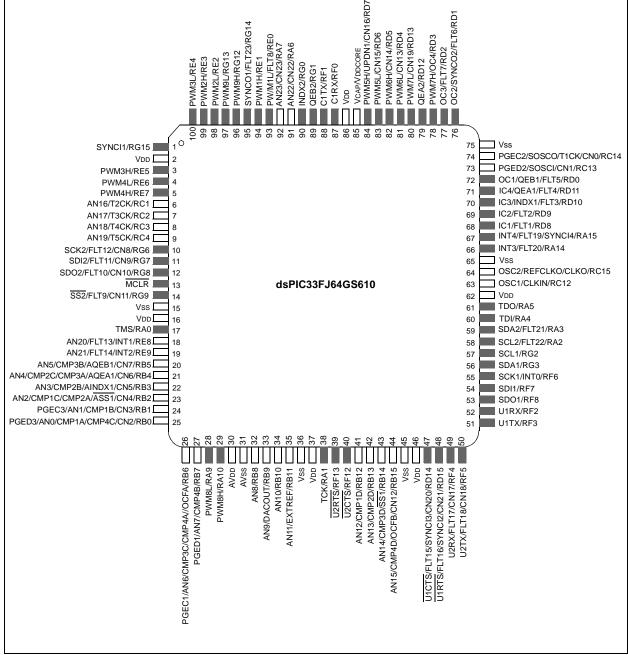















#### **Table of Contents**

| dsPIC | C33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Product Families                           | 6   |
|-------|------------------------------------------------------------------------------------------------------|-----|
| 1.0   | Device Overview                                                                                      |     |
| 2.0   | Guidelines for Getting Started with 16-bit Digital Signal Controllers                                | 25  |
| 3.0   | CPU                                                                                                  | 35  |
| 4.0   | Memory Organization                                                                                  | 47  |
| 5.0   | Flash Program Memory                                                                                 | 109 |
| 6.0   | Resets                                                                                               | 115 |
| 7.0   | Interrupt Controller                                                                                 | 123 |
| 8.0   | Direct Memory Access (DMA)                                                                           | 177 |
| 9.0   | Oscillator Configuration                                                                             | 187 |
| 10.0  | Power-Saving Features                                                                                | 199 |
| 11.0  | I/O Ports                                                                                            | 209 |
| 12.0  | Timer1                                                                                               | 211 |
| 13.0  | Timer2/3/4/5 features                                                                                | 213 |
| 14.0  | Input Capture                                                                                        | 219 |
| 15.0  | Output Compare                                                                                       | 221 |
| 16.0  | High-Speed PWM                                                                                       | 225 |
| 17.0  | Quadrature Encoder Interface (QEI) Module                                                            | 255 |
| 18.0  | Serial Peripheral Interface (SPI)                                                                    | 259 |
| 19.0  | Inter-Integrated Circuit (I <sup>2</sup> C <sup>TM</sup> )                                           | 265 |
| 20.0  | Universal Asynchronous Receiver Transmitter (UART)                                                   | 273 |
| 21.0  | Enhanced CAN (ECAN™) Module                                                                          | 279 |
| 22.0  | High-Speed 10-bit Analog-to-Digital Converter (ADC)                                                  |     |
| 23.0  | High-Speed Analog Comparator                                                                         | 329 |
| 24.0  | Special Features                                                                                     | 333 |
| 25.0  | Instruction Set Summary                                                                              | 341 |
| 26.0  | Development Support                                                                                  | 349 |
| 27.0  | Electrical Characteristics                                                                           | 353 |
|       | Packaging Information                                                                                | 389 |
| Appe  | ndix A: Migrating from dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 to dsPIC33FJ32GS406/606/608/610 |     |
| and c | IsPIC33FJ64GS406/606/608/610 Devices                                                                 | 403 |
| Appe  | ndix B: Revision History                                                                             | 404 |
| Index | ·                                                                                                    | 409 |
| The M | Aicrochip Web Site                                                                                   | 415 |
| Custo | omer Change Notification Service                                                                     | 415 |
| Custo | omer Support                                                                                         | 415 |
|       | er Response                                                                                          |     |
| Produ | uct Identification System                                                                            | 417 |

#### TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

#### Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

#### Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

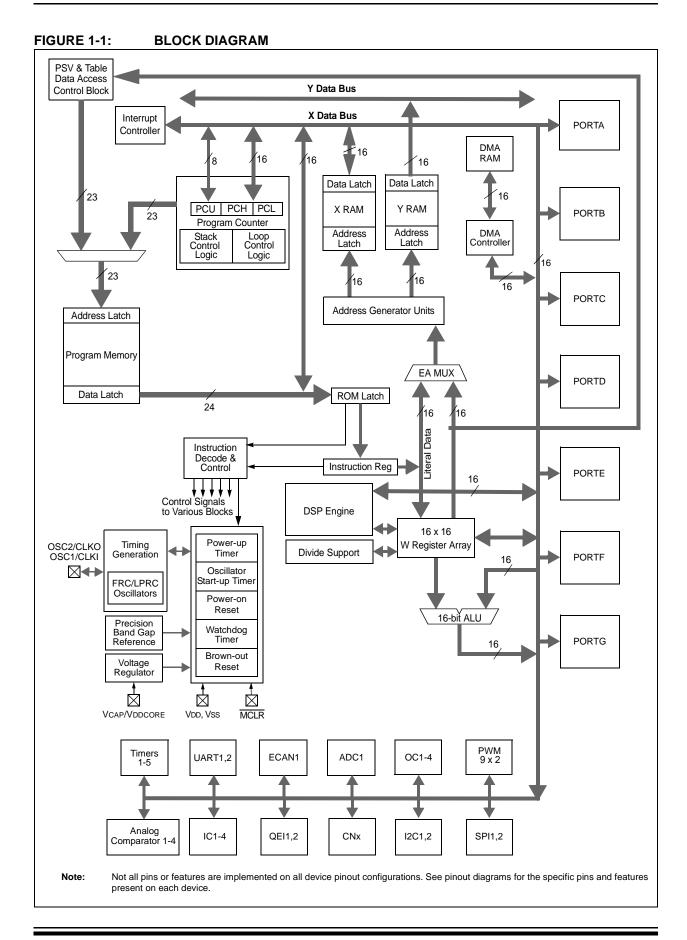
- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

#### **Customer Notification System**

Register on our web site at www.microchip.com to receive the most current information on all of our products.

#### 1.0 DEVICE OVERVIEW


Note: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"dsPIC33F/PIC24H Family Reference Manual"*. Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.

This document contains device-specific information for the following dsPIC33F Digital Signal Controller (DSC) devices:

- dsPIC33FJ32GS406
- dsPIC33FJ32GS606
- dsPIC33FJ32GS608
- dsPIC33FJ32GS610
- dsPIC33FJ64GS406
- dsPIC33FJ64GS606
- dsPIC33FJ64GS608
- dsPIC33FJ64GS610

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance 16-bit microcontroller (MCU) architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules in the dsPIC33FJ32GS406/ 606/608/610 and dsPIC33FJ64GS406/606/608/610 devices. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.



| Pin Name                                 | Pin<br>Type                                                                                                                                                                           | Buffer<br>Type | Description                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| ANO-AN23                                 | Ι                                                                                                                                                                                     | Analog         | Analog input channels                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| CLKI<br>CLKO                             | н<br>О                                                                                                                                                                                | ST/CMOS<br>—   | External clock source input. Always associated with OSC1 pin functior<br>Oscillator crystal output. Connects to crystal or resonator in Crystal<br>Oscillator mode. Optionally functions as CLKO in RC and EC modes.<br>Always associated with OSC2 pin function. |  |  |  |  |  |  |
| DSC1<br>DSC2                             | <br> /O                                                                                                                                                                               | ST/CMOS        | Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.                                                                                                                                                                                   |  |  |  |  |  |  |
| 5502                                     | 1/0                                                                                                                                                                                   |                | Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.                                                                                                                          |  |  |  |  |  |  |
| SOSCI<br>SOSCO                           | l<br>O                                                                                                                                                                                | ST/CMOS        | 32.768 kHz low-power oscillator crystal input; CMOS otherwise.<br>32.768 kHz low-power oscillator crystal output.                                                                                                                                                 |  |  |  |  |  |  |
| CN0-CN23                                 | I                                                                                                                                                                                     | ST             | Change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.                                                                                                                                                                  |  |  |  |  |  |  |
| C1RX<br>C1TX                             | I<br>O                                                                                                                                                                                | ST<br>—        | ECAN1 bus receive pin.<br>ECAN1 bus transmit pin.                                                                                                                                                                                                                 |  |  |  |  |  |  |
| C1-IC4                                   | I                                                                                                                                                                                     | ST             | Capture inputs 1/4                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| NDX1, INDX2, AINDX1<br>QEA1, QEA2, AQEA1 |                                                                                                                                                                                       | ST<br>ST       | Quadrature Encoder Index Pulse input.<br>Quadrature Encoder Phase A input in QEI mode.                                                                                                                                                                            |  |  |  |  |  |  |
| QEB1, QEB2, AQEB1                        | AQEB1 I ST Auxiliary Timer External Clock/Gate input in Timer mode.<br>Auxiliary Timer Encoder Phase A input in QEI mode.<br>Auxiliary Timer External Clock/Gate input in Timer mode. |                |                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| JPDN1                                    | 0                                                                                                                                                                                     | CMOS           | Position Up/Down Counter Direction State.                                                                                                                                                                                                                         |  |  |  |  |  |  |
| OCFA                                     | I                                                                                                                                                                                     | ST             | Compare Fault A input (for Compare Channels 1 and 2)                                                                                                                                                                                                              |  |  |  |  |  |  |
|                                          | <br>0                                                                                                                                                                                 | ST             | Compare Fault B input (for Compare Channels 3 and 4)                                                                                                                                                                                                              |  |  |  |  |  |  |
| OC1-OC4                                  |                                                                                                                                                                                       |                | Compare Outputs 1 through 4                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| NTO<br>NT1                               | 1                                                                                                                                                                                     | ST<br>ST       | External Interrupt 0<br>External Interrupt 1                                                                                                                                                                                                                      |  |  |  |  |  |  |
| NT2                                      | 1                                                                                                                                                                                     | ST             | External Interrupt 2                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| NT3                                      | 1                                                                                                                                                                                     | ST             | External Interrupt 3                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| NT4                                      | i                                                                                                                                                                                     | ST             | External Interrupt 4                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| RA0-RA15                                 | I/O                                                                                                                                                                                   | ST             | PORTA is a bidirectional I/O port                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| RB0-RB15                                 | I/O                                                                                                                                                                                   | ST             | PORTB is a bidirectional I/O port                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| RC0-RC15                                 | I/O                                                                                                                                                                                   | ST             | PORTC is a bidirectional I/O port                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| RD0-RD15                                 | I/O                                                                                                                                                                                   | ST             | PORTD is a bidirectional I/O port                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| RE0-RE9                                  | I/O                                                                                                                                                                                   | ST             | PORTE is a bidirectional I/O port                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| RF0-RF13                                 | I/O                                                                                                                                                                                   | ST             | PORTF is a bidirectional I/O port                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| RG0-RG15                                 | I/O                                                                                                                                                                                   | ST             | PORTG is a bidirectional I/O port                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| T1CK                                     | Ι                                                                                                                                                                                     | ST             | Timer1 External Clock Input                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| T2CK                                     | I                                                                                                                                                                                     | ST             | Timer2 External Clock Input                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| ТЗСК                                     | I                                                                                                                                                                                     | ST             | Timer3 External Clock Input                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| T4CK                                     | I                                                                                                                                                                                     | ST             | Timer4 External Clock Input                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| T5CK                                     | 1                                                                                                                                                                                     | ST             | Timer5 External Clock Input                                                                                                                                                                                                                                       |  |  |  |  |  |  |

#### TABLE 1-1:PINOUT I/O DESCRIPTIONS

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-Transistor Logic

P = Power

O = Output

| TABLE 1-1: PINC  | OUT I/O D   | ESCRIPT        | IONS (CONTINUED)                                                    |
|------------------|-------------|----------------|---------------------------------------------------------------------|
| Pin Name         | Pin<br>Type | Buffer<br>Type | Description                                                         |
| U1CTS            | I           | ST             | UART1 clear to send                                                 |
| U1RTS            | 0           | —              | UART1 ready to send                                                 |
| U1RX             | I           | ST             | UART1 receive                                                       |
| U1TX             | 0           | —              | UART1 transmit                                                      |
| U2CTS            | I           | ST             | UART2 clear to send                                                 |
| U2RTS            | 0           | —              | UART2 ready to send                                                 |
| U2RX             | I           | ST             | UART2 receive                                                       |
| U2TX             | 0           | —              | UART2 transmit                                                      |
| SCK1             | I/O         | ST             | Synchronous serial clock input/output for SPI1                      |
| SDI1             | 1           | ST             | SPI1 data in                                                        |
| SDO1             | 0           | —              | SPI1 data out                                                       |
| SS1, ASS1        | I/O         | ST             | SPI1 slave synchronization or frame pulse I/O                       |
| SCK2             | I/O         | ST             | Synchronous serial clock input/output for SPI2                      |
| SDI2             | 1           | ST             | SPI2 data in                                                        |
| SDO2             | 0           | —              | SPI2 data out                                                       |
| SS2              | I/O         | ST             | SPI2 slave synchronization or frame pulse I/O                       |
| SCL1             | I/O         | ST             | Synchronous serial clock input/output for I2C1                      |
| SDA1             | I/O         | ST             | Synchronous serial data input/output for I2C1                       |
| SCL2             | I/O         | ST             | Synchronous serial clock input/output for I2C2                      |
| SDA2             | I/O         | ST             | Synchronous serial data input/output for I2C2                       |
| TMS              | I           | TTL            | JTAG Test mode select pin                                           |
| TCK              | 1           | TTL            | JTAG test clock input pin                                           |
| TDI              | 1           | TTL            | JTAG test data input pin                                            |
| TDO              | 0           | —              | JTAG test data output pin                                           |
| CMP1A            | 1           | Analog         | Comparator 1 Channel A                                              |
| CMP1B            | I           | Analog         | Comparator 1 Channel B                                              |
| CMP1C            | I           | Analog         | Comparator 1 Channel C                                              |
| CMP1D            | I           | Analog         | Comparator 1 Channel D                                              |
| CMP2A            |             | Analog         | Comparator 2 Channel A                                              |
| CMP2B            |             | Analog         | Comparator 2 Channel B                                              |
| CMP2C            |             | Analog         | Comparator 2 Channel C                                              |
| CMP2D            |             | Analog         | Comparator 2 Channel D                                              |
| CMP3A            |             | Analog         | Comparator 3 Channel A                                              |
| CMP3B            |             | Analog         | Comparator 3 Channel B                                              |
| CMP3C            |             | Analog         | Comparator 3 Channel C                                              |
| CMP3D            |             | Analog         | Comparator 3 Channel D                                              |
| CMP4A            |             | Analog         | Comparator 4 Channel A                                              |
| CMP4B            |             | Analog         | Comparator 4 Channel B                                              |
| CMP4C            |             | Analog         | Comparator 4 Channel C                                              |
| CMP4D            |             | Analog         | Comparator 4 Channel D                                              |
| DACOUT           | 0           | —              | DAC output voltage                                                  |
| EXTREF           | I           | Analog         | External Voltage Reference Input for the Reference DACs             |
| REFCLK           | 0           | —              | REFCLK output signal is a postscaled derivative of the system clock |
| Legend: CMOS = C | MOS compa   | atible input   | or output Analog = Analog input I = Input                           |
| ST = Schmi       |             |                |                                                                     |

#### TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend:CMOS = CMOS compatible input or output<br/>ST = Schmitt Trigger input with CMOS levels<br/>TTL = Transistor-Transistor LogicAnalog = Analog input<br/>P = PowerI = Input<br/>O = Output

|                       | ST<br>ST<br>—<br>—<br>—<br>—<br>— | Fault Inputs to PWM Module<br>External synchronization signal to PWM Master Time Base<br>PWM Master Time Base for external device synchronization<br>PWM1 Low output<br>PWM1 High output<br>PWM2 Low output<br>PWM2 High output |
|-----------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       |                                   | PWM Master Time Base for external device synchronization<br>PWM1 Low output<br>PWM1 High output<br>PWM2 Low output                                                                                                              |
|                       | _                                 | PWM1 Low output<br>PWM1 High output<br>PWM2 Low output                                                                                                                                                                          |
| )<br>)<br>)<br>)<br>) | —                                 | PWM1 High output<br>PWM2 Low output                                                                                                                                                                                             |
|                       |                                   | PWM2 Low output                                                                                                                                                                                                                 |
|                       |                                   | •                                                                                                                                                                                                                               |
| )<br>)<br>)           | _                                 | PWM2 High output                                                                                                                                                                                                                |
| )<br>)<br>)           | _                                 |                                                                                                                                                                                                                                 |
| )                     |                                   | PWM3 Low output                                                                                                                                                                                                                 |
| )                     | —                                 | PWM3 High output                                                                                                                                                                                                                |
|                       | —                                 | PWM4 Low output                                                                                                                                                                                                                 |
|                       | —                                 | PWM4 High output                                                                                                                                                                                                                |
| )                     | —                                 | PWM5 Low output                                                                                                                                                                                                                 |
| )                     | —                                 | PWM5 High output                                                                                                                                                                                                                |
| )                     | —                                 | PWM6 Low output                                                                                                                                                                                                                 |
| )                     | —                                 | PWM6 High output                                                                                                                                                                                                                |
| )                     | —                                 | PWM7 Low output                                                                                                                                                                                                                 |
| )                     | —                                 | PWM7 High output                                                                                                                                                                                                                |
| )                     | —                                 | PWM8 Low output                                                                                                                                                                                                                 |
| )                     | —                                 | PWM8 High output                                                                                                                                                                                                                |
| )                     | —                                 | PWM9 Low output                                                                                                                                                                                                                 |
| )                     | —                                 | PWM9 High output                                                                                                                                                                                                                |
| О                     | ST                                | Data I/O pin for programming/debugging communication Channel 1                                                                                                                                                                  |
|                       | ST                                | Clock input pin for programming/debugging communication Channel                                                                                                                                                                 |
| О                     | ST                                | Data I/O pin for programming/debugging communication Channel 2                                                                                                                                                                  |
|                       | ST                                | Clock input pin for programming/debugging communication Channel 2                                                                                                                                                               |
| О                     | ST                                | Data I/O pin for programming/debugging communication Channel 3                                                                                                                                                                  |
|                       | ST                                | Clock input pin for programming/debugging communication Channel                                                                                                                                                                 |
| Р                     | ST                                | Master Clear (Reset) input. This pin is an active-low Reset to the device.                                                                                                                                                      |
| >                     | Р                                 | Positive supply for analog modules                                                                                                                                                                                              |
| <b>)</b>              | Р                                 | Ground reference for analog modules                                                                                                                                                                                             |
| >                     | _                                 | Positive supply for peripheral logic and I/O pins                                                                                                                                                                               |
| >                     | _                                 | CPU logic filter capacitor connection                                                                                                                                                                                           |
| <b>)</b>              |                                   | Ground reference for logic and I/O pins                                                                                                                                                                                         |
|                       | o<br>ompa                         | · _                                                                                                                                                                                                                             |

| TABLE 1-1: | <b>PINOUT I/O DESCRIPTIONS</b> | (CONTINUED) |
|------------|--------------------------------|-------------|
| IADLL I-I. |                                |             |

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-Transistor Logic

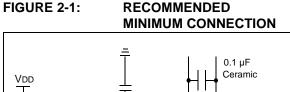
NOTES:

#### 2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- **Note 1:** This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see Microchip the web site (www.microchip.com) for the latest 74dsPIC33F/PIC24H Family Reference Manual sections.
  - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

#### 2.1 Basic Connection Requirements

GettingstartedwiththedsPIC33FJ32GS406/606/608/610anddsPIC33FJ64GS406/606/608/610family of16-bitDigital Signal Controllers (DSC) requires attention to aminimalset ofdevicepinconnectionsbeforeproceeding with development.The following is a list ofpin names, which must always be connected:


- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used)
- (see Section 2.2 "Decoupling Capacitors")
- VCAP/VDDCORE (see Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP/VDDCORE)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>) and debugging purposes (see **Section 2.5 "ICSP Pins"**)
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")


#### 2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD, and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1  $\mu$ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of  $0.01 \ \mu$ F to  $0.001 \ \mu$ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example,  $0.1 \ \mu$ F in parallel with  $0.001 \ \mu$ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.





#### 2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7  $\mu$ F to 47  $\mu$ F.

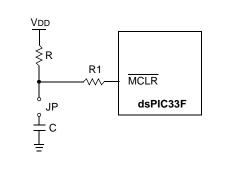
#### 2.3 Capacitor on Internal Voltage Regulator (VCAP/VDDCORE)

A low-ESR (< 5 Ohms) capacitor is required on the VCAP/VDDCORE pin, which is used to stabilize the voltage regulator output voltage. The VCAP/VDDCORE pin must not be connected to VDD, and must have a capacitor between 4.7  $\mu$ F and 10  $\mu$ F, 16V connected to ground. The type can be ceramic or tantalum. Refer to **Section 27.0** "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP/VDDCORE. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to **Section 24.2** "**On-Chip Voltage Regulator**" for details.

#### 2.4 Master Clear (MCLR) Pin

The  $\overline{\text{MCLR}}$  pin provides for two specific device functions:


- Device Reset
- Device programming and debugging.

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the  $\overline{\text{MCLR}}$  pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the  $\overline{\text{MCLR}}$  pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.





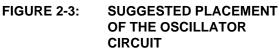
Note 1:  $R \le 10 \ k\Omega$  is recommended. A suggested starting value is  $10 \ k\Omega$ . Ensure that the MCLR pin VIH and VIL specifications are met.

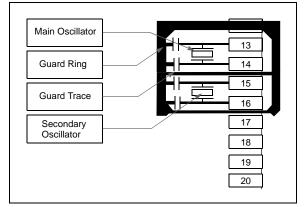
#### 2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGCx and PGDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB<sup>®</sup> ICD 2, MPLAB<sup>®</sup> ICD 3, or MPLAB<sup>®</sup> REAL ICE<sup>™</sup>.


For more information on ICD 2, ICD 3, and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.


- "MPLAB<sup>®</sup> ICD 2 In-Circuit Debugger User's Guide" DS51331
- "Using MPLAB<sup>®</sup> ICD 2" (poster) DS51265
- *"MPLAB<sup>®</sup> ICD 2 Design Advisory"* DS51566
- "Using MPLAB<sup>®</sup> ICD 3" (poster) DS51765
- "MPLAB<sup>®</sup> ICD 3 Design Advisory" DS51764
- "MPLAB<sup>®</sup> REAL ICE<sup>™</sup> In-Circuit Debugger User's Guide" DS51616
- "Using MPLAB<sup>®</sup> REAL ICE™" (poster) DS51749

#### 2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 9.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.





#### 2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 4 MHz < FIN < 8 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

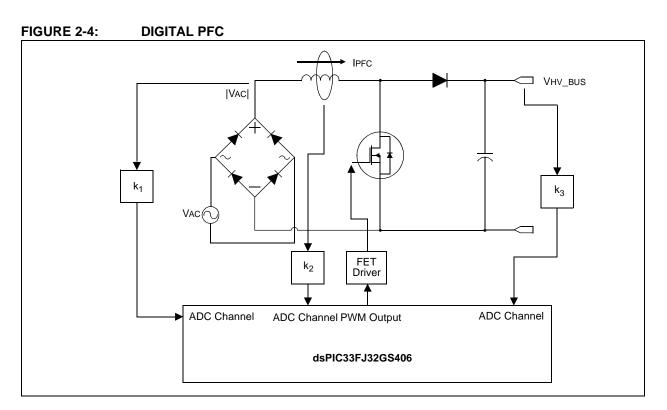
Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV, and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

#### 2.8 Configuration of Analog and Digital Pins During ICSP Operations

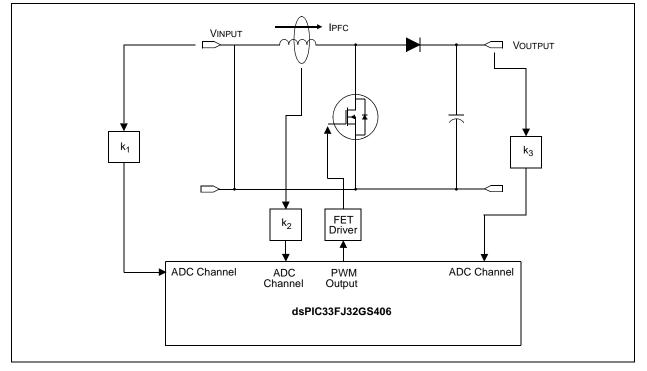
If MPLAB ICD 2, ICD 3, or REAL ICE is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins, by setting all bits in the ADPCFG and ADPCFG2 registers.

The bits in the registers that correspond to the A/D pins that are initialized by MPLAB ICD 2, ICD 3, or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device. If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the ADPCFG and ADPCFG2 registers during initialization of the ADC module.

When MPLAB ICD 2, ICD 3, or REAL ICE is used as a programmer, the user application firmware must correctly configure the ADPCFG and ADPCFG2 registers. Automatic initialization of these registers is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

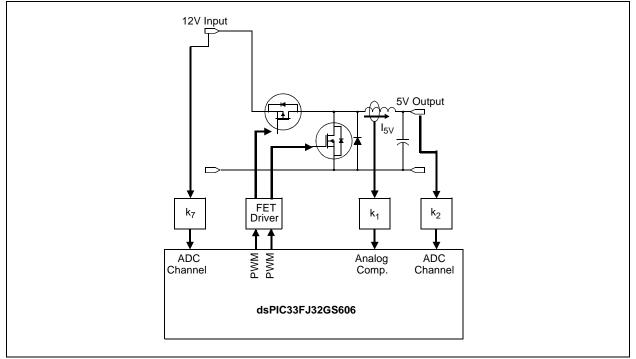

#### 2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic-low state.

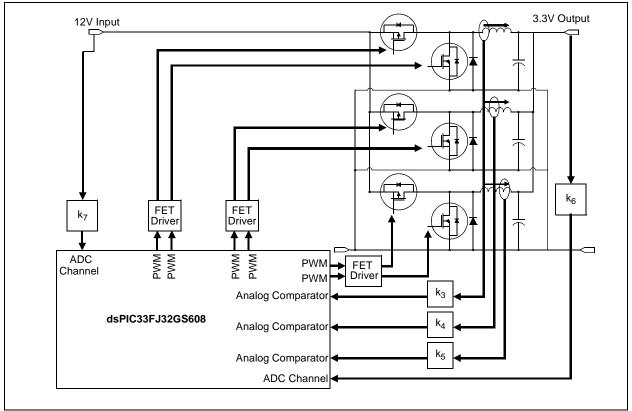

Alternatively, connect a 1k to 10k resistor to Vss on unused pins and drive the output to logic low.

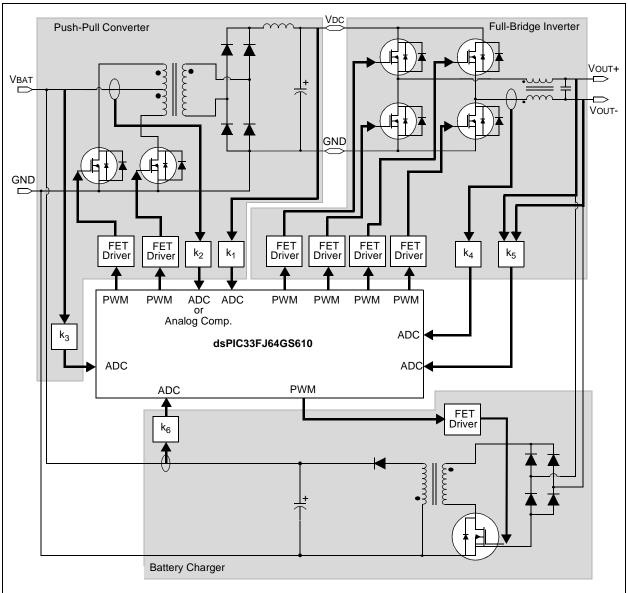
#### 2.10 Typical Application Connection Examples

Examples of typical application connections are shown in Figure 2-4 through Figure 2-11.



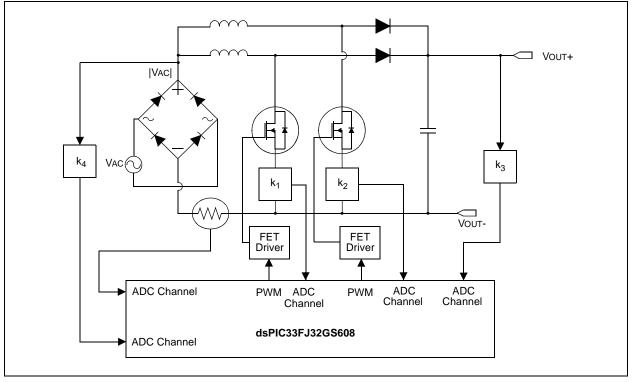


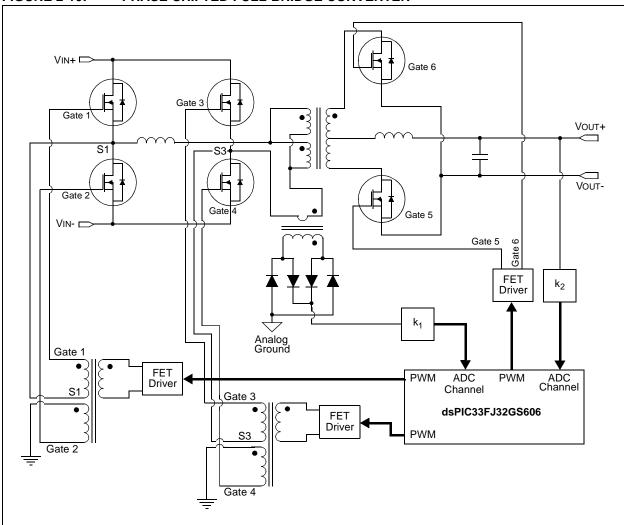





© 2010 Microchip Technology Inc.

#### FIGURE 2-6: SINGLE-PHASE SYNCHRONOUS BUCK CONVERTER

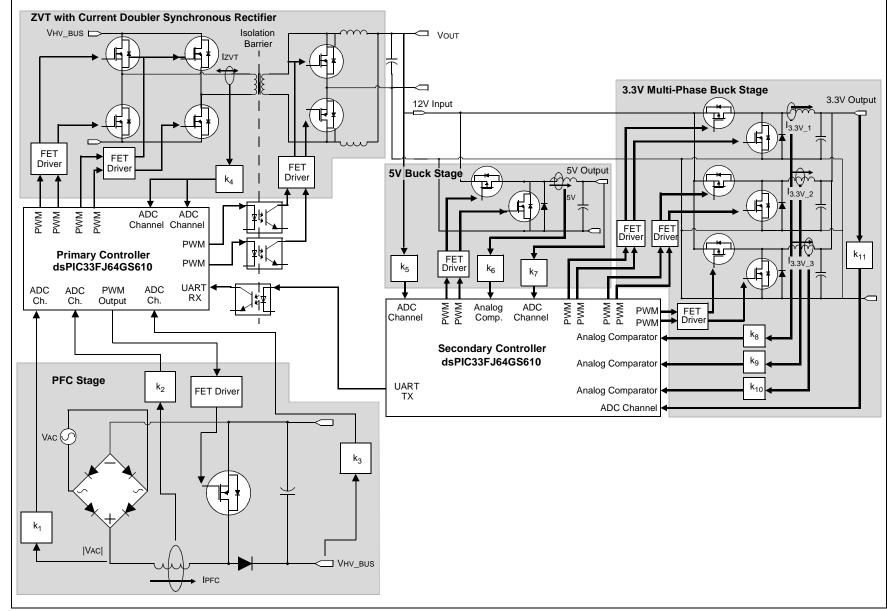










#### FIGURE 2-9: INTERLEAVED PFC











#### 3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 2. "CPU"** (DS70204) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies from device to device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/606/608/610 devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The sixteenth working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

There are two classes of instruction in the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction

cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1, and the programmer's model for the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 is shown in Figure 3-2.

#### 3.1 Data Addressing Overview

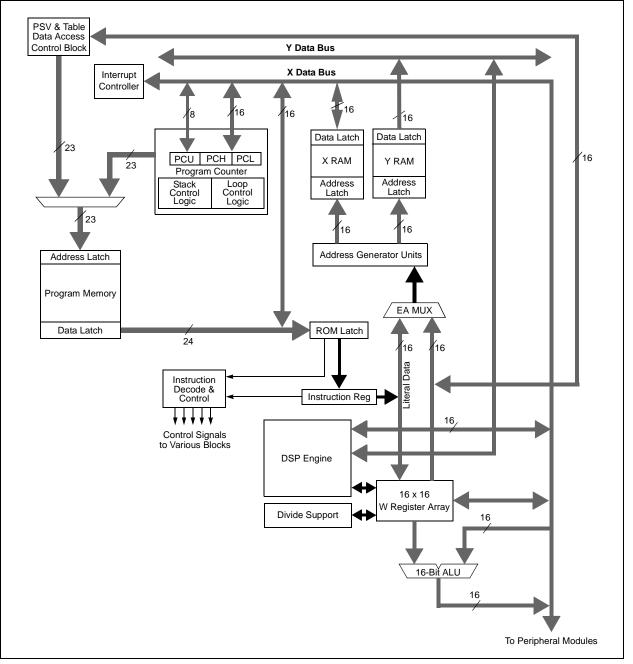
The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

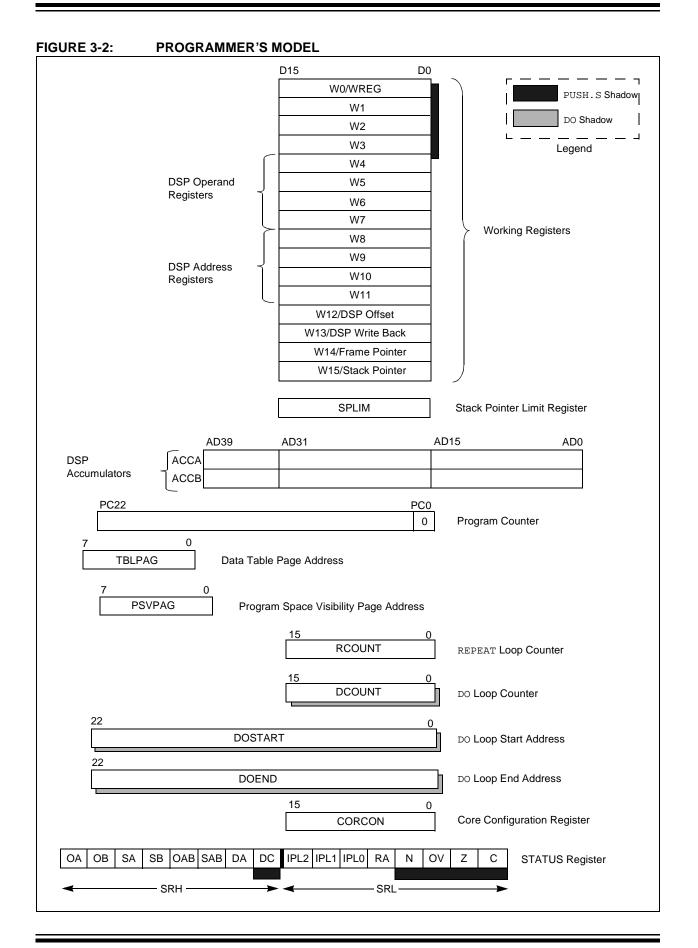
Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program-to-data space mapping feature lets any instruction access program space as if it were data space.

#### 3.2 DSP Engine Overview

The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits, right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal realtime performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space.


#### 3.3 Special MCU Features


The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 features a 17-bit by 17-bit single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0).

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/606/608/610 supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

#### FIGURE 3-1: dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 CPU CORE BLOCK DIAGRAM





# 3.4 CPU Control Registers

| R-0                  | R-0                     | R/C-0                                | R/C-0             | R-0                     | R/C-0                            | R -0             | R/W-0         |
|----------------------|-------------------------|--------------------------------------|-------------------|-------------------------|----------------------------------|------------------|---------------|
| OA                   | OB                      | SA <sup>(1)</sup>                    | SB <sup>(1)</sup> | OAB                     | SAB <sup>(1,4)</sup>             | DA               | DC            |
| bit 15               |                         |                                      |                   |                         |                                  |                  | bit           |
| R/W-0 <sup>(2)</sup> | R/W-0 <sup>(3)</sup>    | R/W-0 <sup>(3)</sup>                 | R-0               | R/W-0                   | R/W-0                            | R/W-0            | R/W-0         |
| 10,00-01-            | IPL<2:0> <sup>(2)</sup> | 10,00-0-                             | RA                | N N                     | OV                               | Z                | C             |
| bit 7                |                         |                                      |                   |                         | _                                |                  | bit (         |
| Legend:              |                         |                                      |                   |                         |                                  |                  |               |
| C = Clearable        | e bit                   | R = Readable                         | e bit             | U = Unimpler            | mented bit, read                 | as '0'           |               |
| S = Settable I       | bit                     | W = Writable                         | bit               | -n = Value at           |                                  |                  |               |
| '1' = Bit is set     |                         | '0' = Bit is cle                     | ared              | x = Bit is unk          | nown                             |                  |               |
|                      |                         |                                      | _                 |                         |                                  |                  |               |
| bit 15               |                         | ator A Overflow                      |                   |                         |                                  |                  |               |
|                      |                         | ator A overflow<br>ator A has not o  |                   |                         |                                  |                  |               |
| bit 14               | OB: Accumul             | ator B Overflov                      | w Status bit      |                         |                                  |                  |               |
|                      |                         | ator B overflow                      |                   |                         |                                  |                  |               |
|                      |                         | ator B has not o                     |                   | (4)                     |                                  |                  |               |
| bit 13               |                         | ator A Saturati                      |                   |                         |                                  |                  |               |
|                      |                         | ator A is satura<br>ator A is not sa |                   | en saturated at         | some time                        |                  |               |
| bit 12               | SB: Accumul             | ator B Saturati                      | on 'Sticky' Sta   | atus bit <sup>(1)</sup> |                                  |                  |               |
|                      |                         | ator B is satura<br>ator B is not sa |                   | en saturated at         | some time                        |                  |               |
| bit 11               | <b>0AB:</b> OA    C     | B Combined A                         | Accumulator C     | Overflow Status         | bit                              |                  |               |
|                      |                         | ators A or B ha                      |                   |                         |                                  |                  |               |
| L:140                |                         | ccumulators A                        |                   |                         | (1.4)                            |                  |               |
| bit 10               |                         |                                      |                   | ticky' Status bit       | urated at some t                 | imo in tho naci  |               |
|                      |                         | ccumulator A d                       |                   |                         | urateu at some i                 | ine in the pas   | L             |
| bit 9                | DA: DO Loop             | Active bit                           |                   |                         |                                  |                  |               |
|                      | 1 = DO loop in          |                                      |                   |                         |                                  |                  |               |
|                      | -                       | ot in progress                       | <u> </u>          |                         |                                  |                  |               |
| bit 8                |                         | U Half Carry/B                       |                   | (for but a sized a      | data) ar Oth lawr                | rdar bit (far wa | rd aizad data |
|                      |                         | sult occurred                        | IOW-OIGEI DI      | (IDI Dyte-Sized t       | data) or 8th low-o               |                  | 10-51200 0818 |
|                      |                         | -out from the 4<br>he result occur   |                   | bit (for byte-siz       | ed data) or 8th                  | low-order bit (f | or word-size  |
| Note 1: T            | his bit can be re       | ad or cleared (                      | not set).         |                         |                                  |                  |               |
| Le                   |                         |                                      |                   |                         | RCON<3>) to fo<br>L<3> = 1. User |                  |               |

- **3:** The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).
- **4:** Clearing this bit will clear SA and SB.

#### REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

| bit 7-5 | IPL<2:0>: CPU Interrupt Priority Level Status bits <sup>(2)</sup>                                                                          |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------|
|         | 111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled                                                                     |
|         | 110 = CPU Interrupt Priority Level is 6 (14)<br>101 = CPU Interrupt Priority Level is 5 (13)                                               |
|         | 100 = CPU Interrupt Priority Level is 4 (12)                                                                                               |
|         | 011 = CPU Interrupt Priority Level is 3 (11)                                                                                               |
|         | 010 = CPU Interrupt Priority Level is 2 (10)                                                                                               |
|         | 001 = CPU Interrupt Priority Level is 1 (9)                                                                                                |
|         | 000 = CPU Interrupt Priority Level is 0 (8)                                                                                                |
| bit 4   | RA: REPEAT Loop Active bit                                                                                                                 |
|         | 1 = REPEAT loop in progress                                                                                                                |
|         | 0 = REPEAT loop not in progress                                                                                                            |
| bit 3   | N: MCU ALU Negative bit                                                                                                                    |
|         | 1 = Result was negative                                                                                                                    |
|         | 0 = Result was non-negative (zero or positive)                                                                                             |
| bit 2   | OV: MCU ALU Overflow bit                                                                                                                   |
|         | This bit is used for signed arithmetic (2's complement). It indicates an overflow of a magnitude that causes the sign bit to change state. |
|         | 1 = Overflow occurred for signed arithmetic (in this arithmetic operation)                                                                 |
|         | 0 = No overflow occurred                                                                                                                   |
| bit 1   | Z: MCU ALU Zero bit                                                                                                                        |
|         | 1 = An operation that affects the Z bit has set it at some time in the past                                                                |
|         | 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)                                              |
| bit 0   | C: MCU ALU Carry/Borrow bit                                                                                                                |
|         | 1 = A carry-out from the Most Significant bit of the result occurred                                                                       |
|         | 0 = No carry-out from the Most Significant bit of the result occurred                                                                      |
|         |                                                                                                                                            |

- Note 1: This bit can be read or cleared (not set).
  - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
  - **3:** The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).
  - 4: Clearing this bit will clear SA and SB.

|                  | 3-2: CORC                      |                                      |                 | EGISTER             |                 |                  |       |
|------------------|--------------------------------|--------------------------------------|-----------------|---------------------|-----------------|------------------|-------|
| U-0              | U-0                            | U-0                                  | R/W-0           | R/W-0               | R-0             | R-0              | R-0   |
| —                | —                              | —                                    | US              | EDT <sup>(1)</sup>  |                 | DL<2:0>          |       |
| bit 15           |                                |                                      |                 |                     |                 |                  | bit   |
| R/W-0            | R/W-0                          | R/W-1                                | R/W-0           | R/C-0               | R/W-0           | R/W-0            | R/W-0 |
| SATA             | SATB                           | SATDW                                | ACCSAT          | IPL3 <sup>(2)</sup> | PSV             | RND              | IF    |
| bit 7            |                                |                                      |                 |                     |                 |                  | bit   |
| Legend:          |                                | C = Clearabl                         | e bit           |                     |                 |                  |       |
| R = Readable     | e bit                          | W = Writable                         | bit             | -n = Value at       | POR             | '1' = Bit is set |       |
| 0' = Bit is clea | ared                           | 'x = Bit is unł                      | nown            | U = Unimplen        | nented bit, rea | d as '0'         |       |
| bit 15-13        | Unimplemer                     | nted: Read as                        | 0'              |                     |                 |                  |       |
| bit 12           | -                              | Itiply Unsigned                      |                 | ol bit              |                 |                  |       |
|                  |                                | ine multiplies a                     | -               |                     |                 |                  |       |
|                  | 0 = DSP eng                    | ine multiplies a                     | re signed       |                     |                 |                  |       |
| bit 11           | EDT: Early D                   | O Loop Termina                       | ation Control b | <sub>oit</sub> (1)  |                 |                  |       |
|                  | 1 = Terminate<br>0 = No effect | •                                    | loop at end of  | current loop ite    | eration         |                  |       |
| bit 10-8         | DL<2:0>: DO                    | Loop Nesting                         | Level Status b  | its                 |                 |                  |       |
|                  | 111 <b>= 7</b> do <b>k</b>     | pops active                          |                 |                     |                 |                  |       |
|                  | •                              | -                                    |                 |                     |                 |                  |       |
|                  | •                              |                                      |                 |                     |                 |                  |       |
|                  | 001 = 1 DO k                   | oop active                           |                 |                     |                 |                  |       |
|                  | 000 = 0 DO lo                  | •                                    |                 |                     |                 |                  |       |
| bit 7            | SATA: ACCA                     | A Saturation En                      | able bit        |                     |                 |                  |       |
|                  |                                | ator A saturatio<br>ator A saturatio |                 |                     |                 |                  |       |
| bit 6            | SATB: ACCE                     | 3 Saturation Er                      | able bit        |                     |                 |                  |       |
|                  | 1 = Accumula                   | ator B saturatio                     | n enabled       |                     |                 |                  |       |
|                  | 0 = Accumula                   | ator B saturatio                     | n disabled      |                     |                 |                  |       |
| bit 5            | SATDW: Dat                     | a Space Write                        | from DSP Eng    | ine Saturation      | Enable bit      |                  |       |
|                  |                                | ce write satura                      |                 |                     |                 |                  |       |
| hit 1            |                                | ce write satura                      |                 | Soloot hit          |                 |                  |       |
| bit 4            |                                | ration (super s                      |                 |                     |                 |                  |       |
|                  |                                | ration (normal                       | ,               |                     |                 |                  |       |
| bit 3            |                                | nterrupt Priority                    | -               | oit 3 <b>(2)</b>    |                 |                  |       |
|                  |                                | errupt Priority L                    |                 |                     |                 |                  |       |
|                  |                                | errupt Priority L                    | 0               |                     |                 |                  |       |
| bit 2            | PSV: Program                   | m Space Visibi                       | ity in Data Spa | ace Enable bit      |                 |                  |       |
|                  | 1 = Program                    | space visible i                      | n data space    |                     |                 |                  |       |
|                  | -                              | space not visit                      | -               | ce                  |                 |                  |       |
| bit 1            |                                | ling Mode Sele                       |                 |                     |                 |                  |       |
|                  |                                | conventional) ro<br>d (convergent)   |                 |                     |                 |                  |       |
| bit 0            | IF: Integer or                 | Fractional Mu                        | tiplier Mode S  | elect bit           |                 |                  |       |
|                  | 1 = Integer m<br>0 = Fractiona | node enabled fo<br>al mode enable    |                 |                     |                 |                  |       |

#### DECISTED 2 2

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

## 3.5 Arithmetic Logic Unit (ALU)

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/606/608/610 ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the "16-bit MCU and DSC Programmer's Reference Manual" (DS70157) for information on the SR bits affected by each instruction.

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/606/608/610 CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

#### 3.5.1 MULTIPLIER

Using the high-speed, 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

## 3.5.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

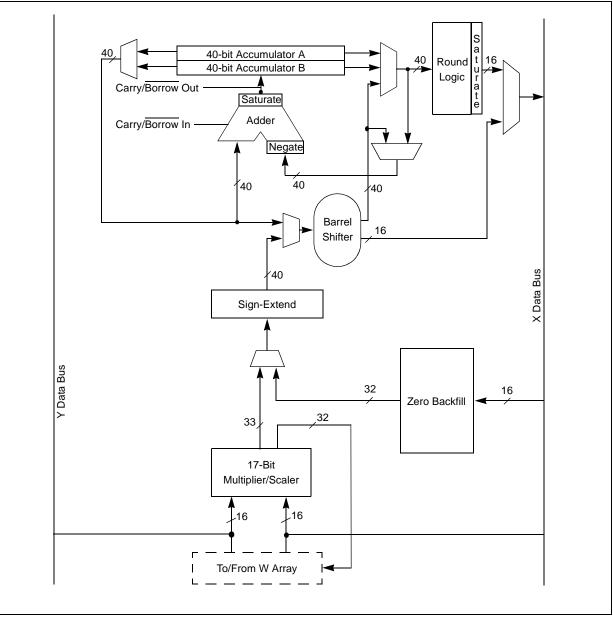
The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/ 16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

## 3.6 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/606/608/610 is a single-cycle instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources can be used concurrently by the same instruction (for example, ED, EDAC).

The DSP engine can also perform inherent accumulator-to-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.


The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or integer DSP multiply (IF)
- Signed or unsigned DSP multiply (US)
- Conventional or convergent rounding (RND)
- Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACC-SAT)

A block diagram of the DSP engine is shown in Figure 3-3.

| Instruction | Algebraic Operation | ACC Write Back |
|-------------|---------------------|----------------|
| CLR         | A = 0               | Yes            |
| ED          | A = (x - y)2        | No             |
| EDAC        | A = A + (x - y)2    | No             |
| MAC         | A = A + (x * y)     | Yes            |
| MAC         | A = A + x2          | No             |
| MOVSAC      | No change in A      | Yes            |
| MPY         | A = x * y           | No             |
| MPY         | A = x 2             | No             |
| MPY.N       | A = -x * y          | No             |
| MSC         | A = A - x * y       | Yes            |

#### TABLE 3-1: DSP INSTRUCTIONS SUMMARY



## 3.6.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value that is sign-extended to 40 bits. Integer data is inherently represented as a signed 2's complement value, where the Most Significant bit (MSb) is defined as a sign bit. The range of an N-bit 2's complement integer is  $-2^{N-1}$  to  $2^{N-1} - 1$ .

- For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0.
- For a 32-bit integer, the data range is
   -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a 2's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit 2's complement fraction with this implied radix point is -1.0 to  $(1 - 2^{1-N})$ . For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518x10<sup>-5</sup>. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product that has a precision of 4.65661 x 10<sup>-10</sup>.

The same multiplier is used to support the MCU multiply instructions, which include integer 16-bit signed, unsigned and mixed sign multiply operations.

The MUL instruction can be directed to use byte or word-sized operands. Byte operands will direct a 16-bit result, and word operands will direct a 32-bit result to the specified register(s) in the W array.

# 3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its preaccumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled using the barrel shifter prior to accumulation.

# 3.6.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true or complement data into the other input.

- In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented).
- In the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented.

The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits, 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block that controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described previously and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate.

Six STATUS register bits support saturation and overflow:

- OA: ACCA overflowed into guard bits
- OB: ACCB overflowed into guard bits
- SA: ACCA saturated (bit 31 overflow and saturation) or

ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation)

 SB: ACCB saturated (bit 31 overflow and saturation) or

ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation)

- OAB: Logical OR of OA and OB
- SAB: Logical OR of SA and SB

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register are set (refer to **Section 7.0 "Interrupt Controller"**). This allows the user application to take immediate action, for example, to correct system gain. The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user application. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and will be saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow and thus, indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, SA and SB bits will generate an arithmetic warning trap when saturation is disabled.

The Overflow and Saturation Status bits can optionally be viewed in the STATUS Register (SR) as the logical OR of OA and OB (in bit OAB) and the logical OR of SA and SB (in bit SAB). Programmers can check one bit in the STATUS register to determine if either accumulator has overflowed, or one bit to determine if either accumulator has saturated. This is useful for complex number arithmetic, which typically uses both accumulators.

The device supports three Saturation and Overflow modes:

- Bit 39 Overflow and Saturation: When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive
   9.31 (0x7FFFFFFFFF) or maximally negative
   9.31 value (0x800000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user application. This condition is referred to as 'super saturation' and provides protection against erroneous data or unexpected algorithm problems (such as gain calculations).
- Bit 31 Overflow and Saturation: When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFF) or maximally negative 1.31 value (0x008000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user application. When this Saturation mode is in effect, the guard bits are not used, so the OA, OB or OAB bits are never set.
- Bit 39 Catastrophic Overflow: The bit 39 Overflow Status bit from the adder is used to set the SA or SB bit, which remains set until cleared by the user application. No saturation operation is performed, and the accumulator is allowed to overflow, destroying its sign. If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception.

# 3.6.3 ACCUMULATOR 'WRITE BACK'

The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported:

- W13, Register Direct: The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction.
- [W13] + = 2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write).

#### 3.6.3.1 Round Logic

The round logic is a combinational block that performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value that is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word is simply discarded.

Conventional rounding zero-extends bit 15 of the accumulator and adds it to the ACCxH word (bits 16 through 31 of the accumulator).

- If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented.
- If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged.

A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. In this case, the Least Significant bit (bit 16 of the accumulator) of ACCxH is examined:

- If it is '1', ACCxH is incremented.
- If it is '0', ACCxH is not modified.

Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that may accumulate.

The SAC and SAC.R instructions store either a truncated (SAC), or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see **Section 3.6.3.2 "Data Space Write Saturation**"). For the MAC class of instructions, the accumulator writeback operation functions in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

#### 3.6.3.2 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space can also be saturated, but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly:

- For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF.
- For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000.

The Most Significant bit of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

#### 3.6.4 BARREL SHIFTER

The barrel shifter can perform up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

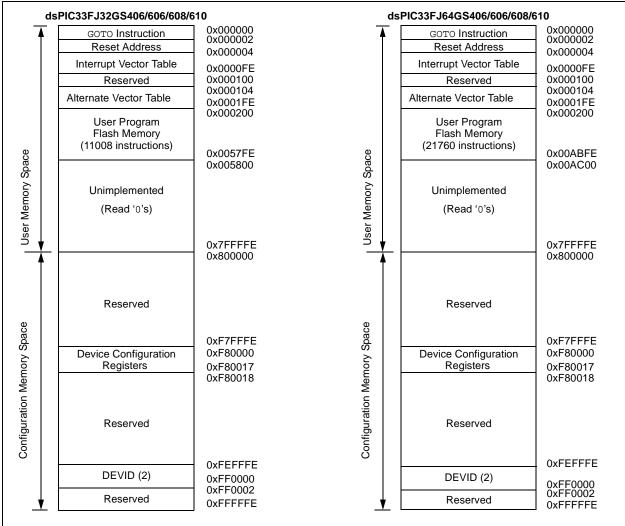
The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 and 31 for right shifts, and between bit positions 0 and 16 for left shifts.

NOTES:

# 4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *dsPIC33F/PIC24H Family Reference Manual*, **"Section 4. Program Memory"** (DS70202), which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access to program memory from the data space during code execution.


### 4.1 Program Address Space

The program address memory space of the dsPIC33FJ32GS406/608/600 and dsPIC33FJ64GS406/606/608/610 devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in Section 4.6 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory maps for the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices are shown in Figure 4-1.

# FIGURE 4-1: PROGRAM MEMORY MAPS FOR dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DEVICES



#### 4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (see Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during the code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

#### 4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x000002.

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/606/608/610 devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1 "Interrupt Vector Table"**.

| msw<br>Address | most significant                                  | word | least significant wor | d PC Address<br>(Isw Address |
|----------------|---------------------------------------------------|------|-----------------------|------------------------------|
|                | 23                                                | 16   | 8                     | 0                            |
| 0x000001       | 0000000                                           |      |                       | 0x000000                     |
| 0x000003       | 0000000                                           |      |                       | 0x000002                     |
| 0x000005       | 0000000                                           |      |                       | 0x000004                     |
| 0x000007       | 0000000                                           |      |                       | 0x000006                     |
|                |                                                   |      |                       |                              |
|                | Program Memory<br>'Phantom' Byte<br>(read as '0') | Ins  | struction Width       |                              |

## FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

# 4.2 Data Address Space

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/606/608/610 CPU has a separate 16-bit-wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps is shown in Figure 4-3.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15>=0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 4.6.3 "Reading Data From Program Memory Using Program Space Visibility").

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/606/608/610 devices implement up to 9 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned.

#### 4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

#### 4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

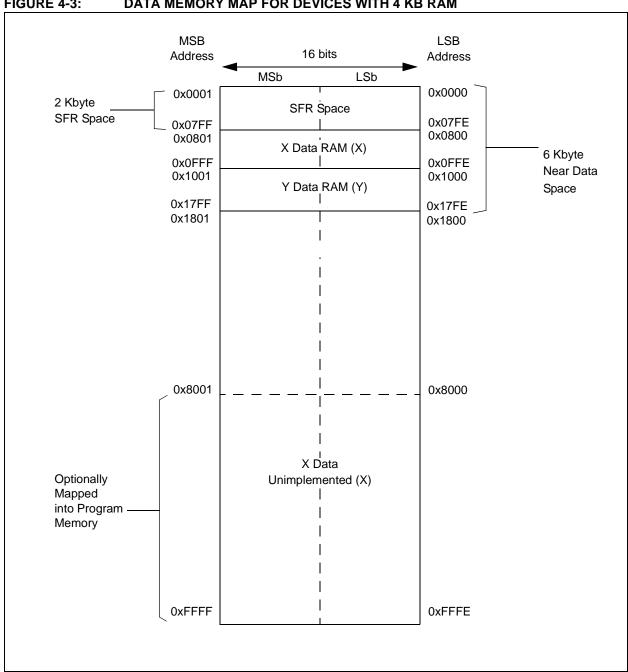
To maintain backward compatibility with PIC<sup>®</sup> MCU devices and improve data space memory usage efficiency, the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 instruction set supports both word and byte operations. As a consequence of byte accessibility, all effective address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] that results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word that contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

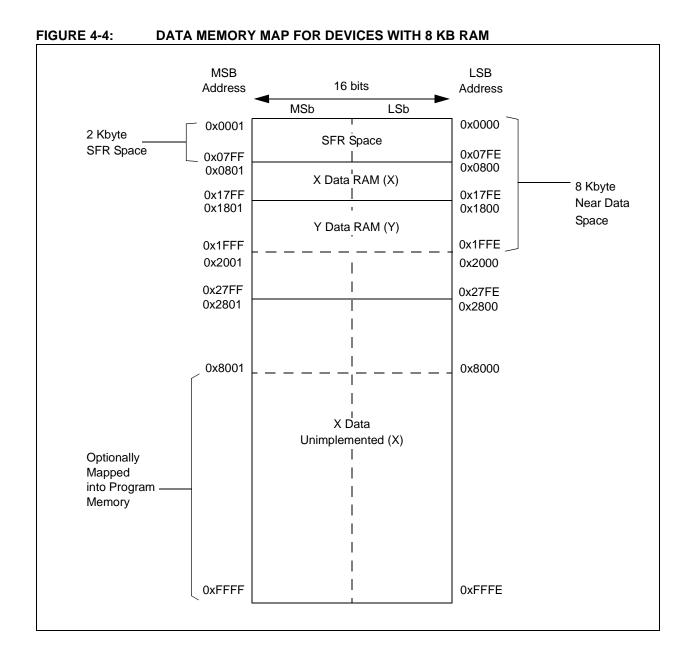
All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A sign-extend instruction (SE) is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a zero-extend (ZE) instruction on the appropriate address.

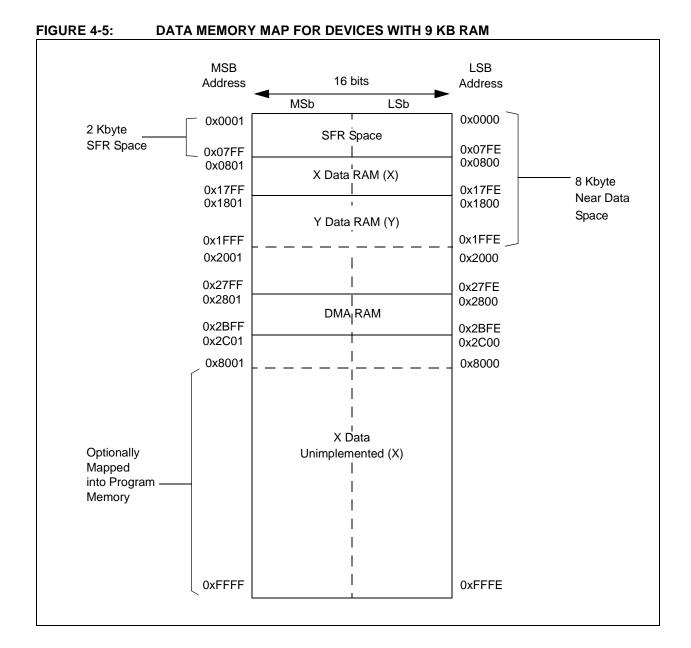
#### 4.2.3 SFR SPACE


The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.


| Note: | The actual set of peripheral features and interrupts varies by the device. Refer to |
|-------|-------------------------------------------------------------------------------------|
|       | the corresponding device tables and                                                 |
|       | pinout diagrams for device-specific                                                 |
|       | information.                                                                        |

## 4.2.4 NEAR DATA SPACE


The 8 Kbyte area between 0x0000 and 0x1FFF is referred to as the near data space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.



#### FIGURE 4-3: DATA MEMORY MAP FOR DEVICES WITH 4 KB RAM



© 2010 Microchip Technology Inc.



### 4.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All effective addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.

#### 4.2.6 DMA RAM

Some devices contain 1 Kbyte of dual ported DMA RAM, which is located at the end of Y data space. Memory locations that are part of Y data RAM and are in the DMA RAM space are accessible simultaneously by the CPU and the DMA controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU.

When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

| SFR Name | SFR<br>Addr | Bit 15   | Bit 14                       | Bit 13   | Bit 12   | Bit 11   | Bit 10    | Bit 9          | Bit 8                         | Bit 7        | Bit 6   | Bit 5    | Bit 4          | Bit 3     | Bit 2    | Bit 1      | Bit 0 | All<br>Resets |
|----------|-------------|----------|------------------------------|----------|----------|----------|-----------|----------------|-------------------------------|--------------|---------|----------|----------------|-----------|----------|------------|-------|---------------|
| WREG0    | 0000        |          |                              |          |          |          | V         | Vorking Regist | er 0                          |              |         |          |                |           |          |            |       | 0000          |
| WREG1    | 0002        |          |                              |          |          |          | V         | Vorking Regist | er 1                          |              |         |          |                |           |          |            |       | 0000          |
| WREG2    | 0004        |          |                              |          |          |          | V         | Vorking Regist | er 2                          |              |         |          |                |           |          |            |       | 0000          |
| WREG3    | 0006        |          |                              |          |          |          | V         | Vorking Regist | er 3                          |              |         |          |                |           |          |            |       | 0000          |
| WREG4    | 8000        |          |                              |          |          |          | V         | Vorking Regist | er 4                          |              |         |          |                |           |          |            |       | 0000          |
| WREG5    | 000A        |          |                              |          |          |          | V         | Vorking Regist | er 5                          |              |         |          |                |           |          |            |       | 0000          |
| WREG6    | 000C        |          |                              |          |          |          | V         | Vorking Regist | er 6                          |              |         |          |                |           |          |            |       | 0000          |
| WREG7    | 000E        |          |                              |          |          |          | V         | Vorking Regist | er 7                          |              |         |          |                |           |          |            |       | 0000          |
| WREG8    | 0010        |          |                              |          |          |          | V         | Vorking Regist | er 8                          |              |         |          |                |           |          |            |       | 0000          |
| WREG9    | 0012        |          |                              |          |          |          | V         | Vorking Regist | er 9                          |              |         |          |                |           |          |            |       | 0000          |
| WREG10   | 0014        |          |                              |          |          |          | W         | orking Registe | er 10                         |              |         |          |                |           |          |            |       | 0000          |
| WREG11   | 0016        |          | Working Register 11          |          |          |          |           |                |                               |              |         |          |                |           |          |            | 0000  |               |
| WREG12   | 0018        |          | Working Register 12          |          |          |          |           |                |                               |              |         |          |                |           |          |            | 0000  |               |
| WREG13   | 001A        |          | Working Register 13          |          |          |          |           |                |                               |              |         |          |                |           |          |            | 0000  |               |
| WREG14   | 001C        |          | Working Register 14          |          |          |          |           |                |                               |              |         |          |                |           |          |            |       | 0000          |
| WREG15   | 001E        |          | Working Register 15          |          |          |          |           |                |                               |              |         |          |                |           |          |            | 0800  |               |
| SPLIM    | 0020        |          | Stack Pointer Limit Register |          |          |          |           |                |                               |              |         |          |                |           |          |            | xxxx  |               |
| ACCAL    | 0022        | ACCAL    |                              |          |          |          |           |                |                               |              |         |          |                |           |          | xxxx       |       |               |
| ACCAH    | 0024        |          |                              |          |          |          |           | ACCAH          |                               |              |         |          |                |           |          |            |       | xxxx          |
| ACCAU    | 0026        | ACCA<39> | ACCA<39>                     | ACCA<39> | ACCA<39> | ACCA<39> | ACCA<39>  | ACCA<39>       | ACCA<39>                      |              |         |          | ACCA           | U.        |          |            |       | xxxx          |
| ACCBL    | 0028        |          |                              |          |          |          |           | ACCBL          |                               |              |         |          |                |           |          |            |       | xxxx          |
| ACCBH    | 002A        |          |                              |          |          |          |           | ACCBH          |                               |              |         |          |                |           |          |            |       | xxxx          |
| ACCBU    | 002C        | ACCB<39> | ACCB<39>                     | ACCB<39> | ACCB<39> | ACCB<39> | ACCB<39>  | ACCB<39>       | ACCB<39>                      |              |         |          | ACCB           | U         |          |            |       | xxxx          |
| PCL      | 002E        |          |                              |          | •        | •        | Program C | ounter Low V   | Vord Register                 |              |         |          |                |           |          |            |       | 0000          |
| PCH      | 0030        |          | _                            | —        | —        | —        | —         | —              | _                             |              |         | Program  | n Counter Hig  | gh Byte F | Register |            |       | 0000          |
| TBLPAG   | 0032        | _        | _                            | _        | _        | _        | _         | _              | _                             |              |         | Table Pa | age Address    | Pointer F | Register |            |       | 0000          |
| PSVPAG   | 0034        | _        |                              | _        | —        | _        | _         | —              | _                             |              | Progran | n Memory | Visibility Pag | e Addres  | s Pointe | er Registe | ər    | 0000          |
| RCOUNT   | 0036        |          |                              |          |          |          | Repeat    | Loop Counte    | r Register                    |              |         |          |                |           |          |            |       | xxxx          |
| DCOUNT   | 0038        |          |                              |          |          |          | [         | DCOUNT<15      | :0>                           |              |         |          |                |           |          |            |       | xxxx          |
| DOSTARTL | 003A        |          |                              |          |          |          | DOST      | ARTL<15:1>     |                               |              |         |          |                |           |          |            | 0     | xxxx          |
| DOSTARTH | 003C        | _        | _                            | —        | —        | —        | —         | —              | —                             | —            | —       |          | DC             | START     | 1<5:0>   |            | •     | 00xx          |
| DOENDL   | 003E        |          |                              |          |          |          | DOE       | NDL<15:1>      |                               |              |         |          |                |           |          |            | 0     | xxxx          |
| DOENDH   | 0040        | _        | —                            | —        | _        | _        | —         | —              | _                             | — — — DOENDH |         |          |                |           |          | 00xx       |       |               |
| SR       | 0042        | OA       | OB                           | SA       | SB       | OAB      | SAB       | DA             | DC IPL2 IPL1 IPL0 RA N OV Z C |              |         |          |                |           | С        | 0000       |       |               |
| CORCON   | 0044        | _        | —                            | —        | US       | EDT      |           | DL<2:0>        | •                             | SATA         | SATB    | SATDW    | ACCSAT         | IPL3      | PSV      | RND        | IF    | 0000          |
| MODCON   | 0046        | XMODEN   | YMODEN                       | _        | _        |          | BWM       | <3:0>          |                               |              | ۲V      | VM<3:0>  |                |           | XWM      | M<3:0>     | •     | 0000          |

#### TABLE 4-1: CPU CORE REGISTER MAP

# TABLE 4-1: CPU CORE REGISTER MAP (CONTINUED)

| SFR Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13                              | Bit 13         Bit 12         Bit 11         Bit 10         Bit 9         Bit 8         Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2         Bit 1 |  |   |         |        |  |  |  |  |  |  |   | Bit 0 | All<br>Resets |
|----------|-------------|--------|--------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---|---------|--------|--|--|--|--|--|--|---|-------|---------------|
| XMODSRT  | 0048        |        |        |                                     | XS<15:1>                                                                                                                                                                          |  |   |         |        |  |  |  |  |  |  | 0 | xxxx  |               |
| XMODEND  | 004A        |        |        |                                     | XE<15:1>                                                                                                                                                                          |  |   |         |        |  |  |  |  |  |  |   | 1     | xxxx          |
| YMODSRT  | 004C        |        |        |                                     |                                                                                                                                                                                   |  | Y | S<15:1> |        |  |  |  |  |  |  |   | 0     | xxxx          |
| YMODEND  | 004E        |        |        |                                     |                                                                                                                                                                                   |  | Y | E<15:1> |        |  |  |  |  |  |  |   | 1     | xxxx          |
| XBREV    | 0050        | BREN   |        |                                     |                                                                                                                                                                                   |  |   | XB<     | :14:0> |  |  |  |  |  |  |   |       | xxxx          |
| DISICNT  | 0052        | _      | _      | Disable Interrupts Counter Register |                                                                                                                                                                                   |  |   |         |        |  |  |  |  |  |  |   | xxxx  |               |
|          |             |        | _      |                                     |                                                                                                                                                                                   |  |   |         |        |  |  |  |  |  |  |   |       |               |

Legend: x = unknown

#### TABLE 4-2: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ32GS608/610 AND dsPIC33FJ64GS608/610 DEVICES

| SFR<br>Addr | Bit 15                       | Bit 14                                                                                           | Bit 13                                                                                                                                                            | Bit 12                                                                                                                                                                                         | Bit 11                                                                                                                                                                                                                                        | Bit 10                                                                                                                                                                                                                                                                                       | Bit 9                                                                                                                                                                                                                                                                                                                                       | Bit 8                                                                                                                                                                                                                                                                                                                                                                                   | Bit 7                                                                                                                                                                                                                                                                                                                                                                                                                               | Bit 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bit 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bit 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bit 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bit 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bit 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bit 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | All<br>Resets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------|------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0060        | CN15IE                       | CN14IE                                                                                           | CN13IE                                                                                                                                                            | CN12IE                                                                                                                                                                                         | CN11IE                                                                                                                                                                                                                                        | CN10IE                                                                                                                                                                                                                                                                                       | CN9IE                                                                                                                                                                                                                                                                                                                                       | CN8IE                                                                                                                                                                                                                                                                                                                                                                                   | CN7IE                                                                                                                                                                                                                                                                                                                                                                                                                               | CN6IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CN5IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CN4IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CN3IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CN2IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CN1IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CN0IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0062        | —                            | —                                                                                                | _                                                                                                                                                                 | _                                                                                                                                                                                              | —                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                       | CN23IE                                                                                                                                                                                                                                                                                                                                                                                                                              | CN22IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CN21IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CN20IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CN19IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CN18IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CN17IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CN16IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0068        | CN15PUE                      | CN14PUE                                                                                          | CN13PUE                                                                                                                                                           | CN12PUE                                                                                                                                                                                        | CN11PUE                                                                                                                                                                                                                                       | CN10PUE                                                                                                                                                                                                                                                                                      | CN9PUE                                                                                                                                                                                                                                                                                                                                      | CN8PUE                                                                                                                                                                                                                                                                                                                                                                                  | CN7PUE                                                                                                                                                                                                                                                                                                                                                                                                                              | CN6PUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CN5PUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CN4PUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>CN3PUE</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CN2PUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CN1PUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CN0PUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 006A        | —                            | _                                                                                                | _                                                                                                                                                                 | _                                                                                                                                                                                              | _                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                       | CN23PUE                                                                                                                                                                                                                                                                                                                                                                                                                             | CN22PUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CN21PUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CN20PUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CN19PUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CN18PUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CN17PUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CN16PUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | Addr<br>0060<br>0062<br>0068 | Addr         Bit 15           0060         CN15IE           0062            0068         CN15PUE | Addr         Bit 15         Bit 14           0060         CN15IE         CN14IE           0062         —         —           0068         CN15PUE         CN14PUE | Addr         Bit 15         Bit 14         Bit 13           0060         CN15IE         CN14IE         CN13IE           0062              0068         CN15PUE         CN14PUE         CN13PUE | Addr         Bit 15         Bit 14         Bit 13         Bit 12           0060         CN15IE         CN14IE         CN13IE         CN12IE           0062               0068         CN15PUE         CN14PUE         CN13PUE         CN12PUE | Addr         Bit 15         Bit 14         Bit 13         Bit 12         Bit 11           0060         CN15IE         CN14IE         CN13IE         CN12IE         CN11IE           0062                0068         CN15PUE         CN14PUE         CN13PUE         CN12PUE         CN11PUE | Addr         Bit 15         Bit 14         Bit 13         Bit 12         Bit 11         Bit 10           0060         CN15IE         CN14IE         CN13IE         CN12IE         CN11IE         CN10IE           0062                 0068         CN15PUE         CN14PUE         CN13PUE         CN12PUE         CN11PUE         CN10PUE | Addr         Bit 15         Bit 14         Bit 13         Bit 12         Bit 11         Bit 10         Bit 9           0060         CN15IE         CN14IE         CN13IE         CN12IE         CN11IE         CN10IE         CN9IE           0062                  0068         CN15PUE         CN14PUE         CN13PUE         CN12PUE         CN11PUE         CN10PUE         CN9PUE | Addr         Bit 15         Bit 14         Bit 13         Bit 12         Bit 11         Bit 10         Bit 9         Bit 8           0060         CN15IE         CN14IE         CN13IE         CN12IE         CN11IE         CN10IE         CN9IE         CN8IE           0062                   0068         CN15PUE         CN14PUE         CN13PUE         CN12PUE         CN11PUE         CN10PUE         CN9PUE         CN8PUE | Addr         Bit 15         Bit 14         Bit 13         Bit 12         Bit 11         Bit 10         Bit 9         Bit 8         Bit 7           0060         CN15IE         CN14IE         CN13IE         CN12IE         CN11IE         CN10IE         CN9IE         CN8IE         CN7IE           0062              CN23IE           0068         CN15PUE         CN14PUE         CN13PUE         CN12PUE         CN11PUE         CN10PUE         CN9PUE         CN8PUE         CN7PUE | Addr         Bit 15         Bit 14         Bit 13         Bit 12         Bit 11         Bit 10         Bit 9         Bit 8         Bit 7         Bit 6           0060         CN15IE         CN14IE         CN13IE         CN12IE         CN11IE         CN10IE         CN9IE         CN8IE         CN7IE         CN6IE           0062              CN2IE         CN2IE           0068         CN15PUE         CN14PUE         CN13PUE         CN12PUE         CN11PUE         CN9PUE         CN8PUE         CN7PUE         CN22IE           0068         CN15PUE         CN14PUE         CN13PUE         CN12PUE         CN11PUE         CN9PUE         CN8PUE         CN7PUE         CN6PUE | Addr         Bit 15         Bit 14         Bit 13         Bit 12         Bit 11         Bit 10         Bit 9         Bit 8         Bit 7         Bit 6         Bit 5           0060         CN15IE         CN14IE         CN13IE         CN12IE         CN11IE         CN10IE         CN9IE         CN8IE         CN7IE         CN6IE         CN5IE           0062              CN23IE         CN21E         CN21IE           0068         CN15PUE         CN14PUE         CN13PUE         CN12PUE         CN11PUE         CN10PUE         CN9PUE         CN8PUE         CN7PUE         CN6PUE         CN5PUE           0068         CN15PUE         CN14PUE         CN13PUE         CN12PUE         CN11PUE         CN10PUE         CN9PUE         CN8PUE         CN7PUE         CN6PUE         CN5PUE | Addr         Bit 15         Bit 14         Bit 13         Bit 12         Bit 11         Bit 10         Bit 9         Bit 8         Bit 7         Bit 6         Bit 5         Bit 4           0060         CN15IE         CN14IE         CN13IE         CN12IE         CN11IE         CN10IE         CN9IE         CN8IE         CN7IE         CN6IE         CN5IE         CN4IE           0062              CN23IE         CN21E         CN21IE         CN20IE           0068         CN15PUE         CN14PUE         CN12PUE         CN11PUE         CN10PUE         CN8PUE         CN7PUE         CN6PUE         CN4PUE           0068         CN15PUE         CN14PUE         CN12PUE         CN11PUE         CN10PUE         CN8PUE         CN7PUE         CN6PUE         CN4PUE | Addr         Bit 15         Bit 14         Bit 13         Bit 12         Bit 11         Bit 10         Bit 9         Bit 8         Bit 7         Bit 6         Bit 5         Bit 4         Bit 3           0060         CN15IE         CN14IE         CN13IE         CN12IE         CN11IE         CN10IE         CN9IE         CN8IE         CN7IE         CN6IE         CN5IE         CN4IE         CN3IE           0062              CN23IE         CN21E         CN21E         CN20IE         CN20IE         CN20IE         CN20IE         CN20IE         CN30IE           0068         CN15PUE         CN14PUE         CN12PUE         CN12PUE         CN10PUE         CN9PUE         CN8PUE         CN7PUE         CN6PUE         CN4PUE         CN3PUE           0068         CN15PUE         CN14PUE         CN12PUE         CN12PUE         CN10PUE         CN9PUE         CN8PUE         CN7PUE         CN6PUE         CN4PUE         CN3PUE | Addr         Bit 15         Bit 14         Bit 13         Bit 12         Bit 11         Bit 10         Bit 9         Bit 8         Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 3         Bit 2           0060         CN15IE         CN14IE         CN13IE         CN12IE         CN11IE         CN10IE         CN9IE         CN8IE         CN7IE         CN6IE         CN5IE         CN4IE         CN3IE         CN2IE           0062              CN23IE         CN21E         CN21E         CN19IE         CN18IE         CN18IE | Addr         Bit 15         Bit 14         Bit 13         Bit 12         Bit 11         Bit 10         Bit 9         Bit 8         Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2         Bit 1           0060         CN15IE         CN14IE         CN13IE         CN12IE         CN11IE         CN10IE         CN9IE         CN8IE         CN7IE         CN6IE         CN5IE         CN4IE         CN3IE         CN2IE         CN1IE           0060              CN2IE         CN6IE         CN5IE         CN4IE         CN3IE         CN2IE         CN1IE           0062              CN2IE         CN2IE         CN2IE         CN19E         CN19E         CN17E           0062              CN2IE         CN2IE         CN2IE         CN19E         CN19E         CN17E           0068         CN14PUE         CN12PUE         CN11PUE         CN19PUE         CN8PUE         CN7PUE         CN6PUE         CN4PUE         CN3PUE         CN2PUE         CN1PUE           0068         CN14PUE         CN12PUE <t< td=""><td>Addr         Bit 13         Bit 12         Bit 11         Bit 10         Bit 9         Bit 9         Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2         Bit 1         Bit 10         Bit 9         Bit 9         Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2         Bit 1         Bit 0         Bit 9         Bit 9         Bit 8         Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2         Bit 1         Bit 0         Bit 0           0060         CN151E         CN14E         CN131E         CN12E         CN11E         CN10E         CN9E         CN7E         CN6E         CN5E         CN4E         CN3E         CN2E         CN1E         CN3E         CN1E         CN1E         CN0E           0062              CN23E         CN2E         CN21E         CN3E         CN18E         CN17E         CN16E           0068         CN14PUE         CN13PUE         CN12PUE         CN10PUE         CN9PUE         CN3PUE         CN3PUE         CN3PUE         CN3PUE         CN1PUE         CN1PUE         CN0PUE           0068         CN14PUE         CN13PUE         <td< td=""></td<></td></t<> | Addr         Bit 13         Bit 12         Bit 11         Bit 10         Bit 9         Bit 9         Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2         Bit 1         Bit 10         Bit 9         Bit 9         Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2         Bit 1         Bit 0         Bit 9         Bit 9         Bit 8         Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2         Bit 1         Bit 0         Bit 0           0060         CN151E         CN14E         CN131E         CN12E         CN11E         CN10E         CN9E         CN7E         CN6E         CN5E         CN4E         CN3E         CN2E         CN1E         CN3E         CN1E         CN1E         CN0E           0062              CN23E         CN2E         CN21E         CN3E         CN18E         CN17E         CN16E           0068         CN14PUE         CN13PUE         CN12PUE         CN10PUE         CN9PUE         CN3PUE         CN3PUE         CN3PUE         CN3PUE         CN1PUE         CN1PUE         CN0PUE           0068         CN14PUE         CN13PUE <td< td=""></td<> |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

# TABLE 4-3: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES

| File<br>Name | SFR<br>Addr | Bit 15  | Bit 14  | Bit 13  | Bit 12  | Bit 11  | Bit 10  | Bit 9  | Bit 8  | Bit 7   | Bit 6   | Bit 5  | Bit 4  | Bit 3         | Bit 2   | Bit 1   | Bit 0   | All<br>Resets |
|--------------|-------------|---------|---------|---------|---------|---------|---------|--------|--------|---------|---------|--------|--------|---------------|---------|---------|---------|---------------|
| CNEN1        | 0060        | CN15IE  | CN14IE  | CN13IE  | CN12IE  | CN11IE  | CN10IE  | CN9IE  | CN8IE  | CN7IE   | CN6IE   | CN5IE  | CN4IE  | CN3IE         | CN2IE   | CN1IE   | CN0IE   | 0000          |
| CNEN2        | 0062        | —       | -       | —       | —       |         |         |        | —      | CN23IE  | CN22IE  |        |        |               | CN18IE  | CN17IE  | CN16IE  | 0000          |
| CNPU1        | 0068        | CN15PUE | CN14PUE | CN13PUE | CN12PUE | CN11PUE | CN10PUE | CN9PUE | CN8PUE | CN7PUE  | CN6PUE  | CN5PUE | CN4PUE | <b>CN3PUE</b> | CN2PUE  | CN1PUE  | CN0PUE  | 0000          |
| CNPU2        | 006A        | —       | _       | -       | —       | _       | —       | —      | _      | CN23PUE | CN22PUE | _      | _      | _             | CN18PUE | CN17PUE | CN16PUE | 0000          |

| File<br>Name | SFR<br>Addr | Bit 15  | Bit 14  | Bit 13     | Bit 12   | Bit 11  | Bit 10        | Bit 9        | Bit 8  | Bit 7    | Bit 6      | Bit 5       | Bit 4         | Bit 3    | Bit 2   | Bit 1      | Bit 0         | All<br>Resets |
|--------------|-------------|---------|---------|------------|----------|---------|---------------|--------------|--------|----------|------------|-------------|---------------|----------|---------|------------|---------------|---------------|
| INTCON1      | 0080        | NSTDIS  | OVAERR  | OVBERR     | COVAERR  | COVBERR | OVATE         | OVBTE        | COVTE  | SFTACERR | DIV0ERR    | DMACERR     | MATHERR       | ADDRERR  | STKERR  | OSCFAIL    | —             | 0000          |
| INTCON2      | 0082        | ALTIVT  | DISI    | _          | _        | _       | _             | —            | _      | _        | _          | _           | INT4EP        | INT3EP   | INT2EP  | INT1EP     | INT0EP        | 0000          |
| IFS0         | 0084        |         | DMA1IF  | ADIF       | U1TXIF   | U1RXIF  | SPI1IF        | SPI1EIF      | T3IF   | T2IF     | OC2IF      | IC2IF       | DMA0IF        | T1IF     | OC1IF   | IC1IF      | INTOIF        | 0000          |
| IFS1         | 0086        | U2TXIF  | U2RXIF  | INT2IF     | T5IF     | T4IF    | OC4IF         | OC3IF        | DMA2IF | —        | _          |             | INT1IF        | CNIF     | AC1IF   | MI2C1IF    | SI2C1IF       | 0000          |
| IFS2         | 8800        |         |         |            | -        | -       |               | —            | -      | _        | IC4IF      | IC3IF       | DMA3IF        | C1IF     | C1RXIF  | SPI2IF     | SPI2EIF       | 0000          |
| IFS3         | 008A        | —       | -       | -          | —        | —       | <b>QEI1IF</b> | PSEMIF       | _      | —        | INT4IF     | INT3IF      | -             | —        | MI2C2IF | SI2C2IF    | —             | 0000          |
| IFS4         | 008C        | —       | -       | -          | —        | QEI2IF  | -             | PSESMIF      | _      | —        | C1TXIF     | -           | -             | —        | U2EIF   | U1EIF      | —             | 0000          |
| IFS5         | 008E        | PWM2IF  | PWM1IF  | ADCP12IF   | -        | -       |               | —            | -      | _        | _          |             | ADCP11IF      | ADCP10IF | ADCP9IF | ADCP8IF    | _             | 0000          |
| IFS6         | 0090        | ADCP1IF | ADCP0IF |            | —        | _       |               | AC4IF        | AC3IF  | AC2IF    | PWM9IF     | PWM8IF      | PWM7IF        | PWM6IF   | PWM5IF  | PWM4IF     | PWM3IF        | 0000          |
| IFS7         | 0092        | —       | -       | -          | _        | —       | -             | —            | _      | —        | —          | ADCP7IF     | ADCP6IF       | ADCP5IF  | ADCP4IF | ADCP3IF    | ADCP2IF       | 0000          |
| IEC0         | 0094        | —       | DMA1IE  | ADIE       | U1TXIE   | U1RXIE  | SPI1IE        | SPI1EIE      | T3IE   | T2IE     | OC2IE      | IC2IE       | DMA0IE        | T1IE     | OC1IE   | IC1IE      | <b>INTOIE</b> | 0000          |
| IEC1         | 0096        | U2TXIE  | U2RXIE  | INT2IE     | T5IE     | T4IE    | OC4IE         | OC3IE        | DMA2IE | —        | —          | -           | INT1IE        | CNIE     | AC1IE   | MI2C1IE    | SI2C1IE       | 0000          |
| IEC2         | 0098        | —       | -       | -          | _        | —       | -             | —            | _      | —        | IC4IE      | IC3IE       | <b>DMA3IE</b> | C1IE     | C1RXIE  | SPI2IE     | SPI2EIE       | 0000          |
| IEC3         | 009A        | —       | -       | -          | _        | —       | QEI1IE        | PSEMIE       | _      | —        | INT4IE     | INT3IE      | -             | —        | MI2C2IE | SI2C2IE    | —             | 0000          |
| IEC4         | 009C        | —       | -       | -          | —        | QEI2IE  | -             | PSESMIE      | _      | —        | C1TXIE     | -           | -             | —        | U2EIE   | U1EIE      | —             | 0000          |
| IEC5         | 009E        | PWM2IE  | PWM1IE  | ADCP12IE   | —        | —       | -             | —            | _      | —        | —          | -           | ADCP11IE      | ADCP10IE | ADCP9IE | ADCP8IE    | —             | 0000          |
| IEC6         | 00A0        | ADCP1IE | ADCP0IE | -          | —        | —       | -             | AC4IE        | AC3IE  | AC2IE    | PWM9IE     | PWM8IE      | PWM7IE        | PWM6IE   | PWM5IE  | PWM4IE     | PWM3IE        | 0000          |
| IEC7         | 00A2        | —       | -       | -          | —        | —       | -             | —            | _      | —        | —          | ADCP7IE     | ADCP6IE       | ADCP5IE  | ADCP4IE | ADCP3IE    | ADCP2IE       | 0000          |
| IPC0         | 00A4        | —       |         | T1IP<2:0>  |          | —       |               | OC1IP<2:0;   | >      | —        |            | IC1IP<2:0>  |               | —        | I       | NT0IP<2:0  | 4444          |               |
| IPC1         | 00A6        | —       |         | T2IP<2:0>  |          | —       |               | OC2IP<2:0;   | >      | —        |            | IC2IP<2:0>  |               | —        | D       | MA0IP<2:0  | )>            | 4444          |
| IPC2         | 00A8        | —       |         | U1RXIP<2:0 | )>       | —       | :             | SPI1IP<2:0:  | >      | —        | :          | SPI1EIP<2:0 | >             | —        |         | T3IP<2:0>  |               | 0444          |
| IPC3         | 00AA        | —       | -       | -          | —        | —       | 0             | 0MA1IP<2:0   | )>     | —        |            | ADIP<2:0>   |               | —        | L       | J1TXIP<2:0 | )>            | 0044          |
| IPC4         | 00AC        | —       |         | CNIP<2:0>  | <b>`</b> | —       |               | AC1IP<2:0>   | >      | —        | I          | MI2C1IP<2:0 | )>            | —        | S       | I2C1IP<2:0 | )>            | 4444          |
| IPC5         | 00AE        | _       | _       | _          | —        | —       | _             | —            | —      | —        | _          | —           | _             | —        | 1       | NT1IP<2:0  | >             | 0004          |
| IPC6         | 00B0        | _       |         | T4IP<2:0>  |          | —       |               | OC4IP<2:0;   | >      | —        |            | OC3IP<2:0:  | >             | —        | D       | MA2IP<2:(  | )>            | 4444          |
| IPC7         | 00B2        | _       |         | U2TXIP<2:0 | )>       | —       | ι             | J2RXIP<2:0   | >      | —        |            | INT2IP<2:0: | >             | —        |         | T5IP<2:0>  |               | 4444          |
| IPC8         | 00B4        | —       |         | C1IP<2:0>  | •        | —       | C             | C1RXIP<2:0   | >      | —        |            | SPI2IP<2:0: | >             | —        | S       | PI2EIP<2:0 | )>            | 4444          |
| IPC9         | 00B6        | —       | -       | -          | —        | —       |               | IC4IP<2:0>   | •      | —        |            | IC3IP<2:0>  |               | —        | D       | MA3IP<2:0  | )>            | 0444          |
| IPC12        | 00BC        | —       | -       | -          | —        | —       | Ν             | /II2C2IP<2:0 | )>     | —        |            | SI2C2IP<2:0 | >             | —        | —       | _          | —             | 0440          |
| IPC13        | 00BE        | _       | _       | —          | —        | —       | INT4IP<2:0>   |              |        | _        |            | INT3IP<2:0  | >             | —        | —       | _          | —             | 0440          |
| IPC14        | 00C0        | _       | _       | —          | —        | —       | QEI1IP<2:0>   |              |        | _        |            | PSEMIP<2:0  | >             | —        | —       | _          | —             | 0440          |
| IPC16        | 00C4        | _       | _       | _          | —        | —       | U2EIP<2:0>    |              | —      |          | U1EIP<2:0; | >           | —             | —        | —       | —          | 0440          |               |
| IPC17        | 00C6        | _       | _       | _          | —        | —       | (             | C1TXIP<2:0   | >      | —        | _          | _           | —             | —        | —       | —          | —             | 0400          |
| IPC18        | 00C8        | _       |         | QEI2IP<2:0 | >        | _       | _             | _            | _      | _        | F          | SESMIP<2:   | 0>            | _        | _       | _          | _             | 4040          |
| IPC20        | 00CC        | _       | A       | DCP10IP<2  | :0>      | _       | A             | DCP9IP<2:    | 0>     | _        | A          | ADCP8IP<2:  | )>            | _        | _       | _          |               | 4440          |

#### TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ64GS610 DEVICES

# TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ64GS610 DEVICES (CONTINUED)

| File<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13     | Bit 12 | Bit 11 | Bit 10 | Bit 9      | Bit 8 | Bit 7 | Bit 6 | Bit 5      | Bit 4 | Bit 3     | Bit 2 | Bit 1      | Bit 0 | All<br>Resets |
|--------------|-------------|--------|--------|------------|--------|--------|--------|------------|-------|-------|-------|------------|-------|-----------|-------|------------|-------|---------------|
| IPC21        | 00CE        | —      | _      | —          | —      | _      | —      | —          |       | -     | A     | DCP12IP<2  | :0>   | —         | AD    | DCP11IP<2  | :0>   | 0044          |
| IPC23        | 00D2        |        | I      | PWM2IP<2:  | 0>     | _      | Р      | WM1IP<2:0  | )>    | _     | _     | _          | _     | _         | _     | _          | _     | 4400          |
| IPC24        | 00D4        |        | I      | PWM6IP<2:  | 0>     | _      | Р      | WM5IP<2:0  | )>    | _     |       | PWM4IP<2:0 | )>    | _         | Р     | WM3IP<2:0  | 0>    | 4444          |
| IPC25        | 00D6        |        |        | AC2IP<2:0  | >      | _      | Р      | WM9IP<2:0  | )>    | _     |       | PWM8IP<2:0 | )>    | _         | Р     | WM7IP<2:0  | 0>    | 4444          |
| IPC26        | 00D8        |        | _      | _          | _      | _      | _      | _          | _     | _     |       | AC4IP<2:0: | >     | _         |       | AC3IP<2:0: | >     | 0044          |
| IPC27        | 00DA        |        | A      | ADCP1IP<2: | 0>     | _      | A      | DCP0IP<2:0 | 0>    | _     | _     | _          | _     | _         | _     | _          | _     | 4400          |
| IPC28        | 00DC        |        | A      | ADCP5IP<2: | 0>     | _      | A      | DCP4IP<2:0 | 0>    | _     | Å     | ADCP3IP<2: | 0>    | _         | A     | DCP2IP<2:  | 0>    | 4444          |
| IPC29        | 00DE        |        | _      | _          | _      | _      | _      | _          | _     | _     | Å     | ADCP7IP<2: | 0>    | _         | A     | DCP6IP<2:  | 0>    | 0044          |
| INTTREG      | 00E0        | _      | _      | _          | _      |        | ILR<   | 3:0>       |       |       |       |            | VE    | CNUM<6:0> |       |            |       | 0000          |

| TABLE       | 4-5:        | INI     | ERRUP   | T CON      | ROLLEI  | RREGIS  |        |              | aspic  | 33FJ64G  | 5608 D  | EVICES      | r             |         |         | 1          | -             | 1             |
|-------------|-------------|---------|---------|------------|---------|---------|--------|--------------|--------|----------|---------|-------------|---------------|---------|---------|------------|---------------|---------------|
| SFR<br>Name | SFR<br>Addr | Bit 15  | Bit 14  | Bit 13     | Bit 12  | Bit 11  | Bit 10 | Bit 9        | Bit 8  | Bit 7    | Bit 6   | Bit 5       | Bit 4         | Bit 3   | Bit 2   | Bit 1      | Bit 0         | All<br>Resets |
| INTCON1     | 0080        | NSTDIS  | OVAERR  | OVBERR     | COVAERR | COVBERR | OVATE  | OVBTE        | COVTE  | SFTACERR | DIV0ERR | DMACERR     | MATHERR       | ADDRERR | STKERR  | OSCFAIL    | _             | 0000          |
| INTCON2     | 0082        | ALTIVT  | DISI    | —          | _       | _       |        | _            | —      | —        |         | _           | INT4EP        | INT3EP  | INT2EP  | INT1EP     | INT0EP        | 0000          |
| IFS0        | 0084        |         | DMA1IF  | ADIF       | U1TXIF  | U1RXIF  | SPI1IF | SPI1EIF      | T3IF   | T2IF     | OC2IF   | IC2IF       | DMA0IF        | T1IF    | OC1IF   | IC1IF      | <b>INT0IF</b> | 0000          |
| IFS1        | 0086        | U2TXIF  | U2RXIF  | INT2IF     | T5IF    | T4IF    | OC4IF  | OC3IF        | DMA2IF | —        |         | _           | INT1IF        | CNIF    | AC1IF   | MI2C1IF    | SI2C1IF       | 0000          |
| IFS2        | 0088        |         | —       | —          | _       | _       |        | _            | —      | —        | IC4IF   | IC3IF       | <b>DMA3IF</b> | C1IF    | C1RXIF  | SPI2IF     | SPI2EIF       | 0000          |
| IFS3        | 008A        |         | —       | —          | _       | _       | QEI1IF | PSEMIF       | —      | —        | INT4IF  | INT3IF      | —             | _       | MI2C2IF | SI2C2IF    |               | 0000          |
| IFS4        | 008C        |         | —       | —          | _       | QEI2IF  |        | PSESMIF      | —      | —        | C1TXIF  | _           | —             | _       | U2EIF   | U1EIF      |               | 0000          |
| IFS5        | 008E        | PWM2IF  | PWM1IF  | ADCP12IF   | _       | _       | _      | —            | _      | _        | _       | _           | _             | _       | _       | ADCP8IF    | _             | 0000          |
| IFS6        | 0090        | ADCP1IF | ADCP0IF | _          | _       | _       | _      | AC4IF        | AC3IF  | AC2IF    | _       | PWM8IF      | PWM7IF        | PWM6IF  | PWM5IF  | PWM4IF     | PWM3IF        | 0000          |
| IFS7        | 0092        | _       | _       | _          | _       | _       | _      | —            | _      | _        | _       | ADCP7IF     | ADCP6IF       | ADCP5IF | ADCP4IF | ADCP3IF    | ADCP2IF       | 0000          |
| IEC0        | 0094        | _       | DMA1IE  | ADIE       | U1TXIE  | U1RXIE  | SPI1IE | SPI1EIE      | T3IE   | T2IE     | OC2IE   | IC2IE       | DMA0IE        | T1IE    | OC1IE   | IC1IE      | INT0IE        | 0000          |
| IEC1        | 0096        | U2TXIE  | U2RXIE  | INT2IE     | T5IE    | T4IE    | OC4IE  | OC3IE        | DMA2IE | _        | _       | _           | INT1IE        | CNIE    | AC1IE   | MI2C1IE    | SI2C1IE       | 0000          |
| IEC2        | 0098        | _       | _       | _          | _       | _       | _      | —            | _      | _        | IC4IE   | IC3IE       | DMA3IE        | C1IE    | C1RXIE  | SPI2IE     | SPI2EIE       | 0000          |
| IEC3        | 009A        | _       | _       | _          | _       | _       | QEI1IE | PSEMIE       | _      | _        | INT4IE  | INT3IE      | _             | _       | MI2C2IE | SI2C2IE    | _             | 0000          |
| IEC4        | 009C        | _       | _       | _          | _       | QEI2IE  | _      | PSESMIE      | _      | _        | C1TXIE  | _           | _             | _       | U2EIE   | U1EIE      | _             | 0000          |
| IEC5        | 009E        | PWM2IE  | PWM1IE  | ADCP12IE   | _       | _       | _      | —            | _      | _        | _       | _           | _             | _       | _       | ADCP8IE    | _             | 0000          |
| IEC6        | 00A0        | ADCP1IE | ADCP0IE | —          | —       | —       | _      | AC4IE        | AC3IE  | AC2IE    |         | PWM8IE      | PWM7IE        | PWM6IE  | PWM5IE  | PWM4IE     | PWM3IE        | 0000          |
| IEC7        | 00A2        |         | —       | —          | _       | _       |        | _            | —      | —        |         | ADCP7IE     | ADCP6IE       | ADCP5IE | ADCP4IE | ADCP3IE    | ADCP2IE       | 0000          |
| IPC0        | 00A4        |         |         | T1IP<2:0>  |         | _       |        | OC1IP<2:0:   | >      | —        |         | IC1IP<2:0>  |               | _       | 1       | NT0IP<2:0> | >             | 4444          |
| IPC1        | 00A6        |         |         | T2IP<2:0>  |         | _       |        | OC2IP<2:0:   | >      | —        |         | IC2IP<2:0>  |               | _       | D       | MA0IP<2:0  | >             | 4444          |
| IPC2        | 00A8        |         |         | U1RXIP<2:0 | )>      | _       |        | SPI1IP<2:0   | >      | —        |         | SPI1EIP<2:0 | )>            | _       |         | T3IP<2:0>  |               | 4444          |
| IPC3        | 00AA        |         | —       | —          | _       | _       | 0      | DMA1IP<2:0   | )>     | —        |         | ADIP<2:0>   |               | _       | U       | 1TXIP<2:0  | >             | 4444          |
| IPC4        | 00AC        |         |         | CNIP<2:0>  | >       | _       |        | AC1IP<2:0:   | >      | —        |         | MI2C1IP<2:0 | )>            | _       | S       | 2C1IP<2:0  | >             | 4444          |
| IPC5        | 00AE        |         | —       | —          | _       | _       |        | _            | —      | —        |         | _           | —             | _       | 1       | NT1IP<2:0> | >             | 0004          |
| IPC6        | 00B0        |         |         | T4IP<2:0>  |         | _       |        | OC4IP<2:0:   | >      | —        |         | OC3IP<2:0:  | >             | _       | D       | MA2IP<2:0  | >             | 4444          |
| IPC7        | 00B2        |         |         | U2TXIP<2:( | )>      | _       | ι      | J2RXIP<2:0   | >      | —        |         | INT2IP<2:0  | >             | _       |         | T5IP<2:0>  |               | 4444          |
| IPC8        | 00B4        | _       |         | C1IP<2:0>  | •       | _       | (      | C1RXIP<2:0   | >      | _        |         | SPI2IP<2:0  | >             | _       | SI      | PI2EIP<2:0 | >             | 4444          |
| IPC9        | 00B6        | _       | _       | _          | _       | _       |        | IC4IP<2:0>   |        | _        |         | IC3IP<2:0>  | ,             | _       | D       | MA3IP<2:0  | >             | 0444          |
| IPC12       | 00BC        | _       | —       | _          | —       | —       | Ν      | /II2C2IP<2:0 | )>     | _        |         | SI2C2IP<2:0 | >             | —       | _       | —          | _             | 0440          |
| IPC13       | 00BE        | _       | —       |            | _       | —       |        | INT4IP<2:0:  | >      |          |         | INT3IP<2:0  | >             |         | —       | —          | —             | 0440          |
| IPC14       | 00C0        | _       | —       |            | _       | _       | (      | QEI1IP<2:0   | >      | _        |         | PSEMIP<2:0  | )>            |         | —       | —          | _             | 0440          |
| IPC16       | 00C4        | _       | —       |            | _       | —       |        | U2EIP<2:0;   | >      |          |         | U1EIP<2:0;  | >             |         | —       | —          | _             | 0440          |
| IPC17       | 00C6        | _       | —       |            | _       | —       | (      | C1TXIP<2:0   | >      |          | —       | —           | _             |         | —       | —          | —             | 0400          |
| IPC18       | 00C8        |         |         | QEI2IP<2:0 | >       | _       | _      | —            |        | _        | F       | PSESMIP<2:  | 0>            |         | _       | _          | _             | 4040          |

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

#### TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ64GS608 DEVICES

# TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ64GS608 DEVICES (CONTINUED)

| SFR<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13     | Bit 12 | Bit 11 | Bit 10 | Bit 9     | Bit 8 | Bit 7 | Bit 6 | Bit 5      | Bit 4 | Bit 3     | Bit 2 | Bit 1     | Bit 0 | All<br>Resets |
|-------------|-------------|--------|--------|------------|--------|--------|--------|-----------|-------|-------|-------|------------|-------|-----------|-------|-----------|-------|---------------|
| IPC20       | 00CC        | _      | —      | —          | —      | —      | _      | —         | _     | —     | ŀ     | ADCP8IP<2: | )>    | —         | -     | —         | -     | 0040          |
| IPC21       | 00CE        | _      | _      | _          | _      | _      | _      | _         | _     | _     |       | ADCP12IP   |       | _         | _     | _         | _     | 0040          |
| IPC23       | 00D2        |        | I      | PWM2IP<2:  | 0>     | _      | Р      | WM1IP<2:0 | )>    | _     | _     | _          | _     | _         | _     | _         | _     | 4400          |
| IPC24       | 00D4        |        | I      | PWM6IP<2:  | 0>     | _      | Р      | WM5IP<2:0 | )>    | _     | I     | PWM4IP<2:0 | )>    | _         | P٧    | VM3IP<2:0 | >     | 4444          |
| IPC25       | 00D6        |        |        | AC2IP<2:0  | >      | _      | _      | _         | _     | _     | I     | PWM8IP<2:0 | )>    | _         | P٧    | VM7IP<2:0 | >     | 4044          |
| IPC26       | 00D8        |        | _      | _          | _      | _      | _      | _         | _     | _     |       | AC4IP<2:0: | •     | _         | A     | C3IP<2:0> |       | 0044          |
| IPC27       | 00DA        |        | A      | ADCP1IP<2: | 0>     | _      | A      | DCP0IP<2: | 0>    | _     | _     | _          | _     | _         | _     | _         | _     | 4400          |
| IPC28       | 00DC        |        | A      | ADCP5IP<2: | 0>     | _      | A      | DCP4IP<2: | 0>    | _     | A     | ADCP3IP<2: | )>    | _         | AD    | CP2IP<2:0 | )>    | 4444          |
| IPC29       | 00DE        | _      | _      | _          | —      | —      | _      | _         | _     | _     | ŀ     | ADCP7IP<2: | )>    | _         | AD    | CP6IP<2:0 | )>    | 0044          |
| INTTREG     | 00E0        | _      | -      | _          |        |        | ILR<   | 3:0>      |       | -     |       |            | VE    | CNUM<6:0> |       |           |       | 0000          |

| IABLE       | 4-0.        |         | ENNUF   |            | KULLEI  |         |        |             | USFIC. | 33FJ64G  | 3000 DI | EVICES      |         |         |         |            |         |               |
|-------------|-------------|---------|---------|------------|---------|---------|--------|-------------|--------|----------|---------|-------------|---------|---------|---------|------------|---------|---------------|
| SFR<br>Name | SFR<br>Addr | Bit 15  | Bit 14  | Bit 13     | Bit 12  | Bit 11  | Bit 10 | Bit 9       | Bit 8  | Bit 7    | Bit 6   | Bit 5       | Bit 4   | Bit 3   | Bit 2   | Bit 1      | Bit 0   | All<br>Resets |
| INTCON1     | 0080        | NSTDIS  | OVAERR  | OVBERR     | COVAERR | COVBERR | OVATE  | OVBTE       | COVTE  | SFTACERR | DIV0ERR | DMACERR     | MATHERR | ADDRERR | STKERR  | OSCFAIL    | —       | 0000          |
| INTCON2     | 0082        | ALTIVT  | DISI    | _          | _       | _       | _      | _           | _      | _        | _       | _           | INT4EP  | INT3EP  | INT2EP  | INT1EP     | INT0EP  | 0000          |
| IFS0        | 0084        | _       | DMA1IF  | ADIF       | U1TXIF  | U1RXIF  | SPI1IF | SPI1EIF     | T3IF   | T2IF     | OC2IF   | IC2IF       | DMA0IF  | T1IF    | OC1IF   | IC1IF      | INT0IF  | 0000          |
| IFS1        | 0086        | U2TXIF  | U2RXIF  | INT2IF     | T5IF    | T4IF    | OC4IF  | OC3IF       | DMA2IF | _        | _       | _           | INT1IF  | CNIF    | AC1IF   | MI2C1IF    | SI2C1IF | 0000          |
| IFS2        | 0088        | _       |         | _          | _       | —       | _      | _           | _      | _        | IC4IF   | IC3IF       | DMA3IF  | C1IF    | C1RXIF  | SPI2IF     | SPI2EIF | 0000          |
| IFS3        | 008A        | _       |         | _          | —       | —       | QEI1IF | PSEMIF      | _      | _        | INT4IF  | INT3IF      | _       | _       | MI2C2IF | SI2C2IF    | _       | 0000          |
| IFS4        | 008C        | _       |         | _          | —       | QEI2IF  | _      | PSESMIF     | _      | _        | C1TXIF  | _           | _       | _       | U2EIF   | U1EIF      | _       | 0000          |
| IFS5        | 008E        | PWM2IF  | PWM1IF  | ADCP12IF   | —       | —       | _      | _           | _      | _        | _       | _           | _       | _       | _       | ADCP8IF    | _       | 0000          |
| IFS6        | 0090        | ADCP1IF | ADCP0IF | _          | _       | _       | _      | AC4IF       | AC3IF  | AC2IF    |         | _           | -       | PWM6IF  | PWM5IF  | PWM4IF     | PWM3IF  | 0000          |
| IFS7        | 0092        | _       |         | _          | _       | —       | _      |             | _      | _        | _       | _           | ADCP6IF | ADCP5IF | ADCP4IF | ADCP3IF    | ADCP2IF | 0000          |
| IEC0        | 0094        |         | DMA1IE  | ADIE       | U1TXIE  | U1RXIE  | SPI1IE | SPI1EIE     | T3IE   | T2IE     | OC2IE   | IC2IE       | DMA0IE  | T1IE    | OC1IE   | IC1IE      | INT0IE  | 0000          |
| IEC1        | 0096        | U2TXIE  | U2RXIE  | INT2IE     | T5IE    | T4IE    | OC4IE  | OC3IE       | DMA2IE |          | -       | _           | INT1IE  | CNIE    | AC1IE   | MI2C1IE    | SI2C1IE | 0000          |
| IEC2        | 0098        | -       | _       | _          | _       | _       | _      | _           | —      |          | IC4IE   | IC3IE       | DMA3IE  | C1IE    | C1RXIE  | SPI2IE     | SPI2EIE | 0000          |
| IEC3        | 009A        |         | _       | _          | _       | _       | QEI1IE | PSEMIE      | _      |          | INT4IE  | INT3IE      | _       | -       | MI2C2IE | SI2C2IE    | _       | 0000          |
| IEC4        | 009C        |         | _       | _          | _       | QEI2IE  | _      | PSESMIE     | _      |          | C1TXIE  | _           | -       |         | U2EIE   | U1EIE      | _       | 0000          |
| IEC5        | 009E        | PWM2IE  | PWM1IE  | ADCP12IE   | _       | _       | _      | _           | _      |          | -       | _           | -       |         | _       | ADCP8IE    | _       | 0000          |
| IEC6        | 00A0        | ADCP1IE | ADCP0IE | _          | _       | _       | _      | AC4IE       | AC3IE  | AC2IE    |         | _           | -       | PWM6IE  | PWM5IE  | PWM4IE     | PWM3IE  | 0000          |
| IEC7        | 00A2        | -       | _       | _          | _       | _       | _      | _           | —      |          |         | _           | ADCP6IE | ADCP5IE | ADCP4IE | ADCP3IE    | ADCP2IE | 0000          |
| IPC0        | 00A4        | _       |         | T1IP<2:0>  |         | —       | C      | )C1IP<2:0>  |        | _        |         | IC1IP<2:0>  |         | _       | I       | NT0IP<2:0  | >       | 4444          |
| IPC1        | 00A6        | _       |         | T2IP<2:0>  |         | —       | C      | )C2IP<2:0>  | •      | _        |         | IC2IP<2:0>  |         | _       | D       | MA0IP<2:0  | )>      | 4444          |
| IPC2        | 00A8        | _       | I       | U1RXIP<2:( | )>      | —       | S      | SPI1IP<2:0> | >      | _        |         | SPI1EIP<2:0 | >       | _       |         | T3IP<2:0>  |         | 4444          |
| IPC3        | 00AA        | _       |         | —          | —       | —       | D      | MA1IP<2:0   | >      | _        |         | ADIP<2:0>   |         | _       | L       | J1TXIP<2:0 | >       | 4444          |
| IPC4        | 00AC        | _       |         | CNIP<2:0>  | >       | —       | ŀ      | AC1IP<2:0>  |        | _        |         | MI2C1IP<2:0 | )>      | _       | S       | I2C1IP<2:0 | )>      | 4444          |
| IPC5        | 00AE        | _       |         | —          | —       | —       | _      | _           | _      | _        | _       | _           | _       | _       | I       | NT1IP<2:0  | >       | 0004          |
| IPC6        | 00B0        | _       |         | T4IP<2:0>  |         | —       | C      | )C4IP<2:0>  |        | _        |         | OC3IP<2:0:  | >       | _       | D       | MA2IP<2:0  | )>      | 4444          |
| IPC7        | 00B2        | _       |         | U2TXIP<2:0 | )>      | —       | U      | 2RXIP<2:0:  | >      | _        |         | INT2IP<2:0: | >       | _       |         | T5IP<2:0>  |         | 4444          |
| IPC8        | 00B4        | _       |         | C1IP<2:0>  |         | —       | С      | 1RXIP<2:0:  | >      | _        |         | SPI2IP<2:0: | >       | _       | S       | PI2EIP<2:0 | )>      | 4444          |
| IPC9        | 00B6        |         | _       | _          | _       | _       | I      | C4IP<2:0>   |        |          |         | IC3IP<2:0>  |         |         | D       | MA3IP<2:0  | )>      | 0444          |
| IPC12       | 00BC        |         | _       | _          | _       | _       | М      | I2C2IP<2:0  | >      |          |         | SI2C2IP<2:0 | >       |         | _       | _          | _       | 0440          |
| IPC13       | 00BE        |         | _       | _          | _       | _       | II     | NT4IP<2:0>  | >      |          |         | INT3IP<2:0  | >       |         | _       | -          | _       | 0440          |
| IPC14       | 00C0        |         | _       | _          | —       | —       | C      | EI1IP<2:0>  | >      | -        |         | PSEMIP<2:0  | >       | _       | _       | _          | —       | 0440          |
| IPC16       | 00C4        | _       | _       | _          | —       | _       | ι      | J2EIP<2:0>  |        | _        |         | U1EIP<2:0>  | •       | _       | _       | _          | —       | 0440          |
| IPC17       | 00C6        | _       | _       | —          | —       | —       | С      | 1TXIP<2:0:  | >      | _        | —       | —           | _       | _       | —       | _          | —       | 0400          |
| IPC18       | 00C8        | _       |         | QEI2IP<2:0 | >       | _       | _      | —           | —      | _        | F       | PSESMIP<2:  | 0>      | _       | _       | _          | —       | 4040          |

#### **TABLE 4-6:** INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ64GS606 DEVICES

Legend:

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

# TABLE 4-6: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ64GS606 DEVICES (CONTINUED)

| SFR<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13     | Bit 12 | Bit 11 | Bit 10 | Bit 9     | Bit 8 | Bit 7 | Bit 6 | Bit 5      | Bit 4 | Bit 3     | Bit 2 | Bit 1      | Bit 0 | All<br>Resets |
|-------------|-------------|--------|--------|------------|--------|--------|--------|-----------|-------|-------|-------|------------|-------|-----------|-------|------------|-------|---------------|
| IPC20       | 00CC        |        | _      | _          | -      |        | _      |           | _     | -     | ŀ     | ADCP8IP<2: | )>    | —         | _     | -          | _     | 0040          |
| IPC21       | 00CE        | _      | _      | _          | _      | _      | _      | _         | _     | _     | А     | DCP12IP<2  | 0>    | _         | —     | —          | _     | 0040          |
| IPC23       | 00D2        | _      | F      | PWM2IP<2:  | 0>     | _      | P٧     | VM1IP<2:0 | >     | _     | _     | _          | _     | _         | —     | —          | _     | 4400          |
| IPC24       | 00D4        |        | I      | PWM6IP<2:  | 0>     | _      | P۷     | VM5IP<2:0 | >     | _     | I     | PWM4IP<2:( | )>    | _         | Р     | WM3IP<2:0  | )>    | 4444          |
| IPC25       | 00D6        |        |        | AC2IP<2:0  | >      | _      |        | _         | _     | _     | _     | _          | _     | _         | _     | _          | —     | 4000          |
| IPC26       | 00D8        |        | _      | _          | _      | _      |        | _         | _     | _     |       | AC4IP<2:0> | •     | _         |       | AC3IP<2:0> | >     | 0044          |
| IPC27       | 00DA        |        | A      | ADCP1IP<2: | 0>     | _      | AD     | CP0IP<2:0 | >     | _     | _     | _          | _     | _         | _     | _          | —     | 4400          |
| IPC28       | 00DC        |        | A      | ADCP5IP<2: | 0>     | _      | AD     | CP4IP<2:0 | >     | _     | ŀ     | ADCP3IP<2: | )>    | _         | AI    | DCP2IP<2:0 | )>    | 4444          |
| IPC29       | 00DE        | _      | —      | _          | —      | _      | —      | _         | _     | _     | —     | _          | _     | _         | AI    | DCP6IP<2:0 | )>    | 0004          |
| INTTREG     | 00E0        | _      |        | _          | -      |        | ILR<3  | 3:0>      |       | -     |       |            | VE    | CNUM<6:0> | •     |            |       | 0000          |

| TABLE<br>SFR | SFR  |         |         |            |             |         |        | Bit 9       |       | 3FJ32GS  |         | Bit 5      |         |         |         |            | Bit 0         | All    |
|--------------|------|---------|---------|------------|-------------|---------|--------|-------------|-------|----------|---------|------------|---------|---------|---------|------------|---------------|--------|
| Name         | Addr | Bit 15  | Bit 14  | Bit 13     | Bit 12      | Bit 11  | Bit 10 | BIT 9       | Bit 8 | Bit 7    | Bit 6   | BIT 5      | Bit 4   | Bit 3   | Bit 2   | Bit 1      | Bit U         | Resets |
| INTCON1      | 0800 | NSTDIS  | OVAERR  | OVBERR     | COVAERR     | COVBERR | OVATE  | OVBTE       | COVTE | SFTACERR | DIV0ERR | _          | MATHERR | ADDRERR | STKERR  | OSCFAIL    | —             | 0000   |
| INTCON2      | 0082 | ALTIVT  | DISI    | —          | _           | —       | —      | —           | —     | _        |         | _          | INT4EP  | INT3EP  | INT2EP  | INT1EP     | INT0EP        | 0000   |
| IFS0         | 0084 | —       | _       | ADIF       | U1TXIF      | U1RXIF  | SPI1IF | SPI1EIF     | T3IF  | T2IF     | OC2IF   | IC2IF      | —       | T1IF    | OC1IF   | IC1IF      | INTOIF        | 0000   |
| IFS1         | 0086 | U2TXIF  | U2RXIF  | INT2IF     | T5IF        | T4IF    | OC4IF  | OC3IF       | _     | —        | —       | -          | INT1IF  | CNIF    | —       | MI2C1IF    | SI2C1IF       | 0000   |
| IFS2         | 0088 | _       | _       | —          | —           | —       | —      | —           | _     | —        | IC4IF   | IC3IF      | —       | -       | —       | SPI2IF     | SPI2EIF       | 0000   |
| IFS3         | 008A | _       |         | —          | —           | —       | QEI1IF | PSEMIF      | _     | —        | INT4IF  | INT3IF     | —       | -       | MI2C2IF | SI2C2IF    | —             | 0000   |
| IFS4         | 008C | _       | _       | _          | _           | _       | _      | PSESMIF     | _     | —        | _       | _          | -       | _       | U2EIF   | U1EIF      | _             | 0000   |
| IFS5         | 008E | PWM2IF  | PWM1IF  | ADCP12IF   | _           | _       | _      | _           | _     | _        | —       | _          | -       | _       | _       | ADCP8IF    | _             | 0000   |
| IFS6         | 0090 | ADCP1IF | ADCP0IF | —          | —           | _       | _      | —           | _     | _        | _       | _          | _       | PWM6IF  | PWM5IF  | PWM4IF     | PWM3IF        | 0000   |
| IFS7         | 0092 | —       | _       | —          | —           | _       | _      | —           | _     | _        | _       | _          | ADCP6IF | ADCP5IF | ADCP4IF | ADCP3IF    | ADCP2IF       | 0000   |
| IEC0         | 0094 | _       | _       | ADIE       | U1TXIE      | U1RXIE  | SPI1IE | SPI1EIE     | T3IE  | T2IE     | OC2IE   | IC2IE      | _       | T1IE    | OC1IE   | IC1IE      | INT0IE        | 0000   |
| IEC1         | 0096 | U2TXIE  | U2RXIE  | INT2IE     | T5IE        | T4IE    | OC4IE  | OC3IE       | _     | _        | _       | -          | INT1IE  | CNIE    | _       | MI2C1IE    | SI2C1IE       | 0000   |
| IEC2         | 0098 | _       | _       | _          | _           | _       | _      | _           | _     | _        | IC4IE   | IC3IE      | _       |         | _       | SPI2IE     | SPI2EIE       | 0000   |
| IEC3         | 009A |         |         | —          | —           | _       | QEI1IE | PSEMIE      | _     | _        | INT4IE  | INT3IE     | _       |         | MI2C2IE | SI2C2IE    | —             | 0000   |
| IEC4         | 009C | _       | _       | _          | _           | _       |        | PSESMIE     | _     | _        | _       | -          | _       |         | U2EIE   | U1EIE      |               | 0000   |
| IEC5         | 009E | PWM2IE  | PWM1IE  | ADCP12IE   | —           | _       | _      | —           | _     | _        | _       |            | _       |         | —       | ADCP8IE    | —             | 0000   |
| IEC6         | 00A0 | ADCP1IE | ADCP0IE | —          | _           | _       | _      | _           | _     | _        | _       | _          | _       | PWM6IE  | PWM5IE  | PWM4IE     | <b>PWM3IE</b> | 0000   |
| IEC7         | 00A2 | _       | -       | —          | —           | _       | _      | —           | _     | _        | _       |            | ADCP6IE | ADCP5IE | ADCP4IE | ADCP3IE    | ADCP2IE       | 0000   |
| IPC0         | 00A4 | _       |         | T1IP<2:0>  |             | _       | (      | OC1IP<2:0>  |       | —        |         | IC1IP<2:0  | >       |         | I       | NT0IP<2:0  | >             | 4444   |
| IPC1         | 00A6 | _       |         | T2IP<2:0>  |             | _       | (      | C2IP<2:0>   |       | —        |         | IC2IP<2:0  | >       |         | —       | —          | —             | 4440   |
| IPC2         | 00A8 | _       |         | U1RXIP<2:0 | )>          | _       | 5      | SPI1IP<2:0> | ,     | _        | 5       | SPI1EIP<2  | 0>      | _       |         | T3IP<2:0>  |               | 4444   |
| IPC3         | 00AA | _       | _       | _          | _           | _       | _      | _           | _     | _        |         | ADIP<2:0   | >       | _       | L       | 1TXIP<2:0  | >             | 0044   |
| IPC4         | 00AC | _       |         | CNIP<2:0>  | >           | _       | _      | _           | _     | _        | N       | /II2C1IP<2 | :0>     | _       | S       | I2C1IP<2:0 | )>            | 4444   |
| IPC5         | 00AE | _       | _       | _          | _           | _       |        | _           | _     | _        | _       | _          | _       | _       | I       | NT1IP<2:0  | >             | 0004   |
| IPC6         | 00B0 | _       |         | T4IP<2:0>  | ,           | _       | (      | C4IP<2:0>   |       | —        |         | OC3IP<2:0  | )>      | _       | _       | —          |               | 4440   |
| IPC7         | 00B2 | _       |         | U2TXIP<2:0 | )>          | _       | ι      | J2RXIP<2:0: | >     | _        |         | INT2IP<2:  | )>      | _       |         | T5IP<2:0>  |               | 4444   |
| IPC8         | 00B4 | _       | _       | _          | _           | _       | _      | _           | _     | _        |         | SPI2IP<2:0 | )>      | _       | S       | PI2EIP<2:0 | )>            | 0044   |
| IPC9         | 00B6 | _       | _       | _          | _           | _       |        | IC4IP<2:0>  |       | _        |         | IC3IP<2:0  | >       | _       | _       | _          | _             | 0440   |
| IPC12        | 00BC | _       | _       | _          | _           | _       | N      | II2C2IP<2:0 | >     | _        | 9       | SI2C2IP<2  | 0>      | _       | _       | _          | _             | 0440   |
| IPC13        | 00BE | _       | _       | _          | _           | _       | I      | NT4IP<2:0>  |       | _        |         | INT3IP<2:  | )>      | _       | _       | _          | _             | 0440   |
| IPC14        | 00C0 | _       | _       | _          | _           | _       | (      | QEI1IP<2:0> |       | _        | F       | SEMIP<2    | 0>      | _       | _       | _          | _             | 0440   |
| IPC16        | 00C4 | _       | _       | _          | _           | _       |        | U2EIP<2:0>  |       | _        |         | U1EIP<2:0  |         | _       | _       | _          | _             | 0440   |
| IPC18        | 00C8 | _       | _       | _          | _           | _       |        | _           | _     | _        |         | SESMIP<2   |         | _       | _       | _          | _             | 0040   |
| IPC20        | 00CC | _       |         | _          | _           | _       | _      | _           | _     | _        |         | DCP8IP<2   |         | _       | _       | _          | _             | 0040   |
| Legend:      |      |         |         |            | implemented |         |        |             |       |          |         |            |         |         |         |            |               | 0010   |

#### TABLE 4-7: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES

# TABLE 4-7: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES (CONTINUED)

| SFR<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13     | Bit 12 | Bit 11 | Bit 10                       | Bit 9     | Bit 8 | Bit 7 | Bit 6 | Bit 5     | Bit 4 | Bit 3     | Bit 2 | Bit 1      | Bit 0 | All<br>Resets |
|-------------|-------------|--------|--------|------------|--------|--------|------------------------------|-----------|-------|-------|-------|-----------|-------|-----------|-------|------------|-------|---------------|
| IPC21       | 00CE        | _      | —      | —          | —      | —      | —                            | —         | —     | _     | A     | DCP12IP<2 | ::0>  | —         | _     | —          | _     | 0040          |
| IPC23       | 00D2        |        | I      | PWM2IP<2:0 | )>     | _      | P                            | WM1IP<2:0 | )>    | _     | _     | _         | -     | _         | _     | _          | _     | 4400          |
| IPC24       | 00D4        |        | I      | PWM6IP<2:0 | )>     | _      | P                            | WM5IP<2:0 | )>    | _     | P     | WM4IP<2:  | 0>    | _         | P     | WM3IP<2:0  | )>    | 4444          |
| IPC27       | 00DA        |        | ŀ      | ADCP1IP<2: | 0>     | _      | PWM5IP<2:0><br>ADCP0IP<2:0>  |           |       | _     | _     | _         | -     | _         | _     | _          | _     | 4400          |
| IPC28       | 00DC        |        | ŀ      | ADCP5IP<2: | 0>     | _      | ADCP0IP<2:0><br>ADCP4IP<2:0> |           |       | _     | A     | DCP3IP<2  | :0>   | _         | AI    | DCP2IP<2:0 | )>    | 4444          |
| IPC29       | 00DE        |        | _      | _          | _      | _      | _                            | _         | _     | _     | _     | _         | -     | _         | AI    | DCP6IP<2:0 | )>    | 0004          |
| INTTREG     | 00E0        | _      | _      | _          | _      |        | ILR<                         | 3:0>      |       | _     |       |           | VE    | ECNUM<6:0 | >     |            |       | 0000          |

| SFR<br>Name | SFR<br>Addr | Bit 15  | Bit 14  | Bit 13     | Bit 12  | Bit 11  | Bit 10 | Bit 9       | Bit 8    | Bit 7    | Bit 6   | Bit 5       | Bit 4    | Bit 3    | Bit 2   | Bit 1       | Bit 0   | All<br>Resets |
|-------------|-------------|---------|---------|------------|---------|---------|--------|-------------|----------|----------|---------|-------------|----------|----------|---------|-------------|---------|---------------|
| INTCON1     | 0080        | NSTDIS  | OVAERR  | OVBERR     | COVAERR | COVBERR | OVATE  | OVBTE       | COVTE    | SFTACERR | DIV0ERR | —           | MATHERR  | ADDRERR  | STKERR  | OSCFAIL     |         | 0000          |
| INTCON2     | 0082        | ALTIVT  | DISI    | _          | _       | —       | _      | —           | —        | —        | _       | —           | INT4EP   | INT3EP   | INT2EP  | INT1EP      | INT0EP  | 0000          |
| IFS0        | 0084        | _       | —       | ADIF       | U1TXIF  | U1RXIF  | SPI1IF | SPI1EIF     | T3IF     | T2IF     | OC2IF   | IC2IF       | —        | T1IF     | OC1IF   | IC1IF       | INT0IF  | 0000          |
| IFS1        | 0086        | U2TXIF  | U2RXIF  | INT2IF     | T5IF    | T4IF    | OC4IF  | OC3IF       |          | _        | _       | —           | INT1IF   | CNIF     | AC1IF   | MI2C1IF     | SI2C1IF | 0000          |
| IFS2        | 0088        | _       | —       | _          | _       | —       | _      | _           | _        | _        | IC4IF   | IC3IF       | _        | _        | _       | SPI2IF      | SPI2EIF | 0000          |
| IFS3        | 008A        | _       | —       | —          | _       | —       | QEI1IF | PSEMIF      |          | _        | INT4IF  | INT3IF      | _        | —        | MI2C2IF | SI2C2IF     | _       | 0000          |
| IFS4        | 008C        | _       | —       | —          | _       | QEI2IF  | _      | PSESMIF     |          | _        | _       | —           | _        | —        | U2EIF   | U1EIF       | _       | 0000          |
| IFS5        | 008E        | PWM2IF  | PWM1IF  | ADCP12IF   | _       | —       | _      | —           | _        | _        | _       | —           | ADCP11IF | ADCP10IF | ADCP9IF | ADCP8IF     | _       | 0000          |
| IFS6        | 0090        | ADCP1IF | ADCP0IF | —          | _       | —       | _      | AC4IF       | AC3IF    | AC2IF    | PWM9IF  | PWM8IF      | PWM7IF   | PWM6IF   | PWM5IF  | PWM4IF      | PWM3IF  | 0000          |
| IFS7        | 0092        | —       | —       | —          | —       | —       | —      | —           | —        | —        | —       | ADCP7IF     | ADCP6IF  | ADCP5IF  | ADCP4IF | ADCP3IF     | ADCP2IF | 0000          |
| IEC0        | 0094        | —       | —       | ADIE       | U1TXIE  | U1RXIE  | SPI1IE | SPI1EIE     | T3IE     | T2IE     | OC2IE   | IC2IE       | —        | T1IE     | OC1IE   | IC1IE       | INT0IE  | 0000          |
| IEC1        | 0096        | U2TXIE  | U2RXIE  | INT2IE     | T5IE    | T4IE    | OC4IE  | OC3IE       | —        | —        | —       | —           | INT1IE   | CNIE     | AC1IE   | MI2C1IE     | SI2C1IE | 0000          |
| IEC2        | 0098        | —       | —       | —          | —       | —       | —      | —           | —        | —        | IC4IE   | IC3IE       | —        | —        | _       | SPI2IE      | SPI2EIE | 0000          |
| IEC3        | 009A        | —       | —       | —          | —       | —       | QEI1IE | PSEMIE      | —        | —        | INT4IE  | INT3IE      | —        | —        | MI2C2IE | SI2C2IE     | —       | 0000          |
| IEC4        | 009C        | —       | —       | —          | —       | QEI2IE  | —      | PSESMIE     | —        | —        | —       | —           | —        | —        | U2EIE   | U1EIE       | —       | 0000          |
| IEC5        | 009E        | PWM2IE  | PWM1IE  | ADCP12IE   |         | —       | _      | —           | —        | —        | _       | —           | ADCP11IE | ADCP10IE | ADCP9IE | ADCP8IE     | -       | 0000          |
| IEC6        | 00A0        | ADCP1IE | ADCP0IE | —          | —       | —       | —      | AC4IE       | AC3IE    | AC2IE    | PWM9IE  | PWM8IE      | PWM7IE   | PWM6IE   | PWM5IE  | PWM4IE      | PWM3IE  | 0000          |
| IEC7        | 00A2        | _       | —       |            | _       | —       | _      | —           | —        | —        | _       | ADCP7IE     | ADCP6IE  | ADCP5IE  | ADCP4IE | ADCP3IE     | ADCP2IE | 0000          |
| IPC0        | 00A4        | _       |         | T1IP<2:0>  |         | —       | (      | OC1IP<2:0>  | >        | —        |         | IC1IP<2:0:  | >        | —        |         | NT0IP<2:0>  |         | 4444          |
| IPC1        | 00A6        | _       |         | T2IP<2:0>  |         | _       | (      | OC2IP<2:0>  | <b>`</b> | _        |         | IC2IP<2:0:  | >        | _        |         | —           | —       | 4440          |
| IPC2        | 00A8        | _       |         | J1RXIP<2:0 | )>      | _       | 5      | SPI1IP<2:0  | >        | _        | 5       | SPI1EIP<2:  | 0>       | _        |         | T3IP<2:0>   |         | 4444          |
| IPC3        | 00AA        | _       | —       | _          | —       | _       | _      | —           | —        | _        |         | ADIP<2:0:   | >        | _        | U       | 1TXIP<2:0>  | •       | 0044          |
| IPC4        | 00AC        | _       |         | CNIP<2:0>  | •       | _       | /      | AC1IP<2:0>  |          | _        | Ν       | /II2C1IP<2: | 0>       | _        | S       | I2C1IP<2:0; | >       | 4444          |
| IPC5        | 00AE        | _       | —       | —          | —       | _       | —      | _           | —        | _        | —       | —           | —        | _        |         | NT1IP<2:0>  |         | 0004          |
| IPC6        | 00B0        | _       |         | T4IP<2:0>  |         | _       | (      | OC4IP<2:0>  | •        | —        |         | OC3IP<2:0   |          | _        | _       | —           | —       | 4440          |
| IPC7        | 00B2        | _       |         | U2TXIP<2:0 | >       | _       | U      | 2RXIP<2:0   | >        | _        |         | INT2IP<2:0  | )>       | —        |         | T5IP<2:0>   |         | 4444          |
| IPC8        | 00B4        | _       | —       | _          | -       | _       | _      | —           | —        | _        |         | SPI2IP<2:0  | )>       | _        | S       | PI2EIP<2:0: | >       | 0044          |
| IPC9        | 00B6        | _       | —       | _          | -       | _       |        | IC4IP<2:0>  |          | _        |         | IC3IP<2:0   | >        | _        | -       | —           | _       | 0440          |
| IPC12       | 00BC        | _       | —       | —          | —       | —       | Μ      | II2C2IP<2:0 | >        | —        | 5       | SI2C2IP<2:  | 0>       | —        | —       | —           | —       | 0440          |
| IPC13       | 00BE        | —       | —       | —          | —       | —       | I      | NT4IP<2:0;  | >        | —        |         | INT3IP<2:0  | )>       | —        | —       | —           | —       | 0440          |
| IPC14       | 00C0        | _       | —       | _          | _       | —       | C      | QEI1IP<2:0  | >        | —        | F       | PSEMIP<2:   | 0>       | —        | _       | —           | —       | 0440          |
| IPC16       | 00C4        | _       | —       | _          | _       | —       | l      | J2EIP<2:0>  | ,<br>    | —        |         | U1EIP<2:0   | >        | —        | _       | —           | —       | 0440          |
| IPC18       | 00C8        | _       |         | QEI2IP<2:0 | >       | —       | _      | —           | —        | _        | P       | SESMIP<2    | :0>      | —        | _       | _           | _       | 4040          |

ADCP9IP<2:0>

\_

ADCP8IP<2:0>

\_

\_

\_

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

\_

#### **TABLE 4-8:** INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS610 DEVICES

IPC20

00CC

\_

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

\_

ADCP10IP<2:0>

# TABLE 4-8: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS610 DEVICES (CONTINUED)

| SFR<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13     | Bit 12 | Bit 11 | Bit 10 | Bit 9      | Bit 8 | Bit 7 | Bit 6    | Bit 5     | Bit 4 | Bit 3      | Bit 2     | Bit 1      | Bit 0 | All<br>Resets |
|-------------|-------------|--------|--------|------------|--------|--------|--------|------------|-------|-------|----------|-----------|-------|------------|-----------|------------|-------|---------------|
| IPC21       | 00CE        |        | _      | —          | —      | _      | -      | _          | _     | _     | A        | DCP12IP<2 | 2:0>  | —          | AD        | CP11IP<2:0 | )>    | 0044          |
| IPC23       | 00D2        | _      | F      | PWM2IP<2:  | 0>     | _      | P۱     | WM1IP<2:0  | >     | _     | —        | _         | _     | _          | _         | —          | —     | 4400          |
| IPC24       | 00D4        | _      | F      | PWM6IP<2:  | 0>     | _      | P۱     | WM5IP<2:0  | >     | _     | P        | WM4IP<2   | 0>    | —          | P\        | VM3IP<2:0: | >     | 4444          |
| IPC25       | 00D6        | _      |        | AC2IP<2:0  | >      | _      | P۱     | WM9IP<2:0  | >     | _     | P        | WM8IP<2   | 0>    | —          | P\        | VM7IP<2:0: | >     | 4444          |
| IPC26       | 00D8        | _      | —      | _          | —      | _      | _      | _          | —     | _     |          | AC4IP<2:0 | >     | —          | ŀ         | AC3IP<2:0> |       | 0044          |
| IPC27       | 00DA        | _      | A      | ADCP1IP<2: | :0>    | _      | A      | DCP0IP<2:0 | )>    | _     | —        | _         | _     | _          | _         | _          | —     | 4400          |
| IPC28       | 00DC        | _      | A      | ADCP5IP<2: | :0>    | _      |        |            | _     | A     | DCP3IP<2 | :0>       | —     | AD         | CP2IP<2:0 | >          | 4444  |               |
| IPC29       | 00DE        | _      | —      | _          | —      | _      | _      | _          | —     | _     | A        | DCP7IP<2  | :0>   | —          | AD        | DCP6IP<2:0 | >     | 0044          |
| INTTREG     | 00E0        | _      | _      | _          | _      |        | ILR<   | 3:0>       |       | _     |          |           | V     | /ECNUM<6:0 | )>        |            |       | 0000          |

| SFR<br>Name | SFR<br>Addr | Bit 15  | Bit 14  | Bit 13      | Bit 12  | Bit 11  | Bit 10 | Bit 9       | Bit 8 | Bit 7    | Bit 6   | Bit 5       | Bit 4   | Bit 3   | Bit 2   | Bit 1      | Bit 0         | All<br>Resets |
|-------------|-------------|---------|---------|-------------|---------|---------|--------|-------------|-------|----------|---------|-------------|---------|---------|---------|------------|---------------|---------------|
| INTCON1     | 0080        | NSTDIS  | OVAERR  | OVBERR      | COVAERR | COVBERR | OVATE  | OVBTE       | COVTE | SFTACERR | DIV0ERR | —           | MATHERR | ADDRERR | STKERR  | OSCFAIL    | —             | 0000          |
| INTCON2     | 0082        | ALTIVT  | DISI    | _           | —       | —       | _      | —           |       | —        | —       | —           | INT4EP  | INT3EP  | INT2EP  | INT1EP     | INT0EP        | 0000          |
| IFS0        | 0084        | _       | _       | ADIF        | U1TXIF  | U1RXIF  | SPI1IF | SPI1EIF     | T3IF  | T2IF     | OC2IF   | IC2IF       | _       | T1IF    | OC1IF   | IC1IF      | <b>INT0IF</b> | 0000          |
| IFS1        | 0086        | U2TXIF  | U2RXIF  | INT2IF      | T5IF    | T4IF    | OC4IF  | OC3IF       | _     | _        | _       | _           | INT1IF  | CNIF    | AC1IF   | MI2C1IF    | SI2C1IF       | 0000          |
| IFS2        | 0088        | _       | _       | -           | _       | _       | _      | —           | _     | _        | IC4IF   | IC3IF       | _       | -       | _       | SPI2IF     | SPI2EIF       | 0000          |
| IFS3        | 008A        | -       | —       | _           | —       | —       | QEI1IF | PSEMIF      |       | —        | INT4IF  | INT3IF      | —       | _       | MI2C2IF | SI2C2IF    | —             | 0000          |
| IFS4        | 008C        | _       | _       | -           | _       | QEI2IF  | _      | PSESMIF     | _     | _        | _       | _           | _       | -       | U2EIF   | U1EIF      | _             | 0000          |
| IFS5        | 008E        | PWM2IF  | PWM1IF  | ADCP12IF    | _       | _       | _      | _           | _     | _        | _       | _           | _       | -       | _       | ADCP8IF    | _             | 0000          |
| IFS6        | 0090        | ADCP1IF | ADCP0IF | -           | _       | _       | _      | AC4IF       | AC3IF | AC2IF    | _       | PWM8IF      | PWM7IF  | PWM6IF  | PWM5IF  | PWM4IF     | PWM3IF        | 0000          |
| IFS7        | 0092        | _       | _       | -           | _       | _       | _      | _           | _     | _        | _       | ADCP7IF     | ADCP6IF | ADCP5IF | ADCP4IF | ADCP3IF    | ADCP2IF       | 0000          |
| IEC0        | 0094        | _       | _       | ADIE        | U1TXIE  | U1RXIE  | SPI1IE | SPI1EIE     | T3IE  | T2IE     | OC2IE   | IC2IE       | _       | T1IE    | OC1IE   | IC1IE      | INT0IE        | 0000          |
| IEC1        | 0096        | U2TXIE  | U2RXIE  | INT2IE      | T5IE    | T4IE    | OC4IE  | OC3IE       | _     | _        | _       | _           | INT1IE  | CNIE    | _       | MI2C1IE    | SI2C1IE       | 0000          |
| IEC2        | 0098        | _       | _       | -           | _       | _       | _      | _           | _     | _        | IC4IE   | IC3IE       | _       | -       | _       | SPI2IE     | SPI2EIE       | 0000          |
| IEC3        | 009A        | _       | _       | -           | _       | _       | QEI1IE | PSEMIE      | _     | _        | INT4IE  | INT3IE      | _       | -       | MI2C2IE | SI2C2IE    | _             | 0000          |
| IEC4        | 009C        | _       | —       | _           | —       | QEI2IE  | _      | PSESMIE     | _     | _        | _       | _           | _       | _       | U2EIE   | U1EIE      | —             | 0000          |
| IEC5        | 009E        | PWM2IE  | PWM1IE  | ADCP12IE    | _       | _       | _      | _           | _     | _        | _       | _           | _       | -       | _       | ADCP8IE    | _             | 0000          |
| IEC6        | 00A0        | ADCP1IE | ADCP0IE | -           | _       | _       | _      | AC4IE       | AC3IE | AC2IE    | _       | PWM8IE      | PWM7IE  | PWM6IE  | PWM5IE  | PWM4IE     | PWM3IE        | 0000          |
| IEC7        | 00A2        | _       | _       | -           | _       | _       | _      | _           | _     | _        | _       | ADCP7IE     | ADCP6IE | ADCP5IE | ADCP4IE | ADCP3IE    | ADCP2IE       | 0000          |
| IPC0        | 00A4        |         |         | T1IP<2:0>   |         | —       | (      | OC1IP<2:0>  |       | _        |         | IC1IP<2:0:  | >       | _       | 1       | NT0IP<2:0  | >             | 4444          |
| IPC1        | 00A6        |         |         | T2IP<2:0>   |         | —       | (      | OC2IP<2:0>  |       | _        |         | IC2IP<2:0:  | >       | _       |         |            | —             | 4440          |
| IPC2        | 00A8        |         |         | U1RXIP<2:0  | )>      | —       | 5      | SPI1IP<2:0> | •     | _        | S       | SPI1EIP<2:  | 0>      | _       |         | T3IP<2:0>  |               | 4444          |
| IPC3        | 00AA        | _       | _       | -           | _       | _       | _      | _           | _     | _        |         | ADIP<2:0:   | >       | -       | U       | 1TXIP<2:0  | >             | 0044          |
| IPC4        | 00AC        |         |         | CNIP<2:0>   |         | —       |        | AC1IP<2:0>  |       | _        | Ν       | /II2C1IP<2: | 0>      | _       | S       | 2C1IP<2:0  | )>            | 4444          |
| IPC5        | 00AE        |         | —       | _           | —       | —       | —      | -           |       | _        | _       | —           | —       | _       | 1       | NT1IP<2:0  | >             | 0004          |
| IPC6        | 00B0        |         |         | T4IP<2:0>   |         | —       | (      | OC4IP<2:0>  |       | _        |         | OC3IP<2:0   | >       | _       |         |            | —             | 4440          |
| IPC7        | 00B2        |         |         | U2TXIP<2:0  | >       | —       | L      | J2RXIP<2:0: | >     | _        |         | INT2IP<2:0  | >       | _       |         | T5IP<2:0>  |               | 4444          |
| IPC8        | 00B4        |         | —       | _           | —       | —       | —      | -           |       | _        |         | SPI2IP<2:0  | >       | _       | SI      | PI2EIP<2:0 | )>            | 0044          |
| IPC9        | 00B6        | _       | _       | -           | _       | _       |        | IC4IP<2:0>  |       | _        |         | IC3IP<2:0:  | >       | -       | _       | _          | _             | 0440          |
| IPC12       | 00BC        |         | —       | —           | —       | —       | N      | 112C2IP<2:0 | >     | _        | 5       | SI2C2IP<2:  | 0>      | _       | —       | —          | —             | 0440          |
| IPC13       | 00BE        |         | —       | _           | _       |         | I      | NT4IP<2:0>  | •     | _        |         | INT3IP<2:0  | >       |         | —       | —          | _             | 0440          |
| IPC14       | 00C0        |         | —       | _           | _       |         | (      | QEI1IP<2:0> | •     | _        | F       | SEMIP<2:    | 0>      |         | —       | —          | _             | 0440          |
| IPC16       | 00C4        |         | —       | _           | —       | —       | I      | U2EIP<2:0>  |       | —        |         | U1EIP<2:0   | >       | —       | —       | —          | _             | 0440          |
| IPC18       | 00C8        |         |         | QEI2IP<2:0: | >       | —       | —      | —           | —     | —        | P       | SESMIP<2    | :0>     | —       | —       | —          | _             | 4040          |
| IPC20       | 00CC        | _       | —       | _           | —       | _       | _      | _           | _     | —        | A       | DCP8IP<2    | :0>     | _       | _       | —          | —             | 0040          |

#### TABLE 4-9: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS608

# TABLE 4-9: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS608 (CONTINUED)

|             |             |        |        |            |        |        |        |            |       |       | -     |           | -     |           |       |            |       |               |
|-------------|-------------|--------|--------|------------|--------|--------|--------|------------|-------|-------|-------|-----------|-------|-----------|-------|------------|-------|---------------|
| SFR<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13     | Bit 12 | Bit 11 | Bit 10 | Bit 9      | Bit 8 | Bit 7 | Bit 6 | Bit 5     | Bit 4 | Bit 3     | Bit 2 | Bit 1      | Bit 0 | All<br>Resets |
| IPC21       | 00CE        | -      | -      | _          | —      | _      | _      | _          |       | _     | A     | DCP12IP<2 | :0>   | —         |       | -          | —     | 0040          |
| IPC23       | 00D2        |        | F      | PWM2IP<2:0 | 0>     | _      | P      | WM1IP<2:0  | >     | _     | _     | _         | _     | _         | _     | _          | _     | 4400          |
| IPC24       | 00D4        | _      | F      | PWM6IP<2:0 | 0>     | _      | P      | WM5IP<2:0  | >     | _     | F     | WM4IP<2:  | 0>    | _         | P\    | //M3IP<2:0 | )>    | 4444          |
| IPC25       | 00D6        | _      |        | AC2IP<2:0; | >      | _      | _      | —          | —     | _     | F     | WM8IP<2:  | 0>    | _         | P\    | //M7IP<2:0 | )>    | 4044          |
| IPC26       | 00D8        | _      | —      | —          | _      | _      | _      | —          | _     | _     |       | AC4IP<2:0 | >     | _         | A     | AC3IP<2:0: | >     | 0044          |
| IPC27       | 00DA        | _      | A      | DCP1IP<2:  | 0>     | _      | A      | DCP0IP<2:0 | >     | _     | _     | _         | _     | _         | —     | _          | —     | 4400          |
| IPC28       | 00DC        | _      | A      | DCP5IP<2:  | 0>     | _      | A      | DCP4IP<2:0 | >     | _     | A     | DCP3IP<2: | 0>    | _         | AD    | CP2IP<2:   | 0>    | 4444          |
| IPC29       | 00DE        | _      | _      | —          |        | _      | _      |            |       | _     | A     | DCP7IP<2: | 0>    | _         | AD    | CP6IP<2:   | 0>    | 0044          |
| INTTREG     | 00E0        | _      | _      | _          |        |        | ILR<   | 3:0>       |       | _     |       |           | VE    | CNUM<6:0> |       |            |       | 0000          |

| SFR<br>Name | SFR<br>Addr | Bit 15  | Bit 14  | Bit 13     | Bit 12  | Bit 11  | Bit 10 | Bit 9        | Bit 8 | Bit 7    | Bit 6   | Bit 5       | Bit 4   | Bit 3   | Bit 2   | Bit 1      | Bit 0         | All<br>Resets |
|-------------|-------------|---------|---------|------------|---------|---------|--------|--------------|-------|----------|---------|-------------|---------|---------|---------|------------|---------------|---------------|
| INTCON1     | 0080        | NSTDIS  | OVAERR  | OVBERR     | COVAERR | COVBERR | OVATE  | OVBTE        | COVTE | SFTACERR | DIV0ERR | _           | MATHERR | ADDRERR | STKERR  | OSCFAIL    | _             | 0000          |
| INTCON2     | 0082        | ALTIVT  | DISI    | _          | _       | _       | _      | _            | _     | —        | —       | _           | INT4EP  | INT3EP  | INT2EP  | INT1EP     | INT0EP        | 0000          |
| IFS0        | 0084        | _       | _       | ADIF       | U1TXIF  | U1RXIF  | SPI1IF | SPI1EIF      | T3IF  | T2IF     | OC2IF   | IC2IF       | _       | T1IF    | OC1IF   | IC1IF      | <b>INT0IF</b> | 0000          |
| IFS1        | 0086        | U2TXIF  | U2RXIF  | INT2IF     | T5IF    | T4IF    | OC4IF  | OC3IF        |       | _        |         | _           | INT1IF  | CNIF    | AC1IF   | MI2C1IF    | SI2C1IF       | 0000          |
| IFS2        | 0088        | _       | _       | _          | _       | _       | _      | _            | _     | _        | IC4IF   | IC3IF       | —       | _       | _       | SPI2IF     | SPI2EIF       | 0000          |
| IFS3        | 008A        | _       | _       | _          | _       | _       | QEI1IF | PSEMIF       | _     | _        | INT4IF  | INT3IF      | —       | _       | MI2C2IF | SI2C2IF    | _             | 0000          |
| IFS4        | 008C        | _       | _       | _          | _       | QEI2IF  | _      | PSESMIF      | _     | _        | —       | _           | —       | _       | U2EIF   | U1EIF      | _             | 0000          |
| IFS5        | 008E        | PWM2IF  | PWM1IF  | ADCP12IF   | _       | _       | _      | _            | _     | _        | _       | _           | _       |         | _       | ADCP8IF    | -             | 0000          |
| IFS6        | 0090        | ADCP1IF | ADCP0IF | -          | _       | _       | _      | AC4IF        | AC3IF | AC2IF    | _       | _           | _       | PWM6IF  | PWM5IF  | PWM4IF     | PWM3IF        | 0000          |
| IFS7        | 0092        | -       | _       | _          | _       | —       |        |              |       | _        |         | _           | ADCP6IF | ADCP5IF | ADCP4IF | ADCP3IF    | ADCP2IF       | 0000          |
| IEC0        | 0094        |         |         | ADIE       | U1TXIE  | U1RXIE  | SPI1IE | SPI1EIE      | T3IE  | T2IE     | OC2IE   | IC2IE       | _       | T1IE    | OC1IE   | IC1IE      | INT0IE        | 0000          |
| IEC1        | 0096        | U2TXIE  | U2RXIE  | INT2IE     | T5IE    | T4IE    | OC4IE  | OC3IE        | _     | _        | _       | _           | INT1IE  | CNIE    | AC1IE   | MI2C1IE    | SI2C1IE       | 0000          |
| IEC2        | 0098        |         |         | -          | _       | _       | _      | _            | _     | _        | IC4IE   | IC3IE       | _       | -       | _       | SPI2IE     | SPI2EIE       | 0000          |
| IEC3        | 009A        |         |         |            | _       | _       | QEI1IE | PSEMIE       | _     | _        | INT4IE  | INT3IE      | _       |         | MI2C2IE | SI2C2IE    | -             | 0000          |
| IEC4        | 009C        |         |         |            | _       | QEI2IE  | _      | PSESMIE      | _     | _        | _       | _           | _       |         | U2EIE   | U1EIE      | -             | 0000          |
| IEC5        | 009E        | PWM2IE  | PWM1IE  | ADCP12IE   | _       | _       | _      | _            | _     | _        | _       | _           | _       |         | _       | ADCP8IE    | -             | 0000          |
| IEC6        | 00A0        | ADCP1IE | ADCP0IE | -          | _       | _       | _      | AC4IE        | AC3IE | AC2IE    | _       | _           | _       | PWM6IE  | PWM5IE  | PWM4IE     | PWM3IE        | 0000          |
| IEC7        | 00A2        | _       | _       | _          | _       | _       | _      | —            | _     | —        | —       | _           | ADCP6IE | ADCP5IE | ADCP4IE | ADCP3IE    | ADCP2IE       | 0000          |
| IPC0        | 00A4        | _       |         | T1IP<2:0>  |         | _       |        | OC1IP<2:0>   |       | _        |         | IC1IP<2:0   | >       | _       | 1       | NT0IP<2:0: | >             | 4444          |
| IPC1        | 00A6        | _       |         | T2IP<2:0>  |         | _       |        | OC2IP<2:0>   |       | —        |         | IC2IP<2:0   | >       | _       | _       | _          | —             | 4440          |
| IPC2        | 00A8        | _       |         | U1RXIP<2:0 | )>      | _       |        | SPI1IP<2:0>  |       | —        | S       | SPI1EIP<2:  | 0>      | _       |         | T3IP<2:0>  |               | 4444          |
| IPC3        | 00AA        | _       | _       | _          | _       | _       | _      | _            | _     | _        |         | ADIP<2:0:   | >       | _       | ι       | I1TXIP<2:0 | >             | 0044          |
| IPC4        | 00AC        | _       |         | CNIP<2:0>  |         | _       |        | AC1IP<2:0>   |       | —        | N       | /II2C1IP<2: | 0>      | _       | S       | I2C1IP<2:0 | >             | 4444          |
| IPC5        | 00AE        | _       | _       | _          | -       |         | _      | _            | _     | _        | _       | _           | _       | _       | I       | NT1IP<2:0: | >             | 0004          |
| IPC6        | 00B0        | _       |         | T4IP<2:0>  |         |         |        | OC4IP<2:0>   |       | _        |         | OC3IP<2:0   | )>      | _       | _       | _          | _             | 4440          |
| IPC7        | 00B2        | _       |         | U2TXIP<2:0 | >       | _       | ι      | J2RXIP<2:0:  | >     | —        |         | INT2IP<2:0  | )>      | _       |         | T5IP<2:0>  |               | 4444          |
| IPC8        | 00B4        | _       | _       | _          | _       | _       | _      | _            | _     | _        | :       | SPI2IP<2:0  | )>      | _       | S       | PI2EIP<2:0 | )>            | 0044          |
| IPC9        | 00B6        | _       | _       | _          | _       | _       |        | IC4IP<2:0>   |       | —        |         | IC3IP<2:0   | >       | _       | _       | _          | —             | 0440          |
| IPC12       | 00BC        | —       | —       | —          |         | _       | Ν      | /II2C2IP<2:0 | >     | _        | S       | SI2C2IP<2:  | 0>      | —       | —       | —          | —             | 0440          |
| IPC13       | 00BE        | —       | —       | —          | _       | _       |        | INT4IP<2:0>  |       | _        |         | INT3IP<2:0  | )>      | —       | _       | —          | —             | 0440          |
| IPC14       | 00C0        | _       | _       | _          | _       | _       |        | QEI1IP<2:0>  |       | _        | F       | PSEMIP<2:   | 0>      | —       | —       | —          | —             | 0440          |
| IPC16       | 00C4        |         | —       | _          | _       | —       |        | U2EIP<2:0>   |       | —        |         | U1EIP<2:0   | >       | —       | —       | —          | —             | 0440          |
| IPC18       | 00C8        | _       |         | QEI2IP<2:0 | >       | _       | _      | —            | —     | —        | P       | SESMIP<2    | :0>     | —       | —       | —          | —             | 4040          |
| IPC20       | 00CC        | _       | —       | —          | _       | _       | _      | _            | _     | —        | A       | DCP8IP<2    | :0>     | _       | —       | _          | _             | 0040          |

### TABLE 4-10: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS606 DEVICES

# TABLE 4-10: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS606 DEVICES (CONTINUED)

| SFR<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13     | Bit 12 | Bit 11 | Bit 10       | Bit 9       | Bit 8      | Bit 7 | Bit 6        | Bit 5     | Bit 4 | Bit 3       | Bit 2 | Bit 1      | Bit 0 | All<br>Resets |
|-------------|-------------|--------|--------|------------|--------|--------|--------------|-------------|------------|-------|--------------|-----------|-------|-------------|-------|------------|-------|---------------|
| IPC21       | 00CE        | _      | _      | _          |        | _      |              | _           | _          | _     | A            | DCP12IP<2 | 2:0>  | _           | —     | _          | _     | 0040          |
| IPC23       | 00D2        | _      | I      | PWM2IP<2:0 | 0>     | _      | Р            | PWM1IP<2:0> |            | _     | _            | —         | —     | _           | _     | _          | _     | 4400          |
| IPC24       | 00D4        | _      | I      | PWM6IP<2:  | 0>     | _      | Р            | WM5IP<2:0   | VM5IP<2:0> |       | PWM4IP<2:0>  |           | _     | PWM3IP<2:0> |       | 4444       |       |               |
| IPC25       | 00D6        | _      |        | AC2IP<2:0  | >      | _      | _            | _           | _          | _     | _            | —         | —     | _           | _     | _          | —     | 4000          |
| IPC26       | 00D8        | _      | _      | —          | _      | _      | _            | _           | _          | _     |              | AC4IP<2:0 | >     | _           |       | AC3IP<2:0> | >     | 0044          |
| IPC27       | 00DA        | _      | ŀ      | ADCP1IP<2: | :0>    | _      | A            | DCP0IP<2:0  | )>         | _     |              |           | —     | _           |       |            | —     | 4400          |
| IPC28       | 00DC        | _      | A      | ADCP5IP<2: | :0>    | _      | ADCP4IP<2:0> |             | _          | A     | ADCP3IP<2:0> |           | _     | ADCP2IP<2:0 |       | 0>         | 4444  |               |
| IPC29       | 00DE        | _      | _      | _          |        | _      |              |             | _          | —     |              |           | _     | ADCP6II     |       | 0>         | 0004  |               |
| INTTREG     | 00E0        | _      | _      | _          |        |        | ILR<         | 3:0>        |            | _     | VECNUM<6:0>  |           |       |             |       |            |       | 0000          |

#### TIMERS REGISTER MAP **TABLE 4-11:**

| © 2010     |
|------------|
| Microchip  |
| Technology |
| ņ          |

| SFR<br>Name | SFR<br>Addr | Bit 15            | Bit 14                                                     | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9        | Bit 8          | Bit 7          | Bit 6          | Bit 5 | Bit 4  | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
|-------------|-------------|-------------------|------------------------------------------------------------|--------|--------|--------|--------|--------------|----------------|----------------|----------------|-------|--------|-------|-------|-------|-------|---------------|
| TMR1        | 0100        |                   |                                                            |        |        |        |        |              | Timer1 Re      | egister        |                |       |        |       |       |       |       | xxxx          |
| PR1         | 0102        |                   |                                                            |        | _      | _      | _      |              | Period Re      | gister 1       | _              |       |        |       |       |       | _     | FFFF          |
| T1CON       | 0104        | TON               | _                                                          | TSIDL  |        |        |        | —            | —              |                | TGATE          | TCKP  | S<1:0> | _     | TSYNC | TCS   |       | 0000          |
| TMR2        | 0106        |                   |                                                            |        |        |        |        |              | Timer2 Re      | egister        |                |       |        |       |       |       |       | xxxx          |
| TMR3HLD     | 0108        |                   | Timer3 Holding Register (for 32-bit timer operations only) |        |        |        |        |              |                |                |                |       |        |       |       |       | xxxx  |               |
| TMR3        | 010A        | Timer3 Register   |                                                            |        |        |        |        |              |                |                |                |       |        |       | xxxx  |       |       |               |
| PR2         | 010C        | Period Register 2 |                                                            |        |        |        |        |              |                |                |                |       |        |       |       | FFFF  |       |               |
| PR3         | 010E        |                   | Period Register 3                                          |        |        |        |        |              |                |                |                |       |        |       |       |       |       | FFFF          |
| T2CON       | 0110        | TON               | —                                                          | TSIDL  | —      | —      | —      | —            | —              | —              | TGATE          | TCKP  | S<1:0> | T32   | —     | TCS   | —     | 0000          |
| T3CON       | 0112        | TON               | _                                                          | TSIDL  | -      | -      | -      | —            | —              | -              | TGATE          | TCKPS | S<1:0> | _     | —     | TCS   | _     | 0000          |
| TMR4        | 0114        |                   |                                                            |        |        |        |        |              | Timer4 Re      | egister        |                |       |        |       |       |       |       | xxxx          |
| TMR5HLD     | 0116        |                   |                                                            |        |        |        | Timer  | r5 Holding R | egister (for 3 | 2-bit timer op | perations only | /)    |        |       |       |       |       | xxxx          |
| TMR5        | 0118        |                   |                                                            |        |        |        |        |              | Timer5 Re      | egister        |                |       |        |       |       |       |       | xxxx          |
| PR4         | 011A        |                   |                                                            |        |        |        |        |              | Period Re      | gister 4       |                |       |        |       |       |       |       | FFFF          |
| PR5         | 011C        |                   |                                                            |        |        |        |        |              | Period Re      | gister 5       |                |       |        |       |       |       |       | FFFF          |
| T4CON       | 011E        | TON               | _                                                          | TSIDL  | —      | —      | _      | —            | —              | —              | TGATE          | TCKPS | S<1:0> | T32   | —     | TCS   | —     | 0000          |
| T5CON       | 0120        | TON               | _                                                          | TSIDL  | _      | _      | _      | _            | _              |                | TGATE          | TCKP  | 6<1:0> | —     |       | TCS   | _     | 0000          |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

# TABLE 4-12: INPUT CAPTURE REGISTER MAP

| SFR<br>Name   | SFR Addr  | Bit 15                                    | Bit 14                   | Bit 13      | Bit 12       | Bit 11       | Bit 10       | Bit 9      | Bit 8       | Bit 7       | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2             | Bit 1    | Bit 0 | All<br>Resets |  |  |  |  |  |
|---------------|-----------|-------------------------------------------|--------------------------|-------------|--------------|--------------|--------------|------------|-------------|-------------|-------|-------|-------|-------|-------------------|----------|-------|---------------|--|--|--|--|--|
| IC1BUF        | 0140      | Input 1 Capture Register                  |                          |             |              |              |              |            |             |             |       |       |       |       |                   |          | xxxx  |               |  |  |  |  |  |
| IC1CON        | 0142      | ICSIDL ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> |                          |             |              |              |              |            |             |             |       |       |       |       |                   | 0000     |       |               |  |  |  |  |  |
| IC2BUF        | 0144      | Input 2 Capture Register                  |                          |             |              |              |              |            |             |             |       |       |       |       |                   |          | xxxx  |               |  |  |  |  |  |
| IC2CON        | 0146      | _                                         | —                        | ICSIDL      | _            | _            | _            | _          | _           | ICTMR       | ICI<1 | :0>   | ICOV  | ICBNE | E ICM<2:0>        |          |       |               |  |  |  |  |  |
| <b>IC3BUF</b> | 0148      |                                           | Input 3 Capture Register |             |              |              |              |            |             |             |       |       |       |       |                   |          |       | xxxx          |  |  |  |  |  |
| IC3CON        | 014A      | _                                         | _                        | ICSIDL      | —            | _            | _            | —          | —           | ICTMR       | ICI<1 | :0>   | ICOV  | ICBNE |                   | ICM<2:0> |       | 0000          |  |  |  |  |  |
| IC4BUF        | 014C      |                                           |                          |             |              |              |              | Inp        | out 4 Captu | re Register |       |       |       |       |                   |          |       | xxxx          |  |  |  |  |  |
| IC4CON        | 014E      | _                                         | —                        | ICSIDL      | _            | _            | _            | _          | _           | ICTMR       | ICI<1 | :0>   | ICOV  | ICBNE | ICBNE ICM<2:0> 00 |          |       |               |  |  |  |  |  |
| Legend:       | x = unkno | wn value                                  | on Reset, ·              | — = unimple | mented, read | as '0'. Rese | t values are | e shown in | hexadecin   | nal.        |       |       |       |       |                   |          |       |               |  |  |  |  |  |

#### TABLE 4-13: OUTPUT COMPARE REGISTER MAP

| SFR<br>Name | SFR<br>Addr | Bit 15                              | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9     | Bit 8       | Bit 7      | Bit 6  | Bit 5 | Bit 4 | Bit 3  | Bit 2 | Bit 1    | Bit 0 | All<br>Resets |
|-------------|-------------|-------------------------------------|--------|--------|--------|--------|--------|-----------|-------------|------------|--------|-------|-------|--------|-------|----------|-------|---------------|
| OC1RS       | 0180        |                                     |        |        |        |        |        | Output Co | mpare 1 Sec | ondary Reg | jister |       |       |        |       |          |       | xxxx          |
| OC1R        | 0182        |                                     |        |        |        |        |        | Outp      | out Compare | 1 Register |        |       |       |        |       |          |       | xxxx          |
| OC1CON      | 0184        | _                                   |        | OCSIDL | —      | _      | _      | —         | —           | _          | _      | —     | OCFLT | OCTSEL | C     | )CM<2:0> |       | 0000          |
| OC2RS       | 0186        | Output Compare 2 Secondary Register |        |        |        |        |        |           |             |            |        |       |       |        |       | xxxx     |       |               |
| OC2R        | 0188        | Output Compare 2 Register           |        |        |        |        |        |           |             |            |        |       |       |        |       |          | xxxx  |               |
| OC2CON      | 018A        | _                                   |        | OCSIDL | —      | _      | _      | —         | —           | _          | _      | —     | OCFLT | OCTSEL | C     | )CM<2:0> |       | 0000          |
| OC3RS       | 018C        |                                     |        |        |        |        |        | Output Co | mpare 3 Sec | ondary Reg | jister |       |       |        |       |          |       | xxxx          |
| OC3R        | 018E        |                                     |        |        |        |        |        | Outp      | out Compare | 3 Register |        |       |       |        |       |          |       | xxxx          |
| OC3CON      | 0190        | _                                   |        | OCSIDL | _      |        | _      | —         | —           | _          | _      | _     | OCFLT | OCTSEL | C     | CM<2:0>  |       | 0000          |
| OC4RS       | 0192        |                                     |        |        |        |        |        | Output Co | mpare 4 Sec | ondary Reg | jister |       |       |        |       |          |       | xxxx          |
| OC4R        | 0194        |                                     |        |        |        |        |        | Outp      | out Compare | 4 Register |        |       |       |        |       |          |       | xxxx          |
| OC4CON      | 0196        | _                                   | _      | OCSIDL | —      | _      | _      | _         | —           | _          | _      | _     | OCFLT | OCTSEL | C     | )CM<2:0> |       | 0000          |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

## TABLE 4-14: QEI1 REGISTER MAP

| SFR<br>Name | Addr. | Bit 15 | Bit 14 | Bit 13  | Bit 12 | Bit 11 | Bit 10    | Bit 9         | Bit 8 | Bit 7       | Bit 6      | Bit 5     | Bit 4 | Bit 3  | Bit 2  | Bit 1 | Bit 0    | All<br>Resets |
|-------------|-------|--------|--------|---------|--------|--------|-----------|---------------|-------|-------------|------------|-----------|-------|--------|--------|-------|----------|---------------|
| QEI1CON     | 01E0  | CNTERR |        | QEISIDL | INDX   | UPDN   | QEIM<2:0> |               |       | SWPAB       | PCDOUT     | TQGATE    | TQCKP | S<1:0> | POSRES | TQCS  | UPDN_SRC | 0000          |
| DFLT1CON    | 01E2  | _      | -      | _       | _      | _      | IMV<      | IMV<1:0> CEID |       | QEOUT       |            | QECK<2:0> |       | _      | _      | _     | _        | 0000          |
| POS1CNT     | 01E4  |        |        |         |        |        |           |               | Po    | sition Cour | nter<15:0> |           |       |        |        |       |          | 0000          |
| MAX1CNT     | 01E6  |        |        |         |        |        |           |               | Ма    | aximum Co   | unt<15:0>  |           |       |        |        |       |          | FFFF          |

Legend: u = uninitialized bit, - = unimplemented, read as '0'

#### TABLE 4-15: QEI2 REGISTER MAP

| SFR<br>Name | Addr. | Bit 15 | Bit 14 | Bit 13  | Bit 12              | Bit 11 | Bit 10 | Bit 9     | Bit 8 | Bit 7       | Bit 6      | Bit 5     | Bit 4       | Bit 3 | Bit 2  | Bit 1 | Bit 0    | All<br>Resets |
|-------------|-------|--------|--------|---------|---------------------|--------|--------|-----------|-------|-------------|------------|-----------|-------------|-------|--------|-------|----------|---------------|
| QEI2CON     | 01F0  | CNTERR |        | QEISIDL | INDX                | UPDN   | G      | QEIM<2:0> |       |             | PCDOUT     | TQGATE    | TQCKPS<1:0> |       | POSRES | TQCS  | UPDN_SRC | 0000          |
| DFLT2CON    | 01F2  | _      | _      | _       | _                   | _      | IMV<   | :1:0>     | CEID  | QEOUT       |            | QECK<2:0> |             | _     | _      | _     | —        | 0000          |
| POS2CNT     | 01F4  |        |        |         |                     |        |        |           | Po    | sition Cour | nter<15:0> |           |             |       |        |       |          | 0000          |
| MAX2CNT     | 01F6  |        |        |         | Maximum Count<15:0> |        |        |           |       |             |            |           |             |       |        |       |          |               |

Legend: u = uninitialized bit, - = unimplemented, read as '0'

# TABLE 4-16: HIGH-SPEED PWM REGISTER MAP

| File Name | Addr<br>Offset | Bit 15   | Bit 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9     | Bit 8    | Bit 7  | Bit 6   | Bit 5   | Bit 4 | Bit 3 | Bit 2 | Bit 1      | Bit 0 | All<br>Resets |
|-----------|----------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|-----------|----------|--------|---------|---------|-------|-------|-------|------------|-------|---------------|
| PTCON     | 0400           | PTEN     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PTSIDL | SESTAT | SEIEN  | EIPU   | SYNCPOL   | SYNCOEN  | SYNCEN | SY      | NCSRC<2 | :0>   |       | SEVTF | PS<3:0>    |       | 0000          |
| PTCON2    | 0402           | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | —      | _      | _      | _      | _         | _        | _      | _       | _       | _     | _     | P     | CLKDIV<2:0 | >     | 0000          |
| PTPER     | 0404           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |        |        |        |           | PTPER<15 | :0>    |         |         |       |       |       |            |       | FFF8          |
| SEVTCMP   | 0406           |          | SEVTCMP<15:3>         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         _         _         _         _         _         _         _         _         _         _         _         _         _         _         _         _         _         _         _         _         _         _         _         _         _         _         _         _         _         _         _         _         _         _         _         _         _         _         _         _         < |        |        |        |        |           |          |        |         |         |       |       |       |            | 0000  |               |
| MDC       | 040A           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |        |        |        |           |          |        |         |         |       |       |       |            | 0000  |               |
| STCON     | 040E           | -        | MDC<15:0>       —     —       SESTAT     SEIEN       EIPU     SYNCPOL       SYNCEN     SYNCSRC<2:0>       SEVTPS<3:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |        |        |        |           |          |        |         |         |       |       |       |            | 0000  |               |
| STCON2    | 0410           | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | —      | _      | _      | _      | _         | _        | _      | _       | _       | _     | _     | P     | CLKDIV<2:0 | >     | 0000          |
| STPER     | 0412           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |        |        |        |           | PTPER<15 | :0>    |         |         |       |       |       |            |       | FFF8          |
| SSEVTCMP  | 0414           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |        |        | SS     | EVTCMP<15 | :3>      |        |         |         |       |       | _     | _          | _     | 0000          |
| CHOP      | 041A           | CHPCLKEN | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _      | _      | _      | _      |           |          | CHC    | OP<9:3> |         |       |       |       | _          | -     | 0000          |

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-17: HIGH-SPEED PWM GENERATOR 1 REGISTER MAP

| Addr<br>Offset | Bit 15                                                                                                                                                                                                                                                                                                                                                                                                       | Bit 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bit 13                                                                                                                                                      | Bit 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bit 11                                                                                                                                                                                                                                                              | Bit 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bit 9                                                                                                                                                | Bit 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bit 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bit 6                                                                                                                                                                                                                                                                                      | Bit 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bit 4                                                                                                                                                                                                                              | Bit 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bit 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bit 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bit 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | All<br>Resets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0420           | FLTSTAT                                                                                                                                                                                                                                                                                                                                                                                                      | CLSTAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TRGSTAT                                                                                                                                                     | FLTIEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CLIEN                                                                                                                                                                                                                                                               | TRGIEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ITB                                                                                                                                                  | MDCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DTC<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :1:0>                                                                                                                                                                                                                                                                                      | DTCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | —                                                                                                                                                                                                                                  | MTBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | XPRES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0422           | PENH                                                                                                                                                                                                                                                                                                                                                                                                         | PENL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | POLH                                                                                                                                                        | POLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PMOD                                                                                                                                                                                                                                                                | <1:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OVRENH                                                                                                                                               | OVRENL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OVRDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T<1:0>                                                                                                                                                                                                                                                                                     | FLTDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T<1:0>                                                                                                                                                                                                                             | CLDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T<1:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SWAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OSYNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0424           | IFLTMOD                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (                                                                                                                                                           | CLSRC<4:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0>                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CLPOL                                                                                                                                                | CLMOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FI                                                                                                                                                                                                                                                                                         | LTSRC<4:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0>                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FLTPOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FLTMO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D<1:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0426           |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                      | PDC1<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0428           |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                      | PHASE1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 042A           | —                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                             | PHASE1<15:0>       DTR1<13:0>         ALTDTR1<13:0>       SDC1<15:0>         SPHASE1<15:0>       -         TRGCMP<15:3>       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 042C           | —                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                             | PDC1<15:0>         PHASE1<15:0>         DTR1<13:0>         ALTDTR1<13:0>         SDC1<15:0>         SDC1<15:0>         SPHASE1<15:0>         TRGCMP<15:3>         — — — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 042E           |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                      | SDC1<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0430           |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                      | SPHASE1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | :15:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0432           |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                             | DTR1<13:0>       ()         ALTDTR1<13:0>       ()         SDC1<15:0>       ()         SPHASE1<15:0>       ()         TRGCMP<15:3>       —       —       —         —       —       —       —       —       ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0434           |                                                                                                                                                                                                                                                                                                                                                                                                              | TRGDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V<3:0>                                                                                                                                                      | ALTDTR1<13:0>       0         SDC1<15:0>       0         SPHASE1<15:0>       0         TRGCMP<15:3>       -       -       0         -       -       -       0         -       -       -       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0436           |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                     | STRG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CMP<15:3>                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0438           |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                     | PWMC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AP1<15:3>                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 043A           | PHR                                                                                                                                                                                                                                                                                                                                                                                                          | PHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PLR                                                                                                                                                         | PLF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FLTLEBEN                                                                                                                                                                                                                                                            | CLLEBEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | —                                                                                                                                                    | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                          | BCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BCL                                                                                                                                                                                                                                | BPHH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BPHL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BPLH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BPLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 043C           | —                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                      | LEB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <11:3>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 043E           | HRPDIS                                                                                                                                                                                                                                                                                                                                                                                                       | HRDDIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                     | BLANKSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L<3:0>                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CHOPS                                                                                                                                                                                                                              | SEL<3:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CHOPHEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHOPLEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                | Offset           0420           0422           0424           0426           0428           0424           0426           0428           0428           0428           0428           0428           0428           0428           0428           0428           0430           0432           0434           0436           0438           0434           0432           0434           0435           0436 | Bit 15           0420         FLTSTAT           0422         PENH           0424         IFLTMOD           0426            0427         PENH           0428            0429            0420            0421            0422            0423            0424            0425            0426            0427            0428            0430            0432            0433            0434            0435            0436            0437            0438            0438            0438            0438            0438 | Bit 15         Bit 14           0420         FLTSTAT         CLSTAT           0422         PENH         PENL           0424         IFLTMOD            0426 | Offset         Bit 15         Bit 14         Bit 13           0420         FLTSTAT         CLSTAT         TRGSTAT           0422         PENH         PENL         POLH           0424         IFLTMOD         ✓         Ø           0424         IFLTMOD         ✓         Ø           0426         ✓         ✓         Ø           0428         ✓         ✓         Ø           0424         Ø         ✓         ✓           0426         ✓         ✓         Ø           0427         Ø         ✓         Ø           0428         ✓         ✓         Ø           0424         Ø         ✓         ✓           0426         ✓         ✓         Ø           0427         Ø         ✓         ✓           0430         ✓         ✓         ✓           0433         Ø         ✓         ✓           0434         Ø         Ø         ✓           0435         Ø         Ø         Ø           0436         HRPDIS         HRDDIS         Ø | Offset         Bit 15         Bit 14         Bit 13         Bit 12           0420         FLTSTAT         CLSTAT         TRGSTAT         FLTIEN           0422         PENH         PENL         POLH         POLL           0424         IFLTMOD         ✓CLSRC<4: | Offset         Bit 15         Bit 14         Bit 13         Bit 12         Bit 11           0420         FLTSTAT         CLSTAT         TRGSTAT         FLTIEN         CLIEN           0422         PENH         PENL         POLH         POLL         PMOD           0424         IFLTMOD $\sim$ CLSRC<4:0>         0426           0426 $\sim$ CLSRC $\sim$ $\sim$ 0428 $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ 0424         IFLTMOD $\sim$ $\sim$ $\sim$ 0428 $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ 0428 $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ 0427 $  \sim$ $\sim$ 0428 $\sim$ $\sim$ $ \sim$ $\sim$ 0426 $\sim$ $  \sim$ $\sim$ 0432 $\sim$ $\sim$ $\sim$ $-$ 0433 $OHR$ PHF         PLR         PLF         FLTLEBEN           0436 $OHR$ $OHF$ $OHR$ $OH$ $OH$ | OffsetBit 15Bit 14Bit 13Bit 12Bit 11Bit 100420FLTSTATCLSTATTRGSTATFLTIENCLIENTRGIEN0422PENHPENLPOLHPOLL $PMOD1:0>$ 0424IFLTMODCLSRC<4:0>04001:0>0426 | OffsetBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 90420FLTSTATCLSTATTRGSTATFLTIENCLIENTRGIENITB0422PENHPENLPOLHPOLLPMOD<1:0>OVRENH0424IFLTMOD $\sim CLSRC<4:0>$ CLPOL04200426 $\sim CLSRC<4:0>$ CLPOL0428 $\sim$ $\sim CLSRC<4:0>$ CLPOL0424 $$ $$ $$ $$ 0425 $$ $$ $$ $$ 0426 $$ $$ $$ $$ 0427 $$ $$ $$ $$ 0428 $$ $$ $$ $$ 0429 $$ $$ $$ $$ 0420 $$ $$ $$ $$ 0431 $$ $$ $$ $$ 0432 $$ $$ $$ $$ 0433 $$ $$ $$ $$ 0434 $$ $$ $$ $$ 0435PHRPHFPLRPLFFLTLEBENCLLEBEN0436 $$ $$ $$ $$ 0437HRPDISHRDDIS $$ $$ $$ | OffsetBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 80420FLTSTATCLSTATTRGSTATFLTIENCLIENTRGIENITBMDCS0422PENHPENLPOLHPOLLPMOD-1:0>OVRENHOVRENL0424IFLTMOD $\sim CLSRC<4:0>$ CLPOLCLMOD0426 $\sim CLSRC<4:0>$ CLPOLCLMOD0427 $  -$ PDC10428 $\sim    -$ 0420 $   -$ 0421 $   -$ 0422 $   -$ 0423 $   -$ 0424 $   -$ 0425 $   -$ 0426 $   -$ 0427 $   -$ 0428 $   -$ 0429 $   -$ 0430 $   -$ 0431 $   -$ 0432 $   -$ 0433 $   -$ 0434 $   -$ 0435 $   -$ 0436 $   -$ 0437 $   -$ 0438 $   -$ | Offset         Bit 15         Bit 14         Bit 13         Bit 12         Bit 11         Bit 10         Bit 9         Bit 8         Bit 7           0420         FLTSTAT         CLSTAT         TRGSTAT         FLTIEN         CLIEN         TRGIEN         ITB         MDCS         DTC< | offsetBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 60420FLTSTATCLSTATTRGSTATFLTIENCLIENTRGIENITBMDCSDTC<1:0>0422PENHPENLPOLHPOLPMOD<1:0>OVRENHOVRENLOVRDAT<1:0>0424IFLTMOD $\nabla$ CLSRC<4:0>CLPOLCLMOD $\nabla$ FI0426 $\nabla$ CLSRC<4:0>CLPOLCLMOD $\nabla$ FI0428 $\nabla$ $\nabla$ TR1<13:0>0420 $   DTC<1:0>$ 0421 $   DTC<1:0>$ 0422 $   DTC<1:0>$ 0424IFLTMOD $\nabla$ CLSRC<4:0> $OVRENHOVRENHOVRENL0425\nabla   DTR1<13:0>0426    DTR1<13:0>0427    -0428    -0429    -0420    -0430     -0434TRGDIV<3:0>    -0438PHRPHFPLRPLFFLTEBEN   -0438HRDDIS        -<$ | OffsetBit 13Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 50420FLTSTATCLSTATTRGSTATFLTIENCLIENTRGIENITBMDCSDTC<1:0>DTCP0422PENHPENLPOLHPOLLPMOD<1:0>OVRENHOVRENLOVROLAT<1:0>FLTDA0424IFLTMODCLSRC<4:0>CLPOLCLMODFLTSRC<4:0 | Offset         Bit 14         Bit 13         Bit 12         Bit 11         Bit 10         Bit 9         Bit 8         Bit 7         Bit 6         Bit 5         Bit 4           0420         FLTSTAT         CLSTAT         TRGSTAT         FLTIEN         CLIEN         TRGIEN         ITB         MDCS         DTC<1:0>         DTCP         —           0422         PENH         PENL         POLH         POLL         PMOD<1:0>         OVRENH         OVRENL         OVRDAT<1:0>         FLTDAT<1:0>           0424         IFLTMOD         CLSRC<4:0>         CLPOL         CLMOD         FLTSRC<4:0>         FLTAT         F | Offset         Bit 15         Bit 14         Bit 13         Bit 12         Bit 11         Bit 10         Bit 2         Bit 3         Bit 30         Bit 3         Bit 3 | Offset         Bit 13         Bit 13         Bit 12         Bit 11         Bit 10         Bit 3         Bit 3         Bit 4         Bit 3         Bit 3         Bit 4         Bit 3         Bit 3 | Offset         Bit 7a         Bit 7a< | OffsetBit 12Bit 12Bit 10Bit 10Bit 20Bit |

# TABLE 4-18: HIGH-SPEED PWM GENERATOR 2 REGISTER MAP

| <ul> <li>FLTSTAT</li> <li>PENH</li> <li>IFLTMOD</li> <li>3</li> </ul> | CLSTAT<br>PENL | TRGSTAT<br>POLH | FLTIEN<br>POLL<br>CLSRC<4:                 | CLIEN<br>PMOD- | TRGIEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ITB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MDCS                                                 | DTC<                                                                                                                   | 1.0>                                                                                                                                                                                                                                                                           | DTCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                               | MTBS                                                                                                                                                                                                                                                                                                                                                                                                                           | 0444                                                                                                                                                                                                                                                                                                                       | XPRES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                               |  |
|-----------------------------------------------------------------------|----------------|-----------------|--------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| iFLTMOD                                                               | PENL           |                 |                                            | PMOD           | <1.0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      | 0104                                                                                                                   | 1.0>                                                                                                                                                                                                                                                                           | DICP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                 | MI B2                                                                                                                                                                                                                                                                                                                                                                                                                          | CAM                                                                                                                                                                                                                                                                                                                        | XPRES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0000                                                                                                                                                          |  |
| 3                                                                     |                | (               | CLSRC<4:                                   |                | 11.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OVRENH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OVRENL                                               | OVRDA                                                                                                                  | T<1:0>                                                                                                                                                                                                                                                                         | FLTDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T<1:0>                                                                                                                                                                                                                                                                                                                                                                                                                          | CLDA                                                                                                                                                                                                                                                                                                                                                                                                                           | \T<1:0>                                                                                                                                                                                                                                                                                                                    | SWAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OSYNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0000                                                                                                                                                          |  |
|                                                                       |                |                 |                                            | 0>             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CLPOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CLMOD                                                |                                                                                                                        | Fl                                                                                                                                                                                                                                                                             | TSRC<4:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0>                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                | FLTPOL                                                                                                                                                                                                                                                                                                                     | FLTMO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D<1:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0000                                                                                                                                                          |  |
| 3                                                                     |                |                 |                                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PDC2<15:0>                                           |                                                                                                                        |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0000                                                                                                                                                          |  |
| -                                                                     |                |                 |                                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HASE2<15:0                                           | >                                                                                                                      |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0000                                                                                                                                                          |  |
| · - /                                                                 | _              |                 |                                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D                                                    | TR2<13:0                                                                                                               | >                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0000                                                                                                                                                          |  |
| - 1                                                                   | _              |                 |                                            |                | DTR2<13:0>       00         ALTDTR2<13:0>       00         SDC2<15:0>       00         SPHASE2<15:0>       00         TRGCMP<15:3>       —       —       —       00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |                                                                                                                        |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               |  |
|                                                                       |                |                 |                                            |                | CLPOL       CLMOD       FLTSRC<4:0>       FLTPOL       FLTMOD<1:0>       00         PDC2<15:0>       00         PHASE2<15:0>       00         OTR2<13:0>       00         ALTDTR2<13:0>       00         SDC2<15:0>       00         SDC2<15:0>       00         SDC2<15:0>       00         SDC2<15:0>       00         SPHASE2<15:0>       00         TRGCMP<15:3>         00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |                                                                                                                        |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               |  |
| )                                                                     |                |                 |                                            |                | PDC2<15:0>       00         PHASE2<15:0>       00         DTR2<13:0>       00         ALTDTR2<13:0>       00         SDC2<15:0>       00         SPHASE2<15:0>       00         SPHASE2<15:0>       00         SPHASE2<15:0>       00         STRGCMP<15:3>       -       -       -         -       -       DTM       -       TRGSTRT<5:0>       00         STRGCMP<15:3>       -       -       -       00         PWMCAP2<15:3>       -       -       -       00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |                                                                                                                        |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               |  |
| 2                                                                     |                |                 |                                            |                | SDC2<15:0>         000           SPHASE2<15:0>         000           TRGCMP<15:3>         —         —         —         000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |                                                                                                                        |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               |  |
| 1                                                                     | TRGDI          | V<3:0>          |                                            | —              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      | DTM                                                                                                                    | _                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                 | TRG                                                                                                                                                                                                                                                                                                                                                                                                                            | STRT<5:0                                                                                                                                                                                                                                                                                                                   | )>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0000                                                                                                                                                          |  |
| 3                                                                     |                |                 |                                            |                | STRGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MP<15:3>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |                                                                                                                        |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0000                                                                                                                                                          |  |
| 3                                                                     |                |                 |                                            |                | PWMCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AP2<15:3>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                        |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0000                                                                                                                                                          |  |
| A PHR                                                                 | PHF            | PLR             | PLF                                        | FLTLEBEN       | CLLEBEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                    | _                                                                                                                      | _                                                                                                                                                                                                                                                                              | BCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BCL                                                                                                                                                                                                                                                                                                                                                                                                                             | BPHH                                                                                                                                                                                                                                                                                                                                                                                                                           | BPHL                                                                                                                                                                                                                                                                                                                       | BPLH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BPLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0000                                                                                                                                                          |  |
| - 1                                                                   | _              | _               | —                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LEB<11                                               | :3>                                                                                                                    |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0000                                                                                                                                                          |  |
| HRPDIS                                                                | HRDDIS         | _               | _                                          |                | ALTDTR2<13:0>       000         SDC2<15:0>       000         SPHASE2<15:0>       000         SPHASE2<15:0>       000         SPHASE2<15:0>       000         TRGCMP<15:3>             000         TRGCMP<15:3>          000         STRGCMP<15:3>          000         PWMCAP2<15:3>          000         EBEN       CLLEBEN         BCH       BCL       BPHH       BPLH       BPLL       000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |                                                                                                                        |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               |  |
|                                                                       |                |                 | <br><br>TRGDIV<3:0><br><br>PHR PHF PLR<br> | —         —    | —         —           —         —           Image: Second state of the s | —         —         —         —         TRGCN           Image: TRGDIV<3:0>         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         … | —         —         —         —         —         SF | −       −       D         −       −       ALT         −       −       SDC2<15:0>         SDC2<15:0>       SPHASE2<15:0 | DTR2<13:0         ALTDTR2<13       SDC2<15:0>     SDC2<15:0>       SDC2<15:0>     SPHASE2<15:0>       TRGDIV<3:0>       DTM       STRGCMP<15:3>     STRGCMP<15:3>       PHR     PHF     PLF     FLTLEBEN     CLLEBEN                                                       LEB | −       −       DTR2<13:0>         −       −       ALTDTR2<13:0>         SDC2<15:0>       SDC2<15:0>         SPHASE2<15:0>       SPHASE2<15:0>         TRGDIV<3:0>       −       −       DTM       −         TRGDIV<3:0>       −       −       DTM       −         PHR       PHF       PLR       PLF       FLTLEBEN       CLLEBEN       −       −       −       −         −       −       −       −       −       −       −       −       −         PHR       PHF       PLR       PLF       FLTLEBEN       CLLEBEN       −       −       −         −       −       −       −       −       −       −       −         −       −       −       −       −       −       −       −         OUT       −       −       −       −       −       −       −         OUT       −       −       −       −       −       −         OUT       −       −       −       −       −       −         OUT       −       −       −       −       −       −       −       − | −       −       DTR2<13:0>         −       −       ALTDTR2<13:0>         SDC2<15:0>       SDC2<15:0>         SPHASE2<15:0>       SPHASE2<15:0>         TRGDIV<3:0>       −       −       DTM       −         TRGDIV<3:0>       −       −       DTM       −         PHR       PHF       PLR       PLF       FLTLEBEN       CLLEBEN       −       −       BCH         −       −       −       −       −       BCH       LEB<11:3> | −       −       DTR2<13:0>         −       −       ALTDTR2<13:0>         SDC2<15:0>         SDC2<15:0>         SPHASE2<15:0>         TRGCMP<15:3>         TRGDIV<3:0>       −       −       −         STRGCMP<15:3>         STRGCMP<15:3>         PWMCAP2<15:3>         PHR       PLF       FLTLEBEN       CLLEBEN       −       −       BCH       BCL         −       −       −       −       BCH       BCL         LEB<11:3> | DTR2<13:0>           ALTDTR2<13:0>         SDC2<15:0>         SDC2<15:0>         SPHASE2<15:0>         TRGCMP<15:3>         TRGCMP<15:3>         STRGCMP<15:3>         STRGCMP<15:3>         PWMCAP2<15:3>         PHR       PLF       FLTLEBEN       CLLEBEN         BCH       BCL       BPHH              BCH       BPHH | −       −       DTR2<13:0>         −       −       ALTDTR2<13:0>         ALTDTR2<13:0>       SDC2<15:0>         SDC2<15:0>       SPHASE2<15:0>         C       TRGCMP<15:3>       −         TRGDIV<3:0>       −       −       DTM       −       TRGSTRT<5:0         C       STRGCMP<15:3>       −       −       −       −       −       −       −         PHR       PHF       PLF       FLTLEBEN       CLLEBEN       −       −       −       −       −         PHR       PHF       PLF       FLTLEBEN       CLLEBEN       −       −       −       −       −         PHR       PHF       PLF       FLTLEBEN       CLLEBEN       −       −       −       −         PHR       PHF       PLF       FLTLEBEN       −       −       −       −       −         PHR       PHF       PLF       FLTLEBEN       −       −       −       −       −         PHR       PHF       PLR       PLF       FLTLEBEN       −       −       −       −       −         PHR       PHF       PLR       PLF       FLTLEBEN       − <th< td=""><td>        DTR2&lt;13:0&gt;           ALTDTR2&lt;13:0&gt;         SDC2&lt;15:0&gt;       SDC2&lt;15:0&gt;         SPHASE2&lt;15:0&gt;       SPHASE2&lt;15:0&gt;         C       STRGCMP&lt;15:3&gt;                                                                                                   <th< td=""><td>        DTR2&lt;13:0&gt;           ALTDTR2&lt;13:0&gt;         ALTDTR2&lt;13:0&gt;       SDC2&lt;15:0&gt;         SDC2&lt;15:0&gt;         SPHASE2&lt;15:0&gt;         SPHASE2&lt;15:0&gt;         TRGCMP&lt;15:3&gt;                                                                                            </td></th<></td></th<> | DTR2<13:0>           ALTDTR2<13:0>         SDC2<15:0>       SDC2<15:0>         SPHASE2<15:0>       SPHASE2<15:0>         C       STRGCMP<15:3> <th< td=""><td>        DTR2&lt;13:0&gt;           ALTDTR2&lt;13:0&gt;         ALTDTR2&lt;13:0&gt;       SDC2&lt;15:0&gt;         SDC2&lt;15:0&gt;         SPHASE2&lt;15:0&gt;         SPHASE2&lt;15:0&gt;         TRGCMP&lt;15:3&gt;                                                                                            </td></th<> | DTR2<13:0>           ALTDTR2<13:0>         ALTDTR2<13:0>       SDC2<15:0>         SDC2<15:0>         SPHASE2<15:0>         SPHASE2<15:0>         TRGCMP<15:3> |  |

| TABLE 4   | -19:           | HIGH-S  | SPEED    | PWM GE  | NERAT     | OR 3 RE       | GISTER        | MAP           |             |           |        |         |        |         |          |         |         |               |  |
|-----------|----------------|---------|----------|---------|-----------|---------------|---------------|---------------|-------------|-----------|--------|---------|--------|---------|----------|---------|---------|---------------|--|
| File Name | Addr<br>Offset | Bit 15  | Bit 14   | Bit 13  | Bit 12    | Bit 11        | Bit 10        | Bit 9         | Bit 8       | Bit 7     | Bit 6  | Bit 5   | Bit 4  | Bit 3   | Bit 2    | Bit 1   | Bit 0   | All<br>Resets |  |
| PWMCON3   | 0460           | FLTSTAT | CLSTAT   | TRGSTAT | FLTIEN    | CLIEN         | TRGIEN        | ITB           | MDCS        | DTC<      | :1:0>  | DTCP    | —      | MTBS    | CAM      | XPRES   | IUE     | 0000          |  |
| IOCON3    | 0462           | PENH    | PENL     | POLH    | POLL      | PMOD          | <1:0>         | OVRENH        | OVRENL      | OVRDA     | T<1:0> | FLTDA   | T<1:0> | CLDA    | \T<1:0>  | SWAP    | OSYNC   | 0000          |  |
| FCLCON3   | 0464           | IFLTMOD |          |         | CLSRC<4:  | 0>            |               | CLPOL         | CLMOD       |           | FL     | TSRC<4: | 0>     |         | FLTPOL   | FLTMO   | D<1:0>  | 0000          |  |
| PDC3      | 0466           |         |          |         |           |               |               | F             | PDC3<15:0>  |           |        |         |        |         |          |         |         | 0000          |  |
| PHASE3    | 0468           |         |          |         |           |               |               | PH            | HASE3<15:0> |           |        |         |        |         |          |         |         | 0000          |  |
| DTR3      | 046C           | _       |          |         |           |               |               |               | DT          | R3<13:0>  |        |         |        |         |          |         |         | 0000          |  |
| ALTDTR3   | 046C           | _       | _        |         |           |               |               |               | ALTE        | DTR3<13:0 | )>     |         |        |         |          |         |         | 0000          |  |
| SDC3      | 046E           |         |          |         |           |               | SDC3<15:0> 00 |               |             |           |        |         |        |         |          |         |         |               |  |
| SPHASE3   | 0470           |         |          |         |           |               |               |               |             |           |        |         |        |         |          |         |         |               |  |
| TRIG3     | 0472           |         |          |         |           |               | TRGCM         | IP<15:3>      |             |           |        |         |        |         | —        | _       | _       | 0000          |  |
| TRGCON3   | 0474           |         | TRGD     | IV<3:0> |           | _             | _             | _             | _           | DTM       | —      |         |        | TRO     | GSTRT<5: | 0>      |         | 0000          |  |
| STRIG3    | 0476           |         |          |         |           |               | STRGC         | MP<15:3>      | •           |           |        | •       |        |         | —        | _       | _       | 0000          |  |
| PWMCAP3   | 0478           |         |          |         |           |               | PWMCA         | P3<15:3>      |             |           |        |         |        |         | _        | _       | _       | 0000          |  |
| LEBCON3   | 047A           | PHR     | PHF      | PLR     | PLF       | FLTLEBEN      | CLLEBEN       | —             | _           | —         | _      | BCH     | BCL    | BPHH    | BPHL     | BPLH    | BPLL    | 0000          |  |
| LEBDLY3   | 047C           |         | —        | _       |           |               |               | •             | LEB<11:     | 3>        |        | •       |        |         | —        | _       | —       | 0000          |  |
| AUXCON3   | 047E           | HRPDIS  | HRDDIS   | _       | _         |               | BLANK         | SEL<3:0>      |             | —         | _      |         | CHOPS  | EL<3:0> |          | CHOPHEN | CHOPLEN | 0000          |  |
| Legend:   |                |         | on Booot |         | montod ro | ad as '0' Res |               | o obown in he | avadaaimal  |           |        |         |        |         |          | •       | •       |               |  |

#### 40 11101 ODE OFNED ATOD ~ DECIOTED MAAR

# TABLE 4-20: HIGH-SPEED PWM GENERATOR 4 REGISTER MAP

| <b>F</b> 11 <b>N</b> 1 | Addr   | D11 45  | <b>D</b> <sup>1</sup> / <sub>2</sub> 4.4 | <b>D</b> <sup>1</sup> / <sub>2</sub> 40 | D'' 40   | D'4 44        | D:: 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D'' 0     | 5% 6      |        |        |          | <b>D</b> '' 4 | <b>D</b> '' 0 | <b>D</b> <sup>1</sup> 0 | D'' 4   | D'' 0   | All    |  |
|------------------------|--------|---------|------------------------------------------|-----------------------------------------|----------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|--------|--------|----------|---------------|---------------|-------------------------|---------|---------|--------|--|
| File Name              | Offset | Bit 15  | Bit 14                                   | Bit 13                                  | Bit 12   | Bit 11        | Bit 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bit 9     | Bit 8     | Bit 7  | Bit 6  | Bit 5    | Bit 4         | Bit 3         | Bit 2                   | Bit 1   | Bit 0   | Resets |  |
| PWMCON4                | 0480   | FLTSTAT | CLSTAT                                   | TRGSTAT                                 | FLTIEN   | CLIEN         | TRGIEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ITB       | MDCS      | DTC<   | <1:0>  | DTCP     | —             | MTBS          | CAM                     | XPRES   | IUE     | 0000   |  |
| IOCON4                 | 0482   | PENH    | PENL                                     | POLH                                    | POLL     | PMOD          | <1:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OVRENH    | OVRENL    | OVRDA  | T<1:0> | FLTDA    | T<1:0>        | CLDA          | AT<1:0>                 | SWAP    | OSYNC   | 0000   |  |
| FCLCON4                | 0484   | IFLTMOD |                                          |                                         | CLSRC<4: | 0>            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CLPOL     | CLMOD     |        | FĽ     | TSRC<4:0 | >             |               | FLTPOL                  | FLTMO   | D<1:0>  | 0000   |  |
| PDC4                   | 0486   |         |                                          |                                         |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | PDC4<15:0 | )>     |        |          |               |               |                         |         |         | 0000   |  |
| PHASE4                 | 0488   |         |                                          |                                         |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P         | HASE4<15  | :0>    |        |          |               |               |                         |         |         | 0000   |  |
| DTR4                   | 048A   | —       |                                          |                                         |          |               | DTR4<13:0>         00           ALTDTR4<13:0>         00           SDC4<15:0>         00           SPHASE4<15:0>         00                                                                                                                                                                                                                                                                                                                                                                         |           |           |        |        |          |               |               |                         |         |         |        |  |
| ALTDTR4                | 048A   | —       |                                          |                                         |          |               | ALTDTR4<13:0>     000       SDC4<15:0>     000       SPHASE4<15:0>     000                                                                                                                                                                                                                                                                                                                                                                                                                          |           |           |        |        |          |               |               |                         |         |         |        |  |
| SDC4                   | 048E   |         |                                          |                                         |          |               | PDC4<15:0>       0         PHASE4<15:0>       0         DTR4<13:0>       0         ALTDTR4<13:0>       0         SDC4<15:0>       0         SDC4<15:0>       0         SDC4<15:0>       0         SPHASE4<15:0>       0         SPHASE4<15:0>       0         TRGCMP<15:3>       -       -       0         -       -       DTM       -       TRGSTRT<5:0>       0         STRGCMP<15:3>       -       -       0       0         PWMCAP4<15:3>       -       -       0       0                       |           |           |        |        |          |               |               |                         |         |         |        |  |
| SPHASE4                | 0490   |         |                                          |                                         |          |               | PDC4<15:0>       0         PHASE4<15:0>       0         DTR4<13:0>       0         ALTDTR4<13:0>       0         SDC4<15:0>       0         SDC4<15:0>       0         SDC4<15:0>       0         SDC4<15:0>       0         SDC4<15:0>       0         SPHASE4<15:0>       0         SPHASE4<15:0>       0         STRGCMP<15:3>       -       -       0         STRGCMP<15:3>       -       -       0         PWMCAP4<15:3>       -       -       0         PWMCAP4<15:3>       -       -       0 |           |           |        |        |          |               |               |                         |         |         |        |  |
| TRIG4                  | 0492   |         |                                          |                                         |          |               | DTR4<13:0>       00         ALTDTR4<13:0>       00         SDC4<15:0>       00         SPHASE4<15:0>       00         TRGCMP<15:3>       -       -       00         -       -       DTM       -       TRGSTRT<5:0>       00                                                                                                                                                                                                                                                                         |           |           |        |        |          |               |               |                         |         |         |        |  |
| TRGCON4                | 0494   |         | TRGD                                     | IV<3:0>                                 |          | —             | ALTDTR4<13:0>     000       SDC4<15:0>     000       SPHASE4<15:0>     000       TRGCMP<15:3>     —     —     —     000       -     —     —     DTM     —     TRGSTRT<5:0>     000                                                                                                                                                                                                                                                                                                                  |           |           |        |        |          |               |               |                         |         |         |        |  |
| STRIG4                 | 0496   |         |                                          |                                         |          |               | STRGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /IP<15:3> |           |        |        |          |               |               | _                       | —       | —       | 0000   |  |
| PWMCAP4                | 0498   |         |                                          |                                         |          |               | PWMCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P4<15:3>  |           |        |        |          |               |               | _                       | —       | —       | 0000   |  |
| LEBCON4                | 049A   | PHR     | PHF                                      | PLR                                     | PLF      | FLTLEBEN      | CLLEBEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _         | _         | -      | _      | BCH      | BCL           | BPHH          | BPHL                    | BPLH    | BPLL    | 0000   |  |
| LEBDLY4                | 049C   | _       |                                          |                                         | _        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | LEB<      | :11:3> |        |          |               |               | _                       | _       | —       | 0000   |  |
| AUXCON4                | 049E   | HRPDIS  | HRDDIS                                   | _                                       | _        |               | BLANKSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L<3:0>    |           |        |        |          | CHOPS         | EL<3:0>       |                         | CHOPHEN | CHOPLEN | 0000   |  |
| Logondu                |        |         | <u> </u>                                 |                                         |          | ad as 'o' Bas |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |           |        |        |          |               |               |                         |         |         |        |  |

| TABLE 4   | -21:           | HIGH-S  | SPEED    | PWM GE  | NERAT      | OR 5 RE       | GISTER        | MAP          |           |          |         |          |        |         |          |         |         |               |
|-----------|----------------|---------|----------|---------|------------|---------------|---------------|--------------|-----------|----------|---------|----------|--------|---------|----------|---------|---------|---------------|
| File Name | Addr<br>Offset | Bit 15  | Bit 14   | Bit 13  | Bit 12     | Bit 11        | Bit 10        | Bit 9        | Bit 8     | Bit 7    | Bit 6   | Bit 5    | Bit 4  | Bit 3   | Bit 2    | Bit 1   | Bit 0   | All<br>Resets |
| PWMCON5   | 04A0           | FLTSTAT | CLSTAT   | TRGSTAT | FLTIEN     | CLIEN         | TRGIEN        | ITB          | MDCS      | DTC      | <1:0>   | DTCP     | —      | MTBS    | CAM      | XPRES   | IUE     | 0000          |
| IOCON5    | 04A2           | PENH    | PENL     | POLH    | POLL       | PMOD          | <1:0>         | OVRENH       | OVRENL    | OVRDA    | \T<1:0> | FLTDA    | T<1:0> | CLDA    | AT<1:0>  | SWAP    | OSYNC   | 0000          |
| FCLCON5   | 04A4           | IFLTMOD |          |         | CLSRC<4:   | 0>            |               | CLPOL        | CLMOD     |          | FĽ      | TSRC<4:0 | >      |         | FLTPOL   | FLTMC   | )D<1:0> | 0000          |
| PDC5      | 04A6           |         |          |         |            |               |               |              | PDC5<15:0 | >        |         |          |        |         |          |         |         | 0000          |
| PHASE5    | 04A8           |         |          |         |            |               |               | F            | HASE5<15  | :0>      |         |          |        |         |          |         |         | 0000          |
| DTR5      | 04AA           | _       | —        |         |            |               |               |              |           | DTR5<13: | :0>     |          |        |         |          |         |         | 0000          |
| ALTDTR5   | 04AA           | _       | —        |         |            |               |               |              | A         | _TDTR5<1 | 3:0>    |          |        |         |          |         |         | 0000          |
| SDC5      | 04AE           |         |          |         | SDC5<15:0> |               |               |              |           |          |         |          |        |         |          |         |         |               |
| SPHASE5   | 04B0           |         |          |         | SDC5<15:0> |               |               |              |           |          |         |          |        |         |          |         |         |               |
| TRIG5     | 04B2           |         |          |         |            |               | TRGCM         | P<15:3>      |           |          |         |          |        |         |          | _       | _       | 0000          |
| TRGCON5   | 04B4           |         | TRGD     | IV<3:0> |            | —             | _             | —            | _         | DTM      | _       |          |        | TRO     | GSTRT<5: | 0>      |         | 0000          |
| STRIG5    | 04B6           |         |          |         |            |               | STRGC         | /IP<15:3>    |           |          |         |          |        |         |          | _       | _       | 0000          |
| PWMCAP5   | 04B8           |         |          |         |            |               | PWMCA         | P5<15:3>     |           |          |         |          |        |         |          | _       | _       | 0000          |
| LEBCON5   | 04BA           | PHR     | PHF      | PLR     | PLF        | FLTLEBEN      | CLLEBEN       | —            | _         | _        | _       | BCH      | BCL    | BPHH    | BPHL     | BPLH    | BPLL    | 0000          |
| LEBDLY5   | 04BC           | _       | _        | _       | _          |               | •             | •            | LEB<      | 11:3>    | •       | •        | •      | •       |          | _       | -       | 0000          |
| AUXCON5   | 04BE           | HRPDIS  | HRDDIS   | _       |            |               | BLANKSE       | L<3:0>       |           | _        | —       |          | CHOPS  | EL<3:0> | •        | CHOPHEN | CHOPLEN | 0000          |
| Legend:   |                |         | on Boast |         | montod re  | ad as '0' Reg | oot voluoo or | o chown in l | avadaaima | 1        |         |          |        |         |          |         | •       |               |

#### 24 11101 ODE OFNED ATOD DEALATED

# TABLE 4-22: HIGH-SPEED PWM GENERATOR 6 REGISTER MAP

| File Name | Addr<br>Offset | Bit 15  | Bit 14 | Bit 13  | Bit 12                                                    | Bit 11         | Bit 10  | Bit 9     | Bit 8     | Bit 7   | Bit 6   | Bit 5    | Bit 4  | Bit 3   | Bit 2     | Bit 1   | Bit 0   | All<br>Resets |
|-----------|----------------|---------|--------|---------|-----------------------------------------------------------|----------------|---------|-----------|-----------|---------|---------|----------|--------|---------|-----------|---------|---------|---------------|
| PWMCON6   | 04C0           | FLTSTAT | CLSTAT | TRGSTAT | FLTIEN                                                    | CLIEN          | TRGIEN  | ITB       | MDCS      | DTC     | <1:0>   | DTCP     | _      | MTBS    | CAM       | XPRES   | IUE     | 0000          |
| IOCON6    | 04C2           | PENH    | PENL   | POLH    | POLL                                                      | PMOD           | <1:0>   | OVRENH    | OVRENL    | OVRDA   | AT<1:0> | FLTDA    | T<1:0> | CLDA    | AT<1:0>   | SWAP    | OSYNC   | 0000          |
| FCLCON6   | 04C4           | IFLTMOD |        |         | CLSRC<4                                                   | 0>             |         | CLPOL     | CLMOD     |         | FL      | TSRC<4:0 | >      |         | FLTPOL    | FLTMO   | D<1:0>  | 0000          |
| PDC6      | 04C6           |         |        |         |                                                           |                |         |           | PDC6<15:0 | )>      |         |          |        |         |           |         |         | 0000          |
| PHASE6    | 04C8           |         |        |         |                                                           |                |         | P         | HASE6<15  | :0>     |         |          |        |         |           |         |         | 0000          |
| DTR6      | 04CA           | _       | _      |         |                                                           |                |         |           |           | DTR6<13 | :0>     |          |        |         |           |         |         | 0000          |
| ALTDTR6   | 04CA           | _       | _      |         |                                                           |                |         |           |           |         |         |          |        |         |           |         |         |               |
| SDC6      | 04CE           |         |        |         | SDC6<15:0>           SPHASE6<15:0>           TRGCMP<15:3> |                |         |           |           |         |         |          |        |         |           |         |         | 0000          |
| SPHASE6   | 04D0           |         |        |         | DTR6<13:0> ALTDTR6<13:0> SDC6<15:0> TRGCMP<15:3>          |                |         |           |           |         |         |          |        |         |           |         |         | 0000          |
| TRIG6     | 04D2           |         |        |         |                                                           |                | TRGCM   | P<15:3>   |           |         |         |          |        |         |           | _       | —       | 0000          |
| TRGCON6   | 04D4           |         | TRGD   | IV<3:0> |                                                           | _              |         | _         | _         | DTM     | _       |          |        | TRO     | GSTRT<5:( | )>      |         | 0000          |
| STRIG6    | 04D6           |         |        |         |                                                           |                | STRGC   | /IP<15:3> |           |         |         |          |        |         |           | _       | —       | 0000          |
| PWMCAP6   | 04D8           |         |        |         |                                                           |                | PWMCA   | P6<15:3>  |           |         |         |          |        |         |           | _       | —       | 0000          |
| LEBCON6   | 04DA           | PHR     | PHF    | PLR     | PLF                                                       | FLTLEBEN       | CLLEBEN | _         | -         | _       | —       | BCH      | BCL    | BPHH    | BPHL      | BPLH    | BPLL    | 0000          |
| LEBDLY6   | 04DC           | _       | —      | —       | _                                                         |                |         |           | LEB<      | 11:3>   |         |          |        |         | —         | —       | _       | 0000          |
| AUXCON6   | 04DE           | HRPDIS  | HRDDIS | —       | _                                                         |                | BLANKSE | L<3:0>    |           | _       | _       |          | CHOPS  | EL<3:0> |           | CHOPHEN | CHOPLEN | 0000          |
| AUXCON6   | 04DE           | HRPDIS  | HRDDIS | _       | _                                                         | and on (o) Por |         |           |           |         | —       |          | CHOPS  | EL<3:0> |           |         |         |               |

| File Name | Addr<br>Offset | Bit 15  | Bit 14                                       | Bit 13     | Bit 12   | Bit 11   | Bit 10  | Bit 9     | Bit 8     | Bit 7    | Bit 6  | Bit 5    | Bit 4  | Bit 3   | Bit 2     | Bit 1   | Bit 0   | All<br>Resets |
|-----------|----------------|---------|----------------------------------------------|------------|----------|----------|---------|-----------|-----------|----------|--------|----------|--------|---------|-----------|---------|---------|---------------|
| PWMCON7   | 04E0           | FLTSTAT | CLSTAT                                       | TRGSTAT    | FLTIEN   | CLIEN    | TRGIEN  | ITB       | MDCS      | DTC<     | <1:0>  | DTCP     | —      | MTBS    | CAM       | XPRES   | IUE     | 0000          |
| IOCON7    | 04E2           | PENH    | PENL                                         | POLH       | POLL     | PMOD     | <1:0>   | OVRENH    | OVRENL    | OVRDA    | T<1:0> | FLTDA    | T<1:0> | CLDA    | AT<1:0>   | SWAP    | OSYNC   | 0000          |
| FCLCON7   | 04E4           | IFLTMOD |                                              |            | CLSRC<4: | 0>       |         | CLPOL     | CLMOD     |          | FĽ     | TSRC<4:0 | >      |         | FLTPOL    | FLTMO   | D<1:0>  | 0000          |
| PDC7      | 04E6           |         |                                              |            |          |          |         |           | PDC7<15:0 | >        |        |          |        |         |           |         |         | 0000          |
| PHASE7    | 04E8           |         |                                              |            |          |          |         | P         | HASE7<15  | :0>      |        |          |        |         |           |         |         | 0000          |
| DTR7      | 04EA           | —       |                                              |            |          |          |         |           |           | DTR7<13: | 0>     |          |        |         |           |         |         | 0000          |
| ALTDTR7   | 04EA           | —       | —         ALTDTR7<13:0>           SDC7<15:0> |            |          |          |         |           |           |          |        |          |        |         |           |         | 0000    |               |
| SDC7      | 04EE           |         |                                              | SDC7<15:0> |          |          |         |           |           |          |        |          |        |         |           |         |         | 0000          |
| SPHASE7   | 04F0           |         |                                              |            |          |          |         | SI        | PHASE7<1  | 5:0>     |        |          |        |         |           |         |         | 0000          |
| TRIG7     | 04F2           |         |                                              |            |          |          | TRGCM   | P<15:3>   |           |          |        |          |        |         | _         | —       | —       | 0000          |
| TRGCON7   | 04F4           |         | TRGD                                         | IV<3:0>    |          | _        | —       | —         | _         | DTM      | _      |          |        | TRO     | SSTRT<5:0 | )>      |         | 0000          |
| STRIG7    | 04F6           |         |                                              |            |          |          | STRGCM  | /IP<15:3> |           |          |        |          |        |         | _         | —       | —       | 0000          |
| PWMCAP7   | 04F8           |         |                                              |            |          |          | PWMCA   | P7<15:3>  |           |          |        |          |        |         | _         | _       | _       | 0000          |
| LEBCON7   | 04FA           | PHR     | PHF                                          | PLR        | PLF      | FLTLEBEN | CLLEBEN | _         | _         | _        | _      | BCH      | BCL    | BPHH    | BPHL      | BPLH    | BPLL    | 0000          |
| LEBDLY7   | 04FC           |         |                                              | _          | _        |          |         |           | LEB<      | 11:3>    |        |          |        |         | _         | —       | _       | 0000          |
| AUXCON7   | 04FE           | HRPDIS  | HRDDIS                                       | _          | _        |          | BLANKSE | L<3:0>    |           | _        | _      |          | CHOPS  | EL<3:0> | •         | CHOPHEN | CHOPLEN | 0000          |

| TABLE 4   | -24:           | HIGH-S      | SPEED     | PWM GE                        |             | FOR 8 RE       | GISTER       | MAP (E      | XCLUD      | ES dsF   | PIC33F  | J32GS    | 406 AN | ID dsF  | PIC33F   | J64GS40 | 6 DEVIC | ES)           |
|-----------|----------------|-------------|-----------|-------------------------------|-------------|----------------|--------------|-------------|------------|----------|---------|----------|--------|---------|----------|---------|---------|---------------|
| File Name | Addr<br>Offset | Bit 15      | Bit 14    | Bit 13                        | Bit 12      | Bit 11         | Bit 10       | Bit 9       | Bit 8      | Bit 7    | Bit 6   | Bit 5    | Bit 4  | Bit 3   | Bit 2    | Bit 1   | Bit 0   | All<br>Resets |
| PWMCON8   | 0500           | FLTSTAT     | CLSTAT    | TRGSTAT                       | FLTIEN      | CLIEN          | TRGIEN       | ITB         | MDCS       | DTC      | <1:0>   | DTCP     |        | MTBS    | CAM      | XPRES   | IUE     | 0000          |
| IOCON8    | 0502           | PENH        | PENL      | POLH                          | POLL        | PMOD           | <1:0>        | OVRENH      | OVRENL     | OVRDA    | \T<1:0> | FLTDA    | T<1:0> | CLDA    | AT<1:0>  | SWAP    | OSYNC   | 0000          |
| FCLCON8   | 0504           | IFLTMOD     |           |                               | CLSRC<4     | :0>            |              | CLPOL       | CLMOD      |          | FL      | TSRC<4:0 | >      |         | FLTPOL   | FLTMO   | D<1:0>  | 0000          |
| PDC8      | 0506           |             |           |                               |             |                |              |             | PDC8<15:0  | >        |         |          |        |         |          |         |         | 0000          |
| PHASE8    | 0508           |             |           |                               |             |                |              | F           | PHASE8<15  | :0>      |         |          |        |         |          |         |         | 0000          |
| DTR8      | 050A           | _           | —         |                               |             |                |              |             |            | DTR8<13: | 0>      |          |        |         |          |         |         | 0000          |
| ALTDTR8   | 050A           |             | _         | - ALTDTR8<13:0><br>SDC8<15:0> |             |                |              |             |            |          |         |          |        |         |          |         |         | 0000          |
| SDC8      | 050E           |             | •         | SDC8<15:0>                    |             |                |              |             |            |          |         |          |        |         |          |         |         | 0000          |
| SPHASE8   | 0510           |             |           |                               |             |                |              | S           | PHASE8<1   | 5:0>     |         |          |        |         |          |         |         | 0000          |
| TRIG8     | 0512           |             |           |                               |             |                | TRGCM        | IP<15:3>    |            |          |         |          |        |         |          | _       |         | 0000          |
| TRGCON8   | 0514           |             | TRGD      | IV<3:0>                       |             | —              |              | _           | _          | DTM      |         |          |        | TRO     | SSTRT<5: | )>      | •       | 0000          |
| STRIG8    | 0516           |             |           |                               |             |                | STRGC        | MP<15:3>    |            |          |         |          |        |         |          | _       | —       | 0000          |
| PWMCAP8   | 0518           |             |           |                               |             |                | PWMCA        | P8<15:3>    |            |          |         |          |        |         |          | _       | _       | 0000          |
| LEBCON8   | 051A           | PHR         | PHF       | PLR                           | PLF         | FLTLEBEN       | CLLEBEN      | _           | —          | _        | —       | BCH      | BCL    | BPHH    | BPHL     | BPLH    | BPLL    | 0000          |
| LEBDLY8   | 051C           | _           | —         | —                             |             |                | •            | •           | LEB<       | 11:3>    | •       | •        | •      |         |          | _       | —       | 0000          |
| AUXCON8   | 051E           | HRPDIS      | HRDDIS    | _                             | _           |                | BLANKS       | EL<3:0>     |            | _        | _       |          | CHOPS  | EL<3:0> |          | CHOPHEN | CHOPLEN | 0000          |
| Legend:   | x = unl        | known value | on Reset, | — = unimple                   | emented, re | ead as '0'. Re | set values a | re shown in | hexadecima | I.       |         |          |        |         |          |         |         |               |

| File Name | Addr<br>Offset | Bit 15  | Bit 14                             | Bit 13  | Bit 12   | Bit 11   | Bit 10  | Bit 9     | Bit 8     | Bit 7    | Bit 6   | Bit 5    | Bit 4  | Bit 3   | Bit 2   | Bit 1   | Bit 0   | All<br>Resets |
|-----------|----------------|---------|------------------------------------|---------|----------|----------|---------|-----------|-----------|----------|---------|----------|--------|---------|---------|---------|---------|---------------|
| PWMCON9   | 0520           | FLTSTAT | CLSTAT                             | TRGSTAT | FLTIEN   | CLIEN    | TRGIEN  | ITB       | MDCS      | DTC<     | <1:0>   | DTCP     | _      | MTBS    | CAM     | XPRES   | IUE     | 0000          |
| IOCON9    | 0522           | PENH    | PENL                               | POLH    | POLL     | PMOD     | <1:0>   | OVRENH    | OVRENL    | OVRDA    | \T<1:0> | FLTDA    | T<1:0> | CLDA    | \T<1:0> | SWAP    | OSYNC   | 0000          |
| FCLCON9   | 0524           | IFLTMOD |                                    |         | CLSRC<4: | 0>       |         | CLPOL     | CLMOD     |          | FĽ      | FSRC<4:0 | >      |         | FLTPOL  | FLTMO   | D<1:0>  | 0000          |
| PDC9      | 0526           |         |                                    |         |          |          |         |           | PDC9<15:0 | >        |         |          |        |         |         |         |         | 0000          |
| PHASE9    | 0528           |         |                                    |         |          |          |         | F         | PHASE9<15 | 0>       |         |          |        |         |         |         |         | 0000          |
| DTR9      | 052A           | -       | _                                  |         |          |          |         |           |           | DTR9<13: | :0>     |          |        |         |         |         |         | 0000          |
| ALTDTR9   | 052A           | _       | ALTDTR9<13:0>           SDC9<15:0> |         |          |          |         |           |           |          |         |          |        |         |         |         | 0000    |               |
| SDC9      | 052E           |         | SDC9<15:0>                         |         |          |          |         |           |           |          |         |          |        |         |         |         | 0000    |               |
| SPHASE9   | 0530           |         |                                    |         |          |          |         | S         | PHASE9<15 | :0>      |         |          |        |         |         |         |         | 0000          |
| TRIG9     | 0532           |         |                                    |         |          |          | TRGCM   | P<15:3>   |           |          |         |          |        |         | _       | _       | _       | 0000          |
| TRGCON9   | 0534           |         | TRGD                               | IV<3:0> |          |          | _       | _         | —         | DTM      | _       |          |        | TRO     | STRT<5: | )>      |         | 0000          |
| STRIG9    | 0536           |         |                                    |         |          |          | STRGC   | /IP<15:3> |           |          |         |          |        |         | _       | _       | _       | 0000          |
| PWMCAP9   | 0538           |         |                                    |         |          |          | PWMCA   | P9<15:3>  |           |          |         |          |        |         | _       | _       | _       | 0000          |
| LEBCON9   | 053A           | PHR     | PHF                                | PLR     | PLF      | FLTLEBEN | CLLEBEN | _         | —         | _        | _       | BCH      | BCL    | BPHH    | BPHL    | BPLH    | BPLL    | 0000          |
| LEBDLY9   | 053C           | _       | —                                  | —       | _        |          |         |           | LEB<      | 11:3>    |         |          |        |         |         | —       | —       | 0000          |
| AUXCON9   | 053E           | HRPDIS  | HRDDIS                             | _       |          |          | BLANKSE | L<3:0>    |           | _        | -       |          | CHOPS  | EL<3:0> |         | CHOPHEN | CHOPLEN | 0000          |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-26: I2C1 REGISTER MAP

| SFR Name | SFR<br>Addr | Bit 15  | Bit 14 | Bit 13  | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8                 | Bit 7 | Bit 6 | Bit 5 | Bit 4    | Bit 3    | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |  |  |
|----------|-------------|---------|--------|---------|--------|--------|--------|--------|-----------------------|-------|-------|-------|----------|----------|-------|-------|-------|---------------|--|--|
| I2C1RCV  | 0200        | —       | —      | _       | —      | _      | —      | —      | _                     |       |       |       | Receive  | Register |       |       |       | 0000          |  |  |
| I2C1TRN  | 0202        | —       | —      | _       | —      | -      | _      | —      |                       |       |       |       | Transmit | Register |       |       |       | OOFF          |  |  |
| I2C1BRG  | 0204        | —       | —      | _       | —      | -      | _      | —      |                       |       |       |       |          |          |       |       |       |               |  |  |
| I2C1CON  | 0206        | I2CEN   | _      | I2CSIDL | SCLREL | IPMIEN | A10M   | DISSLW |                       |       |       |       |          |          |       |       |       |               |  |  |
| I2C1STAT | 0208        | ACKSTAT | TRSTAT | _       | —      | -      | BCL    | GCSTAT | ADD10                 | IWCOL | I2COV | D_A   | Р        | S        | R_W   | RBF   | TBF   | 0000          |  |  |
| I2C1ADD  | 020A        | —       | —      | _       | —      | -      | _      |        | Address Register      |       |       |       |          |          |       |       |       |               |  |  |
| I2C1MSK  | 020C        | —       | —      | _       | —      | _      | _      |        | Address Mask Register |       |       |       |          |          |       |       |       |               |  |  |

#### TABLE 4-27: I2C2 REGISTER MAP

| SFR Name | SFR<br>Addr | Bit 15  | Bit 14 | Bit 13  | Bit 12 | Bit 11 | Bit 10 | Bit 9                                                                                                                                                               | Bit 8            | Bit 7 | Bit 6 | Bit 5 | Bit 4     | Bit 3    | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |  |
|----------|-------------|---------|--------|---------|--------|--------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|-------|-------|-----------|----------|-------|-------|-------|---------------|--|
| I2C2RCV  | 0210        | —       | —      | —       | —      | _      | _      | -                                                                                                                                                                   | _                |       |       |       | Receive I | Register |       |       |       | 0000          |  |
| I2C2TRN  | 0212        | —       | —      | _       | —      |        | _      | —                                                                                                                                                                   |                  |       |       |       | Transmit  | Register |       |       |       | OOFF          |  |
| I2C2BRG  | 0214        | —       | —      |         | —      | _      | —      | Baud Rate Generator Register                                                                                                                                        |                  |       |       |       |           |          |       |       |       |               |  |
| I2C2CON  | 0216        | I2CEN   | —      | I2CSIDL | SCLREL | IPMIEN | A10M   | Baud Rate Generator Register           DISSLW         SMEN         GCEN         STREN         ACKDT         ACKEN         RCEN         PEN         RSEN         SEN |                  |       |       |       |           |          |       |       |       |               |  |
| I2C2STAT | 0218        | ACKSTAT | TRSTAT | _       | —      |        | BCL    | GCSTAT                                                                                                                                                              | ADD10            | IWCOL | I2COV | D_A   | Р         | S        | R_W   | RBF   | TBF   | 0000          |  |
| I2C2ADD  | 021A        | —       | —      |         | —      | _      | —      |                                                                                                                                                                     | Address Register |       |       |       |           |          |       |       |       |               |  |
| I2C2MSK  | 021C        | —       | _      | _       | —      | _      |        | Address Mask Devictor                                                                                                                                               |                  |       |       |       |           |          |       |       |       |               |  |

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-28: UART1 REGISTER MAP

| SFR Name | SFR<br>Addr | Bit 15   | Bit 14 | Bit 13   | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8       | Bit 7        | Bit 6   | Bit 5 | Bit 4       | Bit 3   | Bit 2 | Bit 1  | Bit 0 | All<br>Resets |
|----------|-------------|----------|--------|----------|--------|--------|--------|-------|-------------|--------------|---------|-------|-------------|---------|-------|--------|-------|---------------|
| U1MODE   | 0220        | UARTEN   | _      | USIDL    | IREN   | RTSMD  | -      | UEN1  | UEN0        | WAKE         | LPBACK  | ABAUD | URXINV      | BRGH    | PDSEI | _<1:0> | STSEL | 0000          |
| U1STA    | 0222        | UTXISEL1 | UTXINV | UTXISEL0 | _      | UTXBRK | UTXEN  | UTXBF | TRMT        | URXISE       | L<1:0>  | ADDEN | RIDLE       | PERR    | FERR  | OERR   | URXDA | 0110          |
| U1TXREG  | 0224        | —        | _      | _        | _      | _      | _      | _     |             |              |         | UART  | Transmit Re | egister |       |        |       | xxxx          |
| U1RXREG  | 0226        | —        | _      | _        | _      | _      | _      | _     |             |              |         | UART  | Receive Re  | gister  |       |        |       | 0000          |
| U1BRG    | 0228        |          |        |          |        |        |        |       | Baud Rate C | Generator Pr | escaler |       |             |         |       |        |       | 0000          |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

# TABLE 4-29: UART2 REGISTER MAP

| SFR<br>Name | SFR<br>Addr | Bit 15   | Bit 14 | Bit 13   | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8    | Bit 7        | Bit 6   | Bit 5 | Bit 4       | Bit 3   | Bit 2 | Bit 1  | Bit 0 | All<br>Resets |
|-------------|-------------|----------|--------|----------|--------|--------|--------|-------|----------|--------------|---------|-------|-------------|---------|-------|--------|-------|---------------|
| U2MODE      | 0230        | UARTEN   |        | USIDL    | IREN   | RTSMD  |        | UEN1  | UEN0     | WAKE         | LPBACK  | ABAUD | URXINV      | BRGH    | PDSE  | L<1:0> | STSEL | 0000          |
| U2STA       | 0232        | UTXISEL1 | UTXINV | UTXISEL0 | _      | UTXBRK | UTXEN  | UTXBF | TRMT     | URXISE       | EL<1:0> | ADDEN | RIDLE       | PERR    | FERR  | OERR   | URXDA | 0110          |
| U2TXREG     | 0234        | _        | _      | _        | _      | _      | _      | _     |          |              |         | UART  | Transmit Re | egister |       |        |       | XXXX          |
| U2RXREG     | 0236        | _        | _      | —        | _      | _      | _      | _     |          |              |         | UART  | Receive Re  | gister  |       |        |       | 0000          |
| U2BRG       | 0238        |          |        |          |        |        |        | Bauc  | Rate Gen | erator Presc | aler    |       |             |         |       |        |       | 0000          |

#### TABLE 4-30: SPI1 REGISTER MAP

| SFR Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13  | Bit 12 | Bit 11 | Bit 10 | Bit 9    | Bit 8       | Bit 7        | Bit 6      | Bit 5 | Bit 4 | Bit 3     | Bit 2 | Bit 1  | Bit 0  | All<br>Resets |
|----------|-------------|--------|--------|---------|--------|--------|--------|----------|-------------|--------------|------------|-------|-------|-----------|-------|--------|--------|---------------|
| SPI1STAT | 0240        | SPIEN  | —      | SPISIDL | —      | —      | —      | _        | —           | —            | SPIROV     | —     | _     | —         | —     | SPITBF | SPIRBF | 0000          |
| SPI1CON1 | 0242        |        | _      | _       | DISSCK | DISSDO | MODE16 | SMP      | CKE         | SSEN         | CKP        | MSTEN |       | SPRE<2:0> |       | PPRE   | <1:0>  | 0000          |
| SPI1CON2 | 0244        | FRMEN  | SPIFSD | FRMPOL  | —      | _      | —      | _        | _           | _            | _          | _     | _     | _         | —     | FRMDLY | _      | 0000          |
| SPI1BUF  | 0248        |        |        |         |        |        |        | SPI1 Tra | nsmit and R | eceive Buffe | r Register |       |       |           |       |        |        | 0000          |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

## TABLE 4-31: SPI2 REGISTER MAP

| SFR Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13  | Bit 12 | Bit 11 | Bit 10 | Bit 9    | Bit 8       | Bit 7        | Bit 6      | Bit 5 | Bit 4 | Bit 3     | Bit 2 | Bit 1  | Bit 0  | All<br>Resets |
|----------|-------------|--------|--------|---------|--------|--------|--------|----------|-------------|--------------|------------|-------|-------|-----------|-------|--------|--------|---------------|
| SPI2STAT | 0260        | SPIEN  | —      | SPISIDL | —      | _      | —      | —        | _           |              | SPIROV     | —     |       | —         |       | SPITBF | SPIRBF | 0000          |
| SPI2CON1 | 0262        |        | _      | _       | DISSCK | DISSDO | MODE16 | SMP      | CKE         | SSEN         | CKP        | MSTEN |       | SPRE<2:0> |       | PPRE   | <1:0>  | 0000          |
| SPI2CON2 | 0264        | FRMEN  | SPIFSD | FRMPOL  | —      |        | _      | _        |             | _            | _          | _     | _     | _         | _     | FRMDLY | _      | 0000          |
| SPI2BUF  | 0268        |        |        |         |        |        |        | SPI2 Tra | nsmit and R | eceive Buffe | r Register |       |       |           |       |        |        | 0000          |

| SFR Name | SFR<br>Addr | Bit 15  | Bit 14 | Bit 13                                                      | Bit 12  | Bit 11 | Bit 10     | Bit 9 | Bit 8   | Bit 7         | Bit 6  | Bit 5   | Bit 4     | Bit 3  | Bit 2     | Bit 1    | Bit 0  | All<br>Resets |
|----------|-------------|---------|--------|-------------------------------------------------------------|---------|--------|------------|-------|---------|---------------|--------|---------|-----------|--------|-----------|----------|--------|---------------|
| ADCON    | 0300        | ADON    | _      | ADSIDL                                                      | SLOWCLK | —      | GSWTRG     | _     | FORM    | EIE           | ORDER  | SEQSAMP | ASYNCSAMP | —      | ŀ         | DCS<2:0> | >      | 0003          |
| ADPCFG   | 0302        | PCFG15  | PCFG14 | PCFG13                                                      | PCFG12  | PCFG11 | PCFG10     | PCFG9 | PCFG8   | PCFG7         | PCFG6  | PCFG5   | PCFG4     | PCFG3  | PCFG2     | PCFG1    | PCFG0  | 0000          |
| ADPCFG2  | 0304        | _       | _      | _                                                           | —       | _      | _          | _     | _       | PCFG23        | PCFG22 | PCFG21  | PCFG20    | PCFG19 | PCFG18    | PCFG17   | PCFG16 | 0000          |
| ADSTAT   | 0306        | _       | _      | _                                                           | P12RDY  | P11RDY | P10RDY     | P9RDY | P8RDY   | P7RDY         | P6RDY  | P5RDY   | P4RDY     | P3RDY  | P2RDY     | P1RDY    | P0RDY  | 0000          |
| ADBASE   | 0308        |         |        |                                                             |         |        |            |       | ADBASE< | :15:1>        |        |         |           |        |           |          | —      | 0000          |
| ADCPC0   | 030A        | IRQEN1  | PEND1  | SWTRG1                                                      |         | TR     | GSRC1<4:0  | >     |         | IRQEN0        | PEND0  | SWTRG0  |           | TRG    | SRC0<4:0> |          |        | 0000          |
| ADCPC1   | 030C        | IRQEN3  | PEND3  | SWTRG3                                                      |         | TR     | GSRC3<4:0  | >     |         | IRQEN2        | PEND2  | SWTRG2  |           | TRGS   | SRC2<4:0> |          |        | 0000          |
| ADCPC2   | 030E        | IRQEN5  | PEND5  | SWTRG5                                                      |         | TR     | GSRC5<4:0  | >     |         | IRQEN4        | PEND4  | SWTRG4  |           | TRGS   | SRC4<4:0> |          |        | 0000          |
| ADCPC3   | 0310        | IRQEN7  | PEND7  | SWTRG7                                                      |         | TR     | GSRC7<4:0  | >     |         | IRQEN6        | PEND6  | SWTRG6  |           | TRGS   | SRC6<4:0> |          |        | 0000          |
| ADCPC4   | 0312        | IRQEN9  | PEND9  | SWTRG9                                                      |         | TR     | GSRC9<4:0  | >     |         | IRQEN8        | PEND8  | SWTRG8  |           | TRGS   | SRC8<4:0> |          |        | 0000          |
| ADCPC5   | 0314        | IRQEN11 | PEND11 | SWTRG11                                                     |         | TRO    | GSRC11<4:( | )>    |         | IRQEN10       | PEND10 | SWTRG10 |           | TRGS   | RC10<4:0: | >        |        | 0000          |
| ADCPC6   | 0316        | _       |        |                                                             | _       | —      |            |       | —       | IRQEN12       | PEND12 | SWTRG12 |           | TRGS   | RC12<4:0: | >        |        | 0000          |
| ADCBUF0  | 0340        |         |        | ADC Data Buffer 0<br>ADC Data Buffer 1<br>ADC Data Buffer 2 |         |        |            |       |         |               |        |         |           |        |           |          |        | xxxx          |
| ADCBUF1  | 0342        |         |        | ADC Data Buffer 0<br>ADC Data Buffer 1<br>ADC Data Buffer 2 |         |        |            |       |         |               |        |         |           |        |           |          |        | xxxx          |
| ADCBUF2  | 0344        |         |        | ADC Data Buffer 1                                           |         |        |            |       |         |               |        |         |           |        |           |          |        | xxxx          |
| ADCBUF3  | 0346        |         |        | ADC Data Buffer 1<br>ADC Data Buffer 2<br>ADC Data Buffer 3 |         |        |            |       |         |               |        |         |           |        |           |          |        | xxxx          |
| ADCBUF4  | 0348        |         |        | ADC Data Buffer 2                                           |         |        |            |       |         |               |        |         |           |        |           |          |        | xxxx          |
| ADCBUF5  | 034A        |         |        |                                                             |         |        |            |       | ADC E   | Data Buffer & | 5      |         |           |        |           |          |        | xxxx          |
| ADCBUF6  | 034C        |         |        |                                                             |         |        |            |       | ADC E   | Data Buffer 6 | 6      |         |           |        |           |          |        | xxxx          |
| ADCBUF7  | 034E        |         |        |                                                             |         |        |            |       | ADC E   | Data Buffer   | 7      |         |           |        |           |          |        | xxxx          |
| ADCBUF8  | 0350        |         |        |                                                             |         |        |            |       | ADC E   | Data Buffer 8 | В      |         |           |        |           |          |        | xxxx          |
| ADCBUF9  | 0352        |         |        |                                                             |         |        |            |       | ADC E   | Data Buffer 9 | 9      |         |           |        |           |          |        | xxxx          |
| ADCBUF10 | 0354        |         |        |                                                             |         |        |            |       | ADC D   | ata Buffer 1  | 0      |         |           |        |           |          |        | xxxx          |
| ADCBUF11 | 0356        |         |        |                                                             |         |        |            |       | ADC D   | ata Buffer 1  | 1      |         |           |        |           |          |        | xxxx          |
| ADCBUF12 | 0358        |         |        |                                                             |         |        |            |       | ADC D   | ata Buffer 1  | 2      |         |           |        |           |          |        | xxxx          |
| ADCBUF13 | 035A        |         |        |                                                             |         |        |            |       | ADC D   | ata Buffer 1  | 3      |         |           |        |           |          |        | xxxx          |
| ADCBUF14 | 035C        |         |        |                                                             |         |        |            |       | ADC D   | ata Buffer 1  | 4      |         |           |        |           |          |        | xxxx          |
| ADCBUF15 | 035E        |         |        |                                                             |         |        |            |       | ADC D   | ata Buffer 1  | 5      |         |           |        |           |          |        | xxxx          |
| ADCBUF16 | 0360        |         |        |                                                             |         |        |            |       | ADC D   | ata Buffer 1  | 6      |         |           |        |           |          |        | xxxx          |
| ADCBUF17 | 0362        |         |        |                                                             |         |        |            |       | ADC D   | ata Buffer 1  | 7      |         |           |        |           |          |        | xxxx          |
| ADCBUF18 | 0364        |         |        |                                                             |         |        |            |       | ADC D   | ata Buffer 1  | 8      |         |           |        |           |          |        | xxxx          |
| ADCBUF19 | 0366        |         |        |                                                             |         |        |            |       | ADC D   | ata Buffer 1  | 9      |         |           |        |           |          |        | xxxx          |
| ADCBUF20 | 0368        |         |        |                                                             |         |        |            |       | ADC D   | ata Buffer 2  | 20     |         |           |        |           |          |        | xxxx          |
| ADCBUF21 | 036A        |         |        |                                                             |         |        |            |       | ADC D   | ata Buffer 2  | !1     |         |           |        |           |          |        | xxxx          |

| TABLE 4  | -32:        | HIGH   | -SPEEL             | ) 10-BIT | ADC RE | GISTE  | R MAP  | FOR de | sPIC33 | -J32GS       | 610 ANI | D dsPIC3 | B3FJ64GS | 610 DE\ | /ICES C | ONLY (O | CONTIN | NUED)         |
|----------|-------------|--------|--------------------|----------|--------|--------|--------|--------|--------|--------------|---------|----------|----------|---------|---------|---------|--------|---------------|
| SFR Name | SFR<br>Addr | Bit 15 | Bit 14             | Bit 13   | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8  | Bit 7        | Bit 6   | Bit 5    | Bit 4    | Bit 3   | Bit 2   | Bit 1   | Bit 0  | All<br>Resets |
| ADCBUF22 | 036C        |        | ADC Data Buffer 22 |          |        |        |        |        |        |              |         |          |          |         |         |         |        | xxxx          |
| ADCBUF23 | 036E        |        |                    |          |        |        |        |        | ADC D  | ata Buffer 2 | 3       |          |          |         |         |         |        | xxxx          |
| ADCBUF24 | 0370        |        |                    |          |        |        |        |        | ADC D  | ata Buffer 2 | 4       |          |          |         |         |         |        | xxxx          |

ADC Data Buffer 25

## 

x = unknown value on Reset, --- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

0372

ADCBUF25

XXXX

| SFR Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12  | Bit 11 | Bit 10    | Bit 9 | Bit 8     | Bit 7     | Bit 6  | Bit 5   | Bit 4     | Bit 3 | Bit 2    | Bit 1    | Bit 0  | All<br>Resets |
|----------|-------------|--------|--------|--------|---------|--------|-----------|-------|-----------|-----------|--------|---------|-----------|-------|----------|----------|--------|---------------|
| ADCON    | 0300        | ADON   | —      | ADSIDL | SLOWCLK | _      | GSWTRG    | —     | FORM      | EIE       | ORDER  | SEQSAMP | ASYNCSAMP | _     |          | ADCS<2:0 | >      | 0003          |
| ADPCFG   | 0302        | PCFG15 | PCFG14 | PCFG13 | PCFG12  | PCFG11 | PCFG10    | PCFG9 | PCFG8     | PCFG7     | PCFG6  | PCFG5   | PCFG4     | PCFG3 | PCFG2    | PCFG1    | PCFG0  | 0000          |
| ADPCFG2  | 0304        | _      | _      | _      | _       | _      | —         | _     | _         | _         | _      | —       | _         | _     | _        | PCFG17   | PCFG16 | 0000          |
| ADSTAT   | 0306        | —      | —      | —      | P12RDY  | _      | —         | —     | P8RDY     | P7RDY     | P6RDY  | P5RDY   | P4RDY     | P3RDY | P2RDY    | P1RDY    | P0RDY  | 0000          |
| ADBASE   | 0308        |        |        |        |         |        |           | ADI   | BASE<15:1 | >         |        |         |           |       |          |          | _      | 0000          |
| ADCPC0   | 030A        | IRQEN1 | PEND1  | SWTRG1 |         | TR     | GSRC1<4:0 | )>    |           | IRQEN0    | PEND0  | SWTRG0  |           | TRG   | SRC0<4:0 | >        |        | 0000          |
| ADCPC1   | 030C        | IRQEN3 | PEND3  | SWTRG3 |         | TR     | GSRC3<4:0 | )>    |           | IRQEN2    | PEND2  | SWTRG2  |           | TRG   | SRC2<4:0 | >        |        | 0000          |
| ADCPC2   | 030E        | IRQEN5 | PEND5  | SWTRG5 |         | TR     | GSRC5<4:( | )>    |           | IRQEN4    | PEND4  | SWTRG4  |           | TRG   | SRC4<4:0 | >        |        | 0000          |
| ADCPC3   | 0310        | IRQEN7 | PEND7  | SWTRG7 |         | TR     | GSRC7<4:0 | )>    |           | IRQEN6    | PEND6  | SWTRG6  |           | TRG   | SRC6<4:0 | >        |        | 0000          |
| ADCPC4   | 0312        | —      | —      | —      | —       | —      | —         | —     |           | IRQEN8    | PEND8  | SWTRG8  |           | TRG   | SRC8<4:0 | >        |        | 0000          |
| ADCPC6   | 0316        | —      | —      | —      | —       | —      | _         | _     |           | IRQEN12   | PEND12 | SWTRG12 |           | TRGS  | RC12<4:0 | )>       |        | 0000          |
| ADCBUF0  | 0340        |        |        |        |         |        |           |       | ADC Data  | Buffer 0  |        |         |           |       |          |          |        | xxxx          |
| ADCBUF1  | 0342        |        |        |        |         |        |           |       | ADC Data  | Buffer 1  |        |         |           |       |          |          |        | xxxx          |
| ADCBUF2  | 0344        |        |        |        |         |        |           |       | ADC Data  | Buffer 2  |        |         |           |       |          |          |        | xxxx          |
| ADCBUF3  | 0346        |        |        |        |         |        |           |       | ADC Data  | Buffer 3  |        |         |           |       |          |          |        | xxxx          |
| ADCBUF4  | 0348        |        |        |        |         |        |           |       | ADC Data  | Buffer 4  |        |         |           |       |          |          |        | xxxx          |
| ADCBUF5  | 034A        |        |        |        |         |        |           |       | ADC Data  | Buffer 5  |        |         |           |       |          |          |        | xxxx          |
| ADCBUF6  | 034C        |        |        |        |         |        |           |       | ADC Data  | Buffer 6  |        |         |           |       |          |          |        | xxxx          |
| ADCBUF7  | 034E        |        |        |        |         |        |           |       | ADC Data  | Buffer 7  |        |         |           |       |          |          |        | xxxx          |
| ADCBUF8  | 0350        |        |        |        |         |        |           |       | ADC Data  | Buffer 8  |        |         |           |       |          |          |        | xxxx          |
| ADCBUF9  | 0352        |        |        |        |         |        |           |       | ADC Data  | Buffer 9  |        |         |           |       |          |          |        | xxxx          |
| ADCBUF10 | 0354        |        |        |        |         |        |           |       | ADC Data  | Buffer 10 |        |         |           |       |          |          |        | xxxx          |
| ADCBUF11 | 0356        |        |        |        |         |        |           |       | ADC Data  | Buffer 11 |        |         |           |       |          |          |        | xxxx          |
| ADCBUF12 | 0358        |        |        |        |         |        |           |       | ADC Data  | Buffer 12 |        |         |           |       |          |          |        | xxxx          |
|          | 035A        |        |        |        |         |        |           |       | ADC Data  | Buffer 13 |        |         |           |       |          |          |        | xxxx          |
| ADCBUF14 | 035C        |        |        |        |         |        |           |       | ADC Data  | Buffer 14 |        |         |           |       |          |          |        | XXXX          |
|          | 035E        |        |        |        |         |        |           |       | ADC Data  |           |        |         |           |       |          |          |        | xxxx          |
| ADCBUF16 | 0360        |        |        |        |         |        |           |       | ADC Data  |           |        |         |           |       |          |          |        | XXXX          |
| ADCBUF17 | 0362        |        |        |        |         |        |           |       | ADC Data  |           |        |         |           |       |          |          |        | XXXX          |
| ADCBUF24 |             |        |        |        |         |        |           |       | ADC Data  | Buffer 24 |        |         |           |       |          |          |        | xxxx          |
| ADCBUF25 | 0372        |        |        |        |         |        |           |       | ADC Data  | Buffer 25 |        |         |           |       |          |          |        | xxxx          |

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

| TABLE 4  | -34:        | HIGH   | -SPEE  | Image: Constraint of the state of |         |        |           |       |        |             |        |         |           |       |           |           |       |               |
|----------|-------------|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|-----------|-------|--------|-------------|--------|---------|-----------|-------|-----------|-----------|-------|---------------|
| SFR Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bit 12  | Bit 11 | Bit 10    | Bit 9 | Bit 8  | Bit 7       | Bit 6  | Bit 5   | Bit 4     | Bit 3 | Bit 2     | Bit 1     | Bit 0 | All<br>Resets |
| ADCON    | 0300        | ADON   | —      | ADSIDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SLOWCLK | —      | GSWTRG    | —     | FORM   | EIE         | ORDER  | SEQSAMP | ASYNCSAMP | —     |           | ADCS<2:0: | >     | 0003          |
| ADPCFG   | 0302        | PCFG15 | PCFG14 | PCFG13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PCFG12  | PCFG11 | PCFG10    | PCFG9 | PCFG8  | PCFG7       | PCFG6  | PCFG5   | PCFG4     | PCFG3 | PCFG2     | PCFG1     | PCFG0 | 0000          |
| ADSTAT   | 0306        | _      | _      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P12RDY  | _      | _         | _     | _      | P7RDY       | P6RDY  | P5RDY   | P4RDY     | P3RDY | P2RDY     | P1RDY     | P0RDY | 0000          |
| ADBASE   | 0308        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |        |           |       | ADBASE | <15:1>      |        |         |           |       |           |           | —     | 0000          |
| ADCPC0   | 030A        | IRQEN1 | PEND1  | SWTRG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | TR     | GSRC1<4:0 | )>    |        | IRQEN0      | PEND0  | SWTRG0  |           | TRG   | SRC0<4:0: | >         |       | 0000          |
| ADCPC1   | 030C        | IRQEN3 | PEND3  | SWTRG3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | TR     | GSRC3<4:0 | )>    |        | IRQEN2      | PEND2  | SWTRG2  |           | TRG   | SRC2<4:0: | >         |       | 0000          |
| ADCPC2   | 030E        | IRQEN5 | PEND5  | SWTRG5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | TR     | GSRC5<4:0 | )>    |        | IRQEN4      | PEND4  | SWTRG4  |           | TRG   | SRC4<4:0  | >         |       | 0000          |
| ADCPC3   | 0310        | IRQEN7 | PEND7  | SWTRG7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | TR     | GSRC7<4:0 | )>    |        | IRQEN6      | PEND6  | SWTRG6  |           | TRG   | SRC6<4:0: | >         |       | 0000          |
| ADCPC6   | 0316        | _      | —      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _       | _      | _         | —     | —      | IRQEN12     | PEND12 | SWTRG12 |           | TRG   | SRC12<4:0 | >         |       | 0000          |
| ADCBUF0  | 0340        |        |        | ADC Data Buffer 0<br>ADC Data Buffer 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |        |           |       |        |             |        |         |           |       |           |           |       | xxxx          |
| ADCBUF1  | 0342        |        |        | ADC Data Buffer 1<br>ADC Data Buffer 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |        |           |       |        |             |        |         |           |       |           |           |       | xxxx          |
| ADCBUF2  | 0344        |        |        | ADC Data Buffer 1<br>ADC Data Buffer 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |        |           |       |        |             |        |         |           |       |           |           |       |               |
| ADCBUF3  | 0346        |        |        | ADC Data Buffer 1<br>ADC Data Buffer 2<br>ADC Data Buffer 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |        |           |       |        |             |        |         |           |       |           |           |       |               |
| ADCBUF4  | 0348        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |        |           |       | ADC    | Data Buffe  | r 4    |         |           |       |           |           |       | xxxx          |
| ADCBUF5  | 034A        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |        |           |       | ADC    | Data Buffe  | r 5    |         |           |       |           |           |       | xxxx          |
| ADCBUF6  | 034C        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |        |           |       | ADC    | Data Buffe  | r 6    |         |           |       |           |           |       | xxxx          |
| ADCBUF7  | 034E        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |        |           |       | ADC    | Data Buffe  | r 7    |         |           |       |           |           |       | xxxx          |
| ADCBUF8  | 0350        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |        |           |       | ADC    | Data Buffe  | r 8    |         |           |       |           |           |       | xxxx          |
| ADCBUF9  | 0352        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |        |           |       | ADC    | Data Buffe  | r 9    |         |           |       |           |           |       | xxxx          |
| ADCBUF10 | 0354        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |        |           |       | ADC    | Data Buffer | 10     |         |           |       |           |           |       | xxxx          |
| ADCBUF11 | 0356        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |        |           |       | ADC    | Data Buffer | 11     |         |           |       |           |           |       | xxxx          |
| ADCBUF12 | 0358        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |        |           |       | ADC    | Data Buffer | 12     |         |           |       |           |           |       | xxxx          |
| ADCBUF13 | 035A        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |        |           |       | ADC    | Data Buffer | 13     |         |           |       |           |           |       | xxxx          |
| ADCBUF14 | 035C        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |        |           |       | ADC    | Data Buffer | 14     |         |           |       |           |           |       | xxxx          |
| ADCBUF15 | 035E        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |        |           |       | ADC    | Data Buffer | 15     |         |           |       |           |           |       | xxxx          |
| ADCBUF24 | 0370        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |        |           |       | ADC    | Data Buffer | 24     |         |           |       |           |           |       | xxxx          |
| ADCBUF25 | 0372        |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |        |           |       | ADC    | Data Buffer | 25     |         |           |       |           |           |       | xxxx          |

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Legend:

© 2010 Microchip Technology Inc.

#### TABLE 4-35: DMA REGISTER MAP

| File Name      | Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8  | Bit 7     | Bit 6 | Bit 5 | Bit 4  | Bit 3     | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|----------------|------|--------|--------|--------|--------|--------|--------|--------|--------|-----------|-------|-------|--------|-----------|--------|--------|--------|---------------|
| DMA0CON        | 0380 | CHEN   | SIZE   | DIR    | HALF   | NULLW  | _      |        | _      | _         | _     | AMOD  | E<1:0> | —         | —      | MODE   | =<1:0> | 0000          |
| DMA0REQ        | 0382 | FORCE  | _      | _      | _      | _      | _      | _      | _      | _         |       |       | IR     | QSEL<6:0> |        |        |        | 007F          |
| <b>DMA0STA</b> | 0384 |        |        |        |        |        |        |        | S      | TA<15:0>  |       |       |        |           |        |        |        | 0000          |
| DMA0STB        | 0386 |        |        |        |        |        |        |        | S      | TB<15:0>  |       |       |        |           |        |        |        | 0000          |
| DMA0PAD        | 0388 |        |        |        |        |        |        |        | P/     | AD<15:0>  |       |       |        |           |        |        |        | 0000          |
| DMA0CNT        | 038A | —      | _      | —      | _      | —      | —      |        |        |           |       | CNT<  | 9:0>   |           |        | _      |        | 0000          |
| DMA1CON        | 038C | CHEN   | SIZE   | DIR    | HALF   | NULLW  | —      | _      |        | _         | _     | AMOD  | E<1:0> | —         | _      | MODE   | =<1:0> | 0000          |
| DMA1REQ        | 038E | FORCE  | —      | _      | _      | —      | —      | _      |        | _         |       |       | IR     | QSEL<6:0> |        |        |        | 007F          |
| DMA1STA        | 0390 |        |        |        |        |        |        |        | S      | TA<15:0>  |       |       |        |           |        |        |        | 0000          |
| DMA1STB        | 0392 |        |        |        |        |        |        |        | S      | TB<15:0>  |       |       |        |           |        |        |        | 0000          |
| DMA1PAD        | 0394 |        |        |        |        |        |        |        | P/     | AD<15:0>  |       |       |        |           |        |        |        | 0000          |
| DMA1CNT        | 0396 | —      | _      | _      |        | —      | —      |        |        |           |       | CNT<  | 9:0>   |           |        |        |        | 0000          |
| DMA2CON        | 0398 | CHEN   | SIZE   | DIR    | HALF   | NULLW  | —      | _      | —      | _         | —     | AMOD  | E<1:0> | —         | _      | MODE   | =<1:0> | 0000          |
| DMA2REQ        | 039A | FORCE  | _      | —      | _      | —      | —      | _      | —      | _         |       |       | IR     | QSEL<6:0> |        |        |        | 007F          |
| DMA2STA        | 039C |        |        |        |        |        |        |        | S      | TA<15:0>  |       |       |        |           |        |        |        | 0000          |
| DMA2STB        | 039E |        |        |        |        |        |        |        | S      | TB<15:0>  |       |       |        |           |        |        |        | 0000          |
| DMA2PAD        | 03A0 |        |        |        |        |        |        |        | P/     | AD<15:0>  |       |       |        |           |        |        |        | 0000          |
| DMA2CNT        | 03A2 | —      | —      | —      | —      | —      | —      |        |        |           |       | CNT<  | 9:0>   | -         |        |        |        | 0000          |
| DMA3CON        | 03A4 | CHEN   | SIZE   | DIR    | HALF   | NULLW  | —      | _      | —      | —         | —     | AMOD  | E<1:0> | —         | —      | MODE   | =<1:0> | 0000          |
| DMA3REQ        | 03A6 | FORCE  | —      | —      | —      | —      | —      | —      | —      | —         |       |       | IR     | QSEL<6:0> |        |        |        | 007F          |
| DMA3STA        | 03A8 |        |        |        |        |        |        |        | S      | TA<15:0>  |       |       |        |           |        |        |        | 0000          |
| DMA3STB        | 03AA |        |        |        |        |        |        |        | S      | TB<15:0>  |       |       |        |           |        |        |        | 0000          |
| DMA3PAD        | 03AC |        |        |        |        |        |        |        | P/     | AD<15:0>  |       |       |        |           |        |        |        | 0000          |
| <b>DMA3CNT</b> | 03AE | —      | —      | —      | —      | —      | —      |        |        |           |       | CNT<  | 9:0>   |           |        | •      |        | 0000          |
| DMACS0         | 03E0 | —      | —      | —      | _      | PWCOL3 | PWCOL2 | PWCOL1 | PWCOL0 | —         | —     | —     | —      | XWCOL3    | XWCOL2 | XWCOL1 | XWCOL0 | 0000          |
| DMACS1         | 03E2 | —      | —      | —      | —      |        | LSTCH  | 1<3:0> |        | —         | —     | —     | —      | PPST3     | PPST2  | PPST1  | PPST0  | 0F00          |
| DSADR          | 03E4 |        |        |        |        |        |        |        | DS     | ADR<15:0> |       |       |        |           |        |        |        | 0000          |

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

| TADLL 4-5  | 0. L | CANTE   | LOIST    |         |         | CICIK   |            | - 0 00   | 1      |          |          |        |                   |           |          |          |        |               |
|------------|------|---------|----------|---------|---------|---------|------------|----------|--------|----------|----------|--------|-------------------|-----------|----------|----------|--------|---------------|
| File Name  | Addr | Bit 15  | Bit 14   | Bit 13  | Bit 12  | Bit 11  | Bit 10     | Bit 9    | Bit 8  | Bit 7    | Bit 6    | Bit 5  | Bit 4             | Bit 3     | Bit 2    | Bit 1    | Bit 0  | All<br>Resets |
| C1CTRL1    | 0600 | —       | —        | CSIDL   | ABAT    | —       | R          | EQOP<2:0 | >      | OPM      | /ODE<2:0 | >      | —                 | CANCAP    | —        | —        | WIN    | 0480          |
| C1CTRL2    | 0602 | _       | _        | —       | _       | _       | —          | —        | _      | _        | _        | —      |                   | D         | NCNT<4:0 | >        |        | 0000          |
| C1VEC      | 0604 | _       | _        | _       |         | F       | ILHIT<4:0> |          |        | _        |          |        |                   | ICODE<6:0 | >        |          |        | 0000          |
| C1FCTRL    | 0606 | D       | MABS<2:0 | >       | —       | _       | —          | —        | —      | _        | —        | -      |                   |           | FSA<4:0> |          |        | 0000          |
| C1FIFO     | 0608 | _       | _        |         |         | FBP<    | :5:0>      |          |        | —        | _        |        |                   | FNRB      | <5:0>    |          |        | 0000          |
| C1INTF     | 060A | _       | _        | ТХВО    | TXBP    | RXBP    | TXWAR      | RXWAR    | EWARN  | IVRIF    | WAKIF    | ERRIF  | _                 | FIFOIF    | RBOVIF   | RBIF     | TBIF   | 0000          |
| C1INTE     | 060C | _       | _        | _       | _       | _       | _          | _        | _      | IVRIE    | WAKIE    | ERRIE  | _                 | FIFOIE    | RBOVIE   | RBIE     | TBIE   | 0000          |
| C1EC       | 060E |         |          |         | TERRCI  | NT<7:0> |            |          |        |          |          |        | RERRCN            | NT<7:0>   |          |          |        | 0000          |
| C1CFG1     | 0610 | _       | _        | _       | _       | _       | _          | _        | _      | SJW<1    | 1:0>     |        |                   | BRP       | <5:0>    |          |        | 0000          |
| C1CFG2     | 0612 | _       | WAKFIL   | _       | _       | _       | SE         | G2PH<2:0 | >      | SEG2PHTS | SAM      | S      | EG1PH<2           | :0>       | Р        | RSEG<2:0 | >      | 0000          |
| C1FEN1     | 0614 | FLTEN15 | FLTEN14  | FLTEN13 | FLTEN12 | FLTEN11 | FLTEN10    | FLTEN9   | FLTEN8 | FLTEN7   | FLTEN6   | FLTEN5 | FLTEN4            | FLTEN3    | FLTEN2   | FLTEN1   | FLTEN0 | FFFF          |
| C1FMSKSEL1 | 0618 | F7MSI   | <<1:0>   | F6MSł   | <<1:0>  | F5MS    | K<1:0>     | F4MS     | <<1:0> | F3MSK<   | <1:0>    | F2MSł  | <b>&lt;</b> <1:0> | F1MSF     | <<1:0>   | FOMS     | <<1:0> | 0000          |
| C1FMSKSEL2 | 061A | F15MS   | K<1:0>   | F14MS   | K<1:0>  | F13MS   | SK<1:0>    | F12MS    | K<1:0> | F11MSK   | <1:0>    | F10MS  | K<1:0>            | F9MSk     | <1:0>    | F8MSł    | <1:0>  | 0000          |

### TABLE 4-36: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 0 OR 1

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

# TABLE 4-37: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 0

| File Name | Addr          | Bit 15  | Bit 14  | Bit 13  | Bit 12  | Bit 11  | Bit 10  | Bit 9   | Bit 8        | Bit 7     | Bit 6   | Bit 5   | Bit 4   | Bit 3   | Bit 2   | Bit 1   | Bit 0   | All<br>Resets |
|-----------|---------------|---------|---------|---------|---------|---------|---------|---------|--------------|-----------|---------|---------|---------|---------|---------|---------|---------|---------------|
|           | 0600-<br>061E |         |         |         |         |         |         | See     | e definition | when WIN  | = x     |         |         |         |         |         |         |               |
| C1RXFUL1  | 0620          | RXFUL15 | RXFUL14 | RXFUL13 | RXFUL12 | RXFUL11 | RXFUL10 | RXFUL9  | RXFUL8       | RXFUL7    | RXFUL6  | RXFUL5  | RXFUL4  | RXFUL3  | RXFUL2  | RXFUL1  | RXFUL0  | 0000          |
| C1RXFUL2  | 0622          | RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24      | RXFUL23   | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 | 0000          |
| C1RXOVF1  | 0628          | RXOVF15 | RXOVF14 | RXOVF13 | RXOVF12 | RXOVF11 | RXOVF10 | RXOVF9  | RXOVF8       | RXOVF7    | RXOVF6  | RXOVF5  | RXOVF4  | RXOVF3  | RXOVF2  | RXOVF1  | RXOVF0  | 0000          |
| C1RXOVF2  | 062A          | RXOVF31 | RXOVF30 | RXOVF29 | RXOVF28 | RXOVF27 | RXOVF26 | RXOVF25 | RXOVF24      | RXOVF23   | RXOVF22 | RXOVF21 | RXOVF20 | RXOVF19 | RXOVF18 | RXOVF17 | RXOVF16 | 0000          |
| C1TR01CON | 0630          | TXEN1   | TXABT1  | TXLARB1 | TXERR1  | TXREQ1  | RTREN1  | TX1PF   | RI<1:0>      | TXEN0     | TXABT0  | TXLARB0 | TXERR0  | TXREQ0  | RTREN0  | TX0PF   | RI<1:0> | 0000          |
| C1TR23CON | 0632          | TXEN3   | TXABT3  | TXLARB3 | TXERR3  | TXREQ3  | RTREN3  | TX3PF   | RI<1:0>      | TXEN2     | TXABT2  | TXLARB2 | TXERR2  | TXREQ2  | RTREN2  | TX2PF   | RI<1:0> | 0000          |
| C1TR45CON | 0634          | TXEN5   | TXABT5  | TXLARB5 | TXERR5  | TXREQ5  | RTREN5  | TX5PR   | RI<1:0>      | TXEN4     | TXABT4  | TXLARB4 | TXERR4  | TXREQ4  | RTREN4  | TX4PF   | RI<1:0> | 0000          |
| C1TR67CON | 0636          | TXEN7   | TXABT7  | TXLARB7 | TXERR7  | TXREQ7  | RTREN7  | TX7PF   | RI<1:0>      | TXEN6     | TXABT6  | TXLARB6 | TXERR6  | TXREQ6  | RTREN6  | TX6PF   | RI<1:0> | 0000          |
| C1RXD     | 0640          |         |         |         |         |         |         |         | Received     | Data Word |         |         |         |         |         | •       |         | xxxx          |
| C1TXD     | 0642          |         |         |         |         |         |         |         | Transmit [   | Data Word |         |         |         |         |         |         |         | xxxx          |

| File Name              | Addr          | Bit 15 | Bit 14 | Bit 13              | Bit 12 | Bit 11           | Bit 10 | Bit 9   | Bit 8       | Bit 7      | Bit 6    | Bit 5   | Bit 4 | Bit 3 | Bit 2 | Bit 1  | Bit 0  | All<br>Resets |
|------------------------|---------------|--------|--------|---------------------|--------|------------------|--------|---------|-------------|------------|----------|---------|-------|-------|-------|--------|--------|---------------|
|                        | 0600-<br>061E |        |        |                     |        |                  |        |         | See definit | ion when W | VIN = x  |         |       |       |       |        |        |               |
| C1BUFPNT1              | 0620          |        | F3BF   | <b>°&lt;3:0&gt;</b> |        |                  | F2B    | P<3:0>  |             |            | F1B      | P<3:0>  |       |       | F0BP  | <3:0>  |        | 0000          |
| C1BUFPNT2              | 0622          |        | F7BF   | °<3:0>              |        |                  | F6B    | P<3:0>  |             |            | F5B      | P<3:0>  |       |       | F4BP  | <3:0>  |        | 0000          |
| C1BUFPNT3              | 0624          |        | F11B   | P<3:0>              |        |                  | F10E   | 3P<3:0> |             |            | F9B      | P<3:0>  |       |       | F8BP  | <3:0>  |        | 0000          |
| C1BUFPNT4              | 0626          |        | F15B   | P<3:0>              |        |                  | F14E   | 3P<3:0> |             |            | F13      | 3P<3:0> |       |       | F12BF | P<3:0> |        | 0000          |
| C1RXM0SID              | 0630          |        |        |                     | SID    | <10:3>           |        |         |             |            | SID<2:0: | >       | —     | MIDE  | —     | EID<   | 17:16> | xxxx          |
| C1RXM0EID              | 0632          |        |        |                     | EID<   | <15:8>           |        |         |             |            |          |         | EID<  | :7:0> |       |        |        | xxxx          |
| C1RXM1SID              | 0634          |        |        |                     | SID    | <10:3>           |        |         |             |            | SID<2:0: | >       | _     | MIDE  |       | EID<   | 17:16> | xxxx          |
| C1RXM1EID              | 0636          |        |        |                     | EID-   | <15:8>           |        |         |             |            |          |         | EID<  | :7:0> |       |        |        | xxxx          |
| C1RXM2SID              | 0638          |        |        |                     | SID    | <10:3>           |        |         |             |            | SID<2:0: | >       | —     | MIDE  | —     | EID<   | 17:16> | xxxx          |
| C1RXM2EID              | 063A          |        |        |                     | EID<   | <15:8>           |        |         |             |            |          |         | EID<  | :7:0> |       | 1      |        | xxxx          |
| C1RXF0SID              | 0640          |        |        |                     | SID    | <10:3>           |        |         |             |            | SID<2:0: | >       | —     | EXIDE | —     | EID<   | 17:16> | xxxx          |
| C1RXF0EID              | 0642          |        |        |                     | EID    | <15:8>           |        |         |             |            |          |         | EID<  | :7:0> | 1     |        |        | xxxx          |
| C1RXF1SID              | 0644          |        |        |                     | SID    | <10:3>           |        |         |             |            | SID<2:0: | >       | —     | EXIDE | —     | EID<   | 17:16> | xxxx          |
| C1RXF1EID              | 0646          |        |        |                     | EID    | <15:8>           |        |         |             |            |          |         | EID<  | :7:0> |       |        |        | xxxx          |
| C1RXF2SID              | 0648          |        |        |                     |        | <10:3>           |        |         |             |            | SID<2:0: | >       | —     | EXIDE | —     | EID<   | 17:16> | XXXX          |
| C1RXF2EID              | 064A          |        |        |                     |        | <15:8>           |        |         |             |            |          |         | EID<  |       |       |        |        | XXXX          |
| C1RXF3SID              | 064C          |        |        |                     |        | <10:3>           |        |         |             |            | SID<2:0: | >       | —     | EXIDE | —     | EID<   | 17:16> | XXXX          |
| C1RXF3EID              | 064E          |        |        |                     |        | <15:8>           |        |         |             |            |          |         | EID<  |       |       |        |        | XXXX          |
| C1RXF4SID              | 0650          |        |        |                     |        | <10:3>           |        |         |             |            | SID<2:0: | >       | —     | EXIDE | —     | EID<   | 17:16> | XXXX          |
| C1RXF4EID              | 0652          |        |        |                     |        | <15:8>           |        |         |             |            |          |         | EID<  |       |       |        |        | xxxx          |
| C1RXF5SID              | 0654          |        |        |                     |        | <10:3>           |        |         |             |            | SID<2:0: | >       | -     | EXIDE | —     | EID<   | 17:16> | XXXX          |
| C1RXF5EID              | 0656          |        |        |                     |        | <15:8>           |        |         |             |            | 0.5 0.0  |         | EID<  |       |       |        |        | XXXX          |
| C1RXF6SID              | 0658          |        |        |                     |        | <10:3>           |        |         |             |            | SID<2:0: | >       | -     | EXIDE | —     | EID<   | 17:16> | XXXX          |
| C1RXF6EID              | 065A          |        |        |                     |        | <15:8>           |        |         |             |            |          |         | EID<  |       |       |        | 17.40  | XXXX          |
| C1RXF7SID              | 065C          |        |        |                     |        | <10:3>           |        |         |             |            | SID<2:0: | >       |       | EXIDE |       | EID<   | 17:16> | XXXX          |
| C1RXF7EID<br>C1RXF8SID | 065E<br>0660  |        |        |                     |        | <15:8><br><10:3> |        |         |             |            | SID<2:0; |         | EID<  | EXIDE |       | EID 4  | 17:16> | XXXX          |
| C1RXF85ID              | 0662          |        |        |                     |        | <15:8>           |        |         |             |            | 3ID<2.0  | >       | EID<  |       | _     | EID<   | 17.10> |               |
| C1RXF9SID              | 0664          |        |        |                     |        | <10:3>           |        |         |             |            | SID<2:0; |         |       | EXIDE |       | FID-   | 17:16> | xxxx          |
| C1RXF9EID              | 0666          |        |        |                     |        | <15:8>           |        |         |             |            | 510-2.0  |         | EID<  |       |       |        |        | XXXX          |
| C1RXF10SID             | 0668          |        |        |                     |        | <10:3>           |        |         |             |            | SID<2:0: | >       | _     | EXIDE | _     | FID-   | 17:16> | XXXX          |
| C1RXF10EID             | 066A          |        |        |                     |        | <15:8>           |        |         |             |            | 2.2 .2.0 |         | EID<  |       |       |        |        | XXXX          |
| C1RXF11SID             | 066C          |        |        |                     |        | <10:3>           |        |         |             | -          | SID<2:0: | \$      | _     | EXIDE | _     | FID-   | 17:16> | XXXX          |

#### TABLE 4-38: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1

| <b>TABLE 4-38</b> : | ECAN1 REGISTER MAP | WHEN C1CTRL1.WIN = 1 | (CONTINUED) |
|---------------------|--------------------|----------------------|-------------|
|                     |                    |                      |             |

|            |      |        |        |        |        |        |        |       |       |       | /        |       |       |       |       |       |       |               |
|------------|------|--------|--------|--------|--------|--------|--------|-------|-------|-------|----------|-------|-------|-------|-------|-------|-------|---------------|
| File Name  | Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6    | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
| C1RXF11EID | 066E |        |        |        | EID<   | :15:8> |        |       |       |       |          |       | EID<  | 7:0>  |       |       |       | xxxx          |
| C1RXF12SID | 0670 |        |        |        | SID<   | :10:3> |        |       |       |       | SID<2:0> |       | _     | EXIDE | —     | EID<1 | 7:16> | xxxx          |
| C1RXF12EID | 0672 |        |        |        | EID<   | :15:8> |        |       |       |       |          |       | EID<  | 7:0>  |       |       |       | xxxx          |
| C1RXF13SID | 0674 |        |        |        | SID<   | :10:3> |        |       |       |       | SID<2:0> |       | _     | EXIDE | _     | EID<1 | 7:16> | xxxx          |
| C1RXF13EID | 0676 |        |        |        | EID<   | :15:8> |        |       |       |       |          |       | EID<  | 7:0>  |       |       |       | xxxx          |
| C1RXF14SID | 0678 |        |        |        | SID<   | :10:3> |        |       |       |       | SID<2:0> |       | _     | EXIDE | —     | EID<1 | 7:16> | xxxx          |
| C1RXF14EID | 067A |        |        |        | EID<   | :15:8> |        |       |       |       |          |       | EID<  | 7:0>  |       |       |       | xxxx          |
| C1RXF15SID | 067C |        |        |        | SID<   | :10:3> |        |       |       |       | SID<2:0> |       | _     | EXIDE | —     | EID<1 | 7:16> | xxxx          |
| C1RXF15EID | 067E |        |        |        | EID<   | :15:8> |        |       |       |       |          |       | EID<  | 7:0>  |       |       |       | xxxx          |

#### TABLE 4-39: ANALOG COMPARATOR CONTROL REGISTER MAP

| File Name | ADR  | Bit 15 | Bit 14 | Bit 13  | Bit 12 | Bit 11 | Bit 10 | Bit 9                                                 | Bit 8 | Bit 7 | Bit 6  | Bit 5  | Bit 4  | Bit 3   | Bit 2 | Bit 1  | Bit 0 | All<br>Resets |
|-----------|------|--------|--------|---------|--------|--------|--------|-------------------------------------------------------|-------|-------|--------|--------|--------|---------|-------|--------|-------|---------------|
| CMPCON1   | 0540 | CMPON  | _      | CMPSIDL | —      | —      | —      | _                                                     | DACOE | INSEL | .<1:0> | EXTREF | -      | CMPSTAT | -     | CMPPOL | RANGE | 0000          |
| CMPDAC1   | 0542 | _      | _      | -       | —      |        | _      |                                                       |       |       |        | CMRE   | F<9:0> |         |       |        |       | 0000          |
| CMPCON2   | 0544 | CMPON  | _      | CMPSIDL | —      |        | _      | _                                                     | DACOE | INSEL | .<1:0> | EXTREF | _      | CMPSTAT | _     | CMPPOL | RANGE | 0000          |
| CMPDAC2   | 0546 | -      |        | -       | —      | _      | _      |                                                       |       |       |        |        |        |         |       |        | 0000  |               |
| CMPCON3   | 0548 | CMPON  |        | CMPSIDL | —      | _      | _      |                                                       | DACOE | INSEL | .<1:0> | EXTREF |        | CMPSTAT |       | CMPPOL | RANGE | 0000          |
| CMPDAC3   | 054A | _      | _      | -       | —      |        | _      |                                                       |       |       |        | CMRE   | F<9:0> |         |       |        |       | 0000          |
| CMPCON4   | 054C | CMPON  | _      | CMPSIDL | —      |        | _      | - DACOE INSEL<1:0> EXTREF - CMPSTAT - CMPPOL RANGE 00 |       |       |        |        |        |         | 0000  |        |       |               |
| CMPDAC4   | 054E | _      | _      | —       | —      | _      | _      |                                                       |       |       |        | CMRE   | F<9:0> |         |       |        |       | 0000          |

#### TABLE 4-40: PORTA REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES

| SFR<br>Name | SFR<br>Addr | Bit 15  | Bit 14  | Bit 13 | Bit 12 | Bit 11 | Bit 10  | Bit 9  | Bit 8 | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|-------------|-------------|---------|---------|--------|--------|--------|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|
| TRISA       | 02C0        | TRISA15 | TRISA14 | —      | —      | -      | TRISA10 | TRISA9 | —     | TRISA7 | TRISA6 | TRISA5 | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISA0 | C6FF          |
| PORTA       | 02C2        | RA15    | RA14    | -      |        | _      | RA10    | RA9    | _     | RA7    | RA6    | RA5    | RA4    | RA3    | RA2    | RA1    | RA0    | xxxx          |
| LATA        | 02C4        | LATA15  | LATA14  | -      |        | _      | LATA10  | LATA9  | _     | LATA7  | LATA6  | LATA5  | LATA4  | LATA3  | LATA2  | LATA1  | LATA0  | 0000          |
| ODCA        | 02C6        | ODCA15  | ODCA14  | _      | _      |        | ODCA10  | ODCA9  | —     | —      |        | ODCA5  | ODCA4  | _      | _      | ODCA1  | ODCA0  | 0000          |

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

# TABLE 4-41: PORTA REGISTER MAP FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES

| SFR<br>Name | SFR<br>Addr | Bit 15  | Bit 14  | Bit 13 | Bit 12 | Bit 11 | Bit 10  | Bit 9  | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
|-------------|-------------|---------|---------|--------|--------|--------|---------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------------|
| TRISA       | 02C0        | TRISA15 | TRISA14 | —      | —      | _      | TRISA10 | TRISA9 | —     | _     | -     | —     | _     | —     | _     |       |       | C600          |
| PORTA       | 02C2        | RA15    | RA14    | _      | _      | _      | RA10    | RA9    | _     | _     | _     | _     | _     | _     | _     | _     | _     | xxxx          |
| LATA        | 02C4        | LATA15  | LATA14  | _      | _      | _      | LATA10  | LATA9  | _     | _     | _     | _     | _     | _     | _     | _     | _     | 0000          |
| ODCA        | 02C6        | ODCA15  | ODCA14  | _      | _      | _      | ODCA10  | ODCA9  | _     | -     | -     | —     | _     | -     | —     | _     | —     | 0000          |

#### TABLE 4-42: PORTB REGISTER MAP

| SFR<br>Name | SFR<br>Addr | Bit 15  | Bit 14  | Bit 13  | Bit 12  | Bit 11  | Bit 10  | Bit 9  | Bit 8  | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|-------------|-------------|---------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|
| TRISB       | 02C8        | TRISB15 | TRISB14 | TRISB13 | TRISB12 | TRISB11 | TRISB10 | TRISB9 | TRISB8 | TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 | FFFF          |
| PORTB       | 02CA        | RB15    | RB14    | RB13    | RB12    | RB11    | RB10    | RB9    | RB8    | RB7    | RB6    | RB5    | RB4    | RB3    | RB2    | RB1    | RB0    | xxxx          |
| LATB        | 02CC        | LATB15  | LATB14  | LATB13  | LATB12  | LATB11  | LATB10  | LATB9  | LATB8  | LATB7  | LATB6  | LATB5  | LATB4  | LATB3  | LATB2  | LATB1  | LATB0  | 0000          |

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-43: PORTC REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES

| SFR<br>Name | SFR<br>Addr | Bit 15  | Bit 14  | Bit 13  | Bit 12  | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0 | All<br>Resets |
|-------------|-------------|---------|---------|---------|---------|--------|--------|-------|-------|-------|-------|-------|--------|--------|--------|--------|-------|---------------|
| TRISC       | 02D0        | TRISC15 | TRISC14 | TRISC13 | TRISC12 |        |        | —     | —     | —     | —     | _     | TRISC4 | TRISC3 | TRISC2 | TRISC1 |       | F01E          |
| PORTC       | 02D2        | RC15    | RC14    | RC13    | RC12    | _      | _      | _     | _     |       |       | _     | RC4    | RC3    | RC2    | RC1    | _     | xxxx          |
| LATC        | 02D4        | LATC15  | LATC14  | LATC13  | LATC12  | —      | _      | —     | —     | —     | —     | -     | LATC4  | LATC3  | LATC2  | LATC1  | _     | 0000          |

Legend: x = unknown value on Reset, -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-44: PORTC REGISTER MAP FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES

| SFR<br>Name | SFR<br>Addr | Bit 15  | Bit 14  | Bit 13  | Bit 12  | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2  | Bit 1  | Bit 0 | All<br>Resets |
|-------------|-------------|---------|---------|---------|---------|--------|--------|-------|-------|-------|-------|-------|-------|-------|--------|--------|-------|---------------|
| TRISC       | 02D0        | TRISC15 | TRISC14 | TRISC13 | TRISC12 | _      | _      | —     | _     | —     |       |       | _     | _     | TRISC2 | TRISC1 |       | F006          |
| PORTC       | 02D2        | RC15    | RC14    | RC13    | RC12    |        | _      | _     | _     | _     | _     | _     | -     | -     | RC2    | RC1    | _     | xxxx          |
| LATC        | 02D4        | LATC15  | LATC14  | LATC13  | LATC12  | _      |        | -     |       | _     |       |       | _     |       | LATC2  | LATC1  |       | 0000          |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-45: PORTC REGISTER MAP FOR dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES

| SFR<br>Name | SFR<br>Addr | Bit 15  | Bit 14  | Bit 13  | Bit 12  | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
|-------------|-------------|---------|---------|---------|---------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------------|
| TRISC       | 02D0        | TRISC15 | TRISC14 | TRISC13 | TRISC12 | -      | —      | _     | —     | —     | _     | —     | -     | _     | —     | —     | -     | F000          |
| PORTC       | 02D2        | RC15    | RC14    | RC13    | RC12    | _      | _      | _     | _     | _     | _     | _     | _     | _     | _     | _     | _     | xxxx          |
| LATC        | 02D4        | LATC15  | LATC14  | LATC13  | LATC12  | -      | _      |       | _     | —     | _     | _     | -     | _     |       | —     |       | 0000          |

#### TABLE 4-46: PORTD REGISTER MAP FOR dsPIC33FJ32GS608/610 AND dsPIC33FJ64GS608/610 DEVICES

| SFR<br>Name | SFR<br>Addr | Bit 15  | Bit 14  | Bit 13  | Bit 12  | Bit 11  | Bit 10  | Bit 9  | Bit 8  | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|-------------|-------------|---------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|
| TRISD       | 02D8        | TRISD15 | TRISD14 | TRISD13 | TRISD12 | TRISD11 | TRISD10 | TRISD9 | TRISD8 | TRISD7 | TRISD6 | TRISD5 | TRISD4 | TRISD3 | TRISD2 | TRISD1 | TRISD0 | FFFF          |
| PORTD       | 02DA        | RD15    | RD14    | RD13    | RD12    | RD11    | RD10    | RD9    | RD8    | RD7    | RD6    | RD5    | RD4    | RD3    | RD2    | RD1    | RD0    | xxxx          |
| LATD        | 02DC        | LATD15  | LATD14  | LATD13  | LATD12  | LATD11  | LATD10  | LATD9  | LATD8  | LATD7  | LATD6  | LATD5  | LATD4  | LATD3  | LATD2  | LATD1  | LATD0  | 0000          |
| ODCD        | 02DE        | ODCD15  | ODCD14  | ODCD13  | ODCD12  | ODCD11  | ODCD10  | ODCD9  | ODCD8  | ODCD7  | ODCD6  | ODCD5  | ODCD4  | ODCD3  | ODCD2  | ODCD1  | ODCD0  | 0000          |

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

### TABLE 4-47: PORTD REGISTER MAP FOR dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES

| SFR<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11  | Bit 10  | Bit 9  | Bit 8  | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|-------------|-------------|--------|--------|--------|--------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|
| TRISD       | 02D8        | —      |        | —      | —      | TRISD11 | TRISD10 | TRISD9 | TRISD8 | TRISD7 | TRISD6 | TRISD5 | TRISD4 | TRISD3 | TRISD2 | TRISD1 | TRISD0 | OFFF          |
| PORTD       | 02DA        |        | _      | _      | _      | RD11    | RD10    | RD9    | RD8    | RD7    | RD6    | RD5    | RD4    | RD3    | RD2    | RD1    | RD0    | xxxx          |
| LATD        | 02DC        |        | _      | _      | _      | LATD11  | LATD10  | LATD9  | LATD8  | LATD7  | LATD6  | LATD5  | LATD4  | LATD3  | LATD2  | LATD1  | LATD0  | 0000          |
| ODCD        | 02DE        | _      | _      | _      | _      | ODCD11  | ODCD10  | ODCD9  | ODCD8  | ODCD7  | ODCD6  | ODCD5  | ODCD4  | ODCD3  | ODCD2  | ODCD1  | ODCD0  | 0000          |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-48: PORTE REGISTER MAP FOR dsPIC33FJ32GS608/610 AND dsPIC33FJ64GS608/610 DEVICES

| SFR<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8  | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|-------------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|
| TRISE       | 02E0        |        | —      | _      | —      | _      |        | TRISE9 | TRISE8 | TRISE7 | TRISE6 | TRISE5 | TRISE4 | TRISE3 | TRISE2 | TRISE1 | TRISE0 | 03FF          |
| PORTE       | 02E2        | _      | _      | _      |        | -      | _      | RE9    | RE8    | RE7    | RE6    | RE5    | RE4    | RE3    | RE2    | RE1    | RE0    | xxxx          |
| LATE        | 02E4        | _      | _      | _      |        | -      | _      | LATE9  | LATE8  | LATE7  | LATE6  | LATE5  | LATE4  | LATE3  | LATE2  | LATE1  | LATE0  | 0000          |
| ODCE        | 02E6        | -      | —      | _      | _      | _      |        | -      |        | ODCE7  | ODCE6  | ODCE5  | ODCE4  | ODCE3  | ODCE2  | ODCE1  | ODCE0  | 0000          |

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-49: PORTE REGISTER MAP FOR dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES

| SFR<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|-------------|-------------|--------|--------|--------|--------|--------|--------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|
| TRISE       | 02E0        | _      | —      | —      | —      | —      | —      | —     | —     | TRISE7 | TRISE6 | TRISE5 | TRISE4 | TRISE3 | TRISE2 | TRISE1 | TRISE0 | OOFF          |
| PORTE       | 02E2        | _      | —      | —      | —      | _      | _      | _     | —     | RE7    | RE6    | RE5    | RE4    | RE3    | RE2    | RE1    | RE0    | xxxx          |
| LATE        | 02E4        | _      | —      | —      | —      | _      | _      | _     | —     | LATE7  | LATE6  | LATE5  | LATE4  | LATE3  | LATE2  | LATE1  | LATE0  | 0000          |
| ODCE        | 02E6        | _      | _      | _      | _      | -      | _      | —     | —     | ODCE7  | ODCE6  | ODCE5  | ODCE4  | ODCE3  | ODCE2  | ODCE1  | ODCE0  | 0000          |

#### TABLE 4-50: PORTF REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES

| SFR<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13  | Bit 12  | Bit 11 | Bit 10 | Bit 9 | Bit 8  | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|-------------|-------------|--------|--------|---------|---------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|
| TRISF       | 02E8        |        | —      | TRISF13 | TRISF12 | —      | —      | _     | TRISF8 | TRISF7 | TRISF6 | TRISF5 | TRISF4 | TRISF3 | TRISF2 | TRISF1 | TRISF0 | 30FF          |
| PORTF       | 02EA        |        | —      | RF13    | RF12    | _      | -      | _     | RF8    | RF7    | RF6    | RF5    | RF4    | RF3    | RF2    | RF1    | RF0    | xxxx          |
| LATF        | 02EC        |        | —      | LATF13  | LATF12  | _      | -      | _     | LATF8  | LATF7  | LATF6  | LATF5  | LATF4  | LATF3  | LATF2  | LATF1  | LATF0  | 0000          |
| ODCF        | 02EE        | _      | —      | ODCF13  | ODCF12  | _      | _      | _     | ODCF8  | ODCF7  | ODCF6  | —      | _      | ODCF3  | ODCF2  | ODCF1  | —      | 0000          |

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-51: PORTF REGISTER MAP FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES

| SFR<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8  | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|-------------|-------------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|
| TRISF       | 02E8        | —      |        | —      | —      |        |        | _     | TRISF8 | TRISF7 | TRISF6 | TRISF5 | TRISF4 | TRISF3 | TRISF2 | TRISF1 | TRISF0 | 01FF          |
| PORTF       | 02EA        | _      | _      | _      | _      | _      | _      | _     | RF8    | RF7    | RF6    | RF5    | RF4    | RF3    | RF2    | RF1    | RF0    | xxxx          |
| LATF        | 02EC        | _      | _      | _      | _      | _      | _      | _     | LATF8  | LATF7  | LATF6  | LATF5  | LATF4  | LATF3  | LATF2  | LATF1  | LATF0  | 0000          |
| ODCF        | 02EE        | _      | _      | _      | _      | _      | _      | _     | ODCF8  | ODCF7  | ODCF6  | _      | _      | ODCF3  | ODCF2  | ODCF1  | _      | 0000          |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-52: PORTF REGISTER MAP FOR dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES

| SFR<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|-------------|-------------|--------|--------|--------|--------|--------|--------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|---------------|
| TRISF       | 02E8        | _      | —      | _      | _      | —      | —      | —     | _     | _     | TRISF6 | TRISF5 | TRISF4 | TRISF3 | TRISF2 | TRISF1 | TRISF0 | 007F          |
| PORTF       | 02EA        | —      | _      | -      | -      | _      | _      | _     | _     | _     | RF6    | RF5    | RF4    | RF3    | RF2    | RF1    | RF0    | xxxx          |
| LATF        | 02EC        | _      | —      | —      | —      | _      | _      | _     | _     | _     | LATF6  | LATF5  | LATF4  | LATF3  | LATF2  | LATF1  | LATF0  | 0000          |
| ODCF        | 02EE        |        | _      | _      | _      |        | —      |       |       |       | ODCF6  |        |        | ODCF3  | ODCF2  | ODCF1  |        | 0000          |

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-53: PORTG REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES

| SFR<br>Name | SFR<br>Addr | Bit 15  | Bit 14  | Bit 13  | Bit 12  | Bit 11 | Bit 10 | Bit 9  | Bit 8  | Bit 7  | Bit 6  | Bit 5 | Bit 4 | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|-------------|-------------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|-------|-------|--------|--------|--------|--------|---------------|
| TRISG       | 02F0        | TRISG15 | TRISG14 | TRISG13 | TRISG12 | —      | —      | TRISG9 | TRISG8 | TRISG7 | TRISG6 | -     | —     | TRISG3 | TRISG2 | TRISG1 | TRISG0 | F3CF          |
| PORTG       | 02F2        | RG15    | RG14    | RG13    | RG12    | _      | _      | RG9    | RG8    | RG7    | RG6    | _     | -     | RG3    | RG2    | RG1    | RG0    | xxxx          |
| LATG        | 02F4        | LATG15  | LATG14  | LATG13  | LATG12  | _      | _      | LATG9  | LATG8  | LATG7  | LATG6  | _     | -     | LATG3  | LATG2  | LATG1  | LATG0  | 0000          |
| ODCG        | 02F6        | ODCG15  | ODCG14  | ODCG13  | ODCG12  | —      | —      | ODCG9  | ODCG8  | ODCG7  | ODCG6  | -     | _     | -      | -      | ODCG1  | ODCG0  | 0000          |

#### TABLE 4-54: PORTG REGISTER MAP FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES

| SFR<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8  | Bit 7  | Bit 6  | Bit 5 | Bit 4 | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|-------------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|--------|--------|--------|--------|---------------|
| TRISG       | 02F0        | —      | —      | —      | —      | —      | —      | TRISG9 | TRISG8 | TRISG7 | TRISG6 | -     | —     | TRISG3 | TRISG2 | TRISG1 | TRISG0 | 03CF          |
| PORTG       | 02F2        | _      | —      | —      | —      | _      | _      | RG9    | RG8    | RG7    | RG6    | _     | _     | RG3    | RG2    | RG1    | RG0    | xxxx          |
| LATG        | 02F4        | _      | _      | _      | _      | _      | _      | LATG9  | LATG8  | LATG7  | LATG6  | _     | _     | LATG3  | LATG2  | LATG1  | LATG0  | 0000          |
| ODCG        | 02F6        | _      |        | —      | _      | _      | _      | ODCG9  | ODCG8  | ODCG7  | ODCG6  | _     | _     | _      | _      | ODCG1  | ODCG0  | 0000          |

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-55: PORTG REGISTER MAP FOR dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES

| SFR<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8  | Bit 7  | Bit 6  | Bit 5 | Bit 4 | Bit 3  | Bit 2  | Bit 1 | Bit 0 | All<br>Resets |
|-------------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|--------|--------|-------|-------|---------------|
| TRISG       | 02F0        |        | _      |        | _      |        | —      | TRISG9 | TRISG8 | TRISG7 | TRISG6 | —     |       | TRISG3 | TRISG2 |       |       | 03CC          |
| PORTG       | 02F2        |        | _      | _      | _      | _      | _      | RG9    | RG8    | RG7    | RG6    | _     | _     | RG3    | RG2    |       | _     | xxxx          |
| LATG        | 02F4        |        | _      | _      | _      | _      | _      | LATG9  | LATG8  | LATG7  | LATG6  | _     | _     | LATG3  | LATG2  |       | _     | 0000          |
| ODCG        | 02F6        | _      | _      | _      | _      | _      | —      | ODCG9  | ODCG8  | ODCG7  | ODCG6  | —     | -     | -      | _      | _     |       | 0000          |

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-56: SYSTEM CONTROL REGISTER MAP

| SFR Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13    | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8 | Bit 7   | Bit 6  | Bit 5  | Bit 4               | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All<br>Resets       |
|----------|-------------|--------|--------|-----------|--------|--------|--------|--------|-------|---------|--------|--------|---------------------|-------|-------|-------|-------|---------------------|
| RCON     | 0740        | TRAPR  | IOPUWR | _         | _      | _      | _      | _      | VREGS | EXTR    | SWR    | SWDTEN | WDTO                | SLEEP | IDLE  | BOR   | POR   | xxxx <sup>(1)</sup> |
| OSCCON   | 0742        | _      | (      | COSC<2:0> |        | _      |        |        |       |         |        |        | 0300 <sup>(2)</sup> |       |       |       |       |                     |
| CLKDIV   | 0744        | ROI    | [      | DOZE<2:0> |        | DOZEN  |        |        |       |         |        |        |                     |       | 0040  |       |       |                     |
| PLLFBD   | 0746        | _      | _      | _         | _      | _      | -      | -      |       |         |        | Р      | LLDIV<8:0;          | >     |       |       |       | 0030                |
| OSCTUN   | 0748        | _      | _      | _         | _      | _      | -      | -      | _     | _       | _      |        |                     | TUN<  | 5:0>  |       |       | 0000                |
| REFOCON  | 074E        | ROON   | _      | ROSSLP    | ROSEL  |        | RODI   | /<3:0> |       |         |        |        |                     |       | _     | 0000  |       |                     |
| ACLKCON  | 0750        | ENAPLL | APLLCK | SELACLK   |        |        | AP     | STSCLR | <2:0> | ASRCSEL | FRCSEL | —      | _                   | _     |       | —     | _     | 2300                |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

**Note** 1: The RCON register reset values are dependent on type of reset.

2: The OSCCON register reset values are dependent on the FOSC configuration bits, and on type of reset.

#### TABLE 4-57: NVM REGISTER MAP

| SFR<br>Name | Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3  | Bit 2 | Bit 1  | Bit 0 | All<br>Resets       |
|-------------|------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|--------|-------|--------|-------|---------------------|
| NVMCON      | 0760 | WR     | WREN   | WRERR  | _      | _      | _      | —     | _     |       | ERASE | _     | -     |        | NVMOF | °<3:0> |       | <sub>0000</sub> (1) |
| NVMKEY      | 0766 | _      | _      | _      | _      | _      | _      | _     | _     |       |       |       | NVMKE | Y<7:0> |       |        |       | 0000                |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

#### TABLE 4-58: PMD REGISTER MAP FOR dsPIC33FJ64GS610 DEVICES

| SFR<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8  | Bit 7  | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2 | Bit 1  | Bit 0  | All<br>Resets |
|-------------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|-------|--------|--------|---------------|
| PMD1        | 0770        | T5MD   | T4MD   | T3MD   | T2MD   | T1MD   | QEI1MD | PWMMD  | _      | I2C1MD | U2MD  | U1MD   | SPI2MD | SPI1MD | —     | C1MD   | ADCMD  | 0000          |
| PMD2        | 0772        | —      |        | -      |        | IC4MD  | IC3MD  | IC2MD  | IC1MD  | —      |       | _      | _      | OC4MD  | OC3MD | OC2MD  | OC1MD  | 0000          |
| PMD3        | 0774        | —      |        | -      |        |        | CMPMD  |        | _      | —      |       | QEI2MD | _      | _      |       | I2C2MD |        | 0000          |
| PMD4        | 0776        | —      |        | -      |        |        |        |        | _      | —      |       | _      | _      | REFOMD |       |        |        | 0000          |
| PMD6        | 077A        | PWM8MD | PWM7MD | PWM6MD | PWM5MD | PWM4MD | PWM3MD | PWM2MD | PWM1MD | _      | _     |        | _      |        | _     | _      | _      | 0000          |
| PMD7        | 077C        | _      | _      | _      | _      | CMP4MD | CMP3MD | CMP2MD | CMP1MD | —      | _     | _      | _      | _      | _     | _      | PWM9MD | 0000          |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

### TABLE 4-59: PMD REGISTER MAP FOR dsPIC33FJ32GS610 DEVICES

| SFR<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8  | Bit 7  | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2 | Bit 1  | Bit 0  | All<br>Resets |
|-------------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|-------|--------|--------|---------------|
| PMD1        | 0770        | T5MD   | T4MD   | T3MD   | T2MD   | T1MD   | QEI1MD | PWMMD  | _      | I2C1MD | U2MD  | U1MD   | SPI2MD | SPI1MD | —     | _      | ADCMD  | 0000          |
| PMD2        | 0772        |        | _      |        | _      | IC4MD  | IC3MD  | IC2MD  | IC1MD  |        |       |        | _      | OC4MD  | OC3MD | OC2MD  | OC1MD  | 0000          |
| PMD3        | 0774        |        | _      |        | _      |        | CMPMD  | _      |        |        |       | QEI2MD | _      | _      | _     | I2C2MD |        | 0000          |
| PMD4        | 0776        | _      | _      | _      | _      | -      |        | _      |        | -      |       |        | _      | REFOMD | _     | _      |        | 0000          |
| PMD6        | 077A        | PWM8MD | PWM7MD | PWM6MD | PWM5MD | PWM4MD | PWM3MD | PWM2MD | PWM1MD | _      | _     | _      | —      | —      | _     | _      | _      | 0000          |
| PMD7        | 077C        | _      | _      | _      | _      | CMP4MD | CMP3MD | CMP2MD | CMP1MD | _      | _     | _      |        | _      | _     | _      | PWM9MD | 0000          |

#### TABLE 4-60: PMD REGISTER MAP FOR dsPIC33FJ64GS608 DEVICES

| SFR<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8  | Bit 7  | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2 | Bit 1  | Bit 0 | All<br>Resets |
|-------------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|-------|--------|-------|---------------|
| PMD1        | 0770        | T5MD   | T4MD   | T3MD   | T2MD   | T1MD   | QEI1MD | PWMMD  | _      | I2C1MD | U2MD  | U1MD   | SPI2MD | SPI1MD | —     | C1MD   | ADCMD | 0000          |
| PMD2        | 0772        | _      | _      |        |        | IC4MD  | IC3MD  | IC2MD  | IC1MD  | _      |       | _      | _      | OC4MD  | OC3MD | OC2MD  | OC1MD | 0000          |
| PMD3        | 0774        | _      | _      |        |        |        | CMPMD  |        |        | _      |       | QEI2MD | _      | _      | _     | I2C2MD | _     | 0000          |
| PMD4        | 0776        | _      | _      | -      | -      |        | -      | -      |        | —      |       | _      | _      | REFOMD | _     | —      | _     | 0000          |
| PMD6        | 077A        | PWM8MD | PWM7MD | PWM6MD | PWM5MD | PWM4MD | PWM3MD | PWM2MD | PWM1MD | —      | —     | _      | _      | _      | _     | —      | _     | 0000          |
| PMD7        | 077C        | —      | _      | _      | _      | CMP4MD | CMP3MD | CMP2MD | CMP1MD | —      | _     | _      | —      | _      | _     | —      | _     | 0000          |

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-61: PMD REGISTER MAP FOR dsPIC33FJ32GS608 DEVICES

| SFR<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8  | Bit 7  | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2 | Bit 1  | Bit 0 | All<br>Resets |
|-------------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|-------|--------|-------|---------------|
| PMD1        | 0770        | T5MD   | T4MD   | T3MD   | T2MD   | T1MD   | QEI1MD | PWMMD  |        | I2C1MD | U2MD  | U1MD   | SPI2MD | SPI1MD |       | _      | ADCMD | 0000          |
| PMD2        | 0772        | _      | _      | _      | _      | IC4MD  | IC3MD  | IC2MD  | IC1MD  | -      | _     | _      | _      | OC4MD  | OC3MD | OC2MD  | OC1MD | 0000          |
| PMD3        | 0774        | _      | _      | _      | _      | _      | CMPMD  |        | _      | -      | _     | QEI2MD | _      | _      |       | I2C2MD | _     | 0000          |
| PMD4        | 0776        | _      | _      | _      | _      | _      | _      |        | _      | -      | _     | _      | _      | REFOMD |       |        | _     | 0000          |
| PMD6        | 077A        | PWM8MD | PWM7MD | PWM6MD | PWM5MD | PWM4MD | PWM3MD | PWM2MD | PWM1MD | -      | _     | _      | _      | _      |       |        | _     | 0000          |
| PMD7        | 077C        | -      | _      | _      | —      | CMP4MD | CMP3MD | CMP2MD | CMP1MD | _      | _     | _      | _      | _      | _     | _      | _     | 0000          |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-62: PMD REGISTER MAP FOR dsPIC33FJ64GS606 DEVICES

| SFR<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8  | Bit 7  | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2 | Bit 1  | Bit 0 | All<br>Resets |
|-------------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|-------|--------|-------|---------------|
| PMD1        | 0770        | T5MD   | T4MD   | T3MD   | T2MD   | T1MD   | QEI1MD | PWMMD  |        | I2C1MD | U2MD  | U1MD   | SPI2MD | SPI1MD | _     | C1MD   | ADCMD | 0000          |
| PMD2        | 0772        | —      | -      | —      | -      | IC4MD  | IC3MD  | IC2MD  | IC1MD  | —      |       | -      | _      | OC4MD  | OC3MD | OC2MD  | OC1MD | 0000          |
| PMD3        | 0774        | _      | _      | —      | -      |        | CMPMD  | _      |        | —      |       | QEI2MD | _      |        |       | I2C2MD | _     | 0000          |
| PMD4        | 0776        | _      | _      | —      | -      |        |        | _      |        | —      |       | _      | _      | REFOMD |       | _      | _     | 0000          |
| PMD6        | 077A        | _      | _      | PWM6MD | PWM5MD | PWM4MD | PWM3MD | PWM2MD | PWM1MD | —      |       | _      | _      |        |       | _      | _     | 0000          |
| PMD7        | 077C        | —      | _      | _      | _      | CMP4MD | CMP3MD | CMP2MD | CMP1MD | _      | _     | _      | _      | _      | _     | _      | _     | 0000          |

# TABLE 4-63: PMD REGISTER MAP FOR dsPIC33FJ32GS606 DEVICES

| SFR<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8  | Bit 7  | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2 | Bit 1  | Bit 0 | All<br>Resets |
|-------------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|-------|--------|-------|---------------|
| PMD1        | 0770        | T5MD   | T4MD   | T3MD   | T2MD   | T1MD   | QEI1MD | PWMMD  | _      | I2C1MD | U2MD  | U1MD   | SPI2MD | SPI1MD | _     | _      | ADCMD | 0000          |
| PMD2        | 0772        | _      | _      | —      |        | IC4MD  | IC3MD  | IC2MD  | IC1MD  | —      | _     | _      |        | OC4MD  | OC3MD | OC2MD  | OC1MD | 0000          |
| PMD3        | 0774        | _      | _      | —      |        |        | CMPMD  | -      | _      | —      | _     | QEI2MD |        |        |       | I2C2MD | _     | 0000          |
| PMD4        | 0776        | _      | _      | —      |        |        |        | -      | _      | —      | _     | _      |        | REFOMD |       | _      | _     | 0000          |
| PMD6        | 077A        | —      | _      | PWM6MD | PWM5MD | PWM4MD | PWM3MD | PWM2MD | PWM1MD | _      | —     | _      | _      | _      | _     |        | —     | 0000          |
| PMD7        | 077C        | _      | _      | —      | _      | CMP4MD | CMP3MD | CMP2MD | CMP1MD | —      | —     | -      | _      | _      | _     | _      | —     | 0000          |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

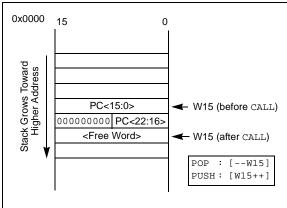
#### TABLE 4-64: PMD REGISTER MAP FOR dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES

| SFR<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8  | Bit 7  | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2 | Bit 1  | Bit 0 | All<br>Resets |
|-------------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|--------|--------|-------|--------|-------|---------------|
| PMD1        | 0770        | T5MD   | T4MD   | T3MD   | T2MD   | T1MD   | QEI1MD | PWMMD  | —      | I2C1MD | U2MD  | U1MD   | SPI2MD | SPI1MD | —     | —      | ADCMD | 0000          |
| PMD2        | 0772        | -      | _      | _      | —      | IC4MD  | IC3MD  | IC2MD  | IC1MD  | _      | _     | _      | _      | OC4MD  | OC3MD | OC2MD  | OC1MD | 0000          |
| PMD3        | 0774        | -      | _      | _      | —      | _      |        | _      | _      | _      | _     | QEI2MD | _      | _      | _     | I2C2MD | _     | 0000          |
| PMD4        | 0776        | -      | _      | _      | —      | _      |        | _      | _      | _      | _     | _      | _      | REFOMD | _     | _      | _     | 0000          |
| PMD6        | 077A        | —      | -      | PWM6MD | PWM5MD | PWM4MD | PWM3MD | PWM2MD | PWM1MD | _      | _     | _      | —      | _      | _     | _      | _     | 0000          |

#### 4.2.7 SOFTWARE STACK

In addition to its use as a working register, the W15 register in the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It predecrements for stack pops and post-increments for stack pushes, as shown in Figure 4-6. For a PC push during any CALL instruction, the MSb of the PC is zero-extended before the push, ensuring that the MSb is always clear.

| Note: | A PC push during exception processing    |
|-------|------------------------------------------|
|       | concatenates the SRL register to the MSb |
|       | of the PC prior to the push.             |


The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word-aligned.

Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. For example, to cause a stack error trap when the stack grows beyond address 0x1800 in RAM, initialize the SPLIM with the value 0x17FE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.





#### 4.3 Instruction Addressing Modes

The addressing modes shown in Table 4-65 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

#### 4.3.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (near data space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

#### 4.3.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 < function> Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be register direct), which is referred to as Wb. Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-bit or 10-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

| Addressing Mode                                           | Description                                                                                            |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| File Register Direct                                      | The address of the file register is specified explicitly.                                              |
| Register Direct                                           | The contents of a register are accessed directly.                                                      |
| Register Indirect                                         | The contents of Wn forms the Effective Address (EA).                                                   |
| Register Indirect Post-Modified                           | The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value. |
| Register Indirect Pre-Modified                            | Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.             |
| Register Indirect with Register Offset (Register Indexed) | The sum of Wn and Wb forms the EA.                                                                     |
| Register Indirect with Literal Offset                     | The sum of Wn and a literal forms the EA.                                                              |

#### TABLE 4-65: FUNDAMENTAL ADDRESSING MODES SUPPORTED

#### 4.3.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

| Note: | For the MOV instructions, the addressing     |
|-------|----------------------------------------------|
|       | mode specified in the instruction can differ |
|       | for the source and destination EA.           |
|       | However, the 4-bit Wb (Register Offset)      |
|       | field is shared by both source and           |
|       | destination (but typically only used by      |
|       | one).                                        |

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

#### 4.3.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the data pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The effective addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

| Note: | Register                                 | Indirect  | with    | Register  | Offset |  |  |  |  |
|-------|------------------------------------------|-----------|---------|-----------|--------|--|--|--|--|
|       | Addressing mode is available only for WS |           |         |           |        |  |  |  |  |
|       | (in X space                              | ce) and W | /11 (in | Y space). |        |  |  |  |  |

In summary, the following addressing modes are supported by the  ${\tt MAC}$  class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

#### 4.3.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

### 4.4 Modulo Addressing

Modulo Addressing mode is a method used to provide an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

#### 4.4.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

| Note: | Υ    | space     | Modulo      | Addressing     | EA   |
|-------|------|-----------|-------------|----------------|------|
|       | cal  | culations | assume we   | ord-sized data | (LSb |
|       | of e | every EA  | is always o | clear).        |      |

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

#### 4.4.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that will operate with Modulo Addressing:

- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled.
- If YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

#### FIGURE 4-7: MODULO ADDRESSING OPERATION EXAMPLE

| Byte<br>Address |                                                                   | MOV<br>MOV | #0x1100, W0<br>W0, XMODSRT | ;set modulo start address     |
|-----------------|-------------------------------------------------------------------|------------|----------------------------|-------------------------------|
|                 |                                                                   | MOV        | #0x1163, W0                |                               |
| 0x1100          |                                                                   | MOV        | W0, MODEND                 | ;set modulo end address       |
|                 |                                                                   | MOV        | #0x8001, W0                |                               |
|                 |                                                                   | MOV        | W0, MODCON                 | ;enable W1, X AGU for modulo  |
|                 |                                                                   | MOV        | #0x0000, W0                | ;W0 holds buffer fill value   |
|                 | ♥ (  )                                                            | MOV        | #0x1110, W1                | ;point W1 to buffer           |
| 0x1163          |                                                                   | DO         | AGAIN, #0x31               | ;fill the 50 buffer locations |
|                 |                                                                   | MOV        | WO, [W1++]                 | ;fill the next location       |
|                 |                                                                   | AGAIN:     | INC W0, W0                 | ; increment the fill value    |
| E               | Start Addr = 0x1100<br>End Addr = 0x1163<br>.ength = 0x0032 words |            |                            |                               |

#### 4.4.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected effective address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the effective address. When an address offset (such as [W7 + W2]) is used, Modulo Address correction is performed but the contents of the register remain unchanged.

# 4.5 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data re-ordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

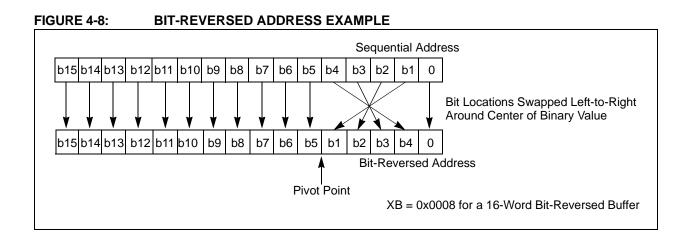
# 4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled in any of these situations:

- BWM bits (W register selection) in the MODCON register are any value other than '15' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is  $M = 2^N$  bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Address modifier, or 'pivot point,' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.


| Note: | All bit-reversed EA calculations assume   |
|-------|-------------------------------------------|
|       | word-sized data (LSb of every EA is       |
|       | always clear). The XB value is scaled     |
|       | accordingly to generate compatible (byte) |
|       | addresses.                                |

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It will not function for any other addressing mode or for byte-sized data, and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB), and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note: Modulo Addressing and Bit-Reversed Addressing should not be enabled together. If an application attempts to do so, Bit-Reversed Addressing will assume priority when active for the X WAGU and X WAGU, Modulo Addressing will be disabled. However, Modulo Addressing will continue to function in the X RAGU.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the bit-reversed pointer.

# dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610



### TABLE 4-66: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

|    |    | Norma | al Addres | SS      |    |    | Bit-Rev | ersed Ac | ldress  |
|----|----|-------|-----------|---------|----|----|---------|----------|---------|
| A3 | A2 | A1    | A0        | Decimal | A3 | A2 | A1      | A0       | Decimal |
| 0  | 0  | 0     | 0         | 0       | 0  | 0  | 0       | 0        | 0       |
| 0  | 0  | 0     | 1         | 1       | 1  | 0  | 0       | 0        | 8       |
| 0  | 0  | 1     | 0         | 2       | 0  | 1  | 0       | 0        | 4       |
| 0  | 0  | 1     | 1         | 3       | 1  | 1  | 0       | 0        | 12      |
| 0  | 1  | 0     | 0         | 4       | 0  | 0  | 1       | 0        | 2       |
| 0  | 1  | 0     | 1         | 5       | 1  | 0  | 1       | 0        | 10      |
| 0  | 1  | 1     | 0         | 6       | 0  | 1  | 1       | 0        | 6       |
| 0  | 1  | 1     | 1         | 7       | 1  | 1  | 1       | 0        | 14      |
| 1  | 0  | 0     | 0         | 8       | 0  | 0  | 0       | 1        | 1       |
| 1  | 0  | 0     | 1         | 9       | 1  | 0  | 0       | 1        | 9       |
| 1  | 0  | 1     | 0         | 10      | 0  | 1  | 0       | 1        | 5       |
| 1  | 0  | 1     | 1         | 11      | 1  | 1  | 0       | 1        | 13      |
| 1  | 1  | 0     | 0         | 12      | 0  | 0  | 1       | 1        | 3       |
| 1  | 1  | 0     | 1         | 13      | 1  | 0  | 1       | 1        | 11      |
| 1  | 1  | 1     | 0         | 14      | 0  | 1  | 1       | 1        | 7       |
| 1  | 1  | 1     | 1         | 15      | 1  | 1  | 1       | 1        | 15      |

### 4.6 Interfacing Program and Data Memory Spaces

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/606/608/610 architecture uses a 24-bit-wide program space and a 16-bit-wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

## 4.6.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

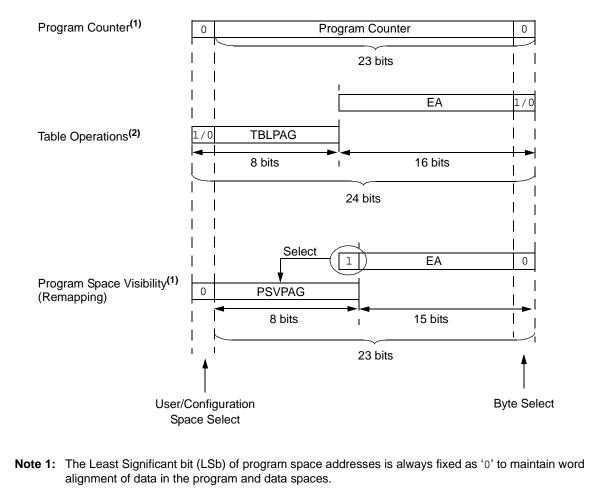

For remapping operations, the 8-bit Program Space Visibility Register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

Table 4-67 and Figure 4-9 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, and D<15:0> refers to a data space word.

| Access Type                                    | Access<br>Space | Program Space Address        |             |               |                              |                    |
|------------------------------------------------|-----------------|------------------------------|-------------|---------------|------------------------------|--------------------|
|                                                |                 | <23>                         | <22:16>     | <15>          | <14:1>                       | <0>                |
| Instruction Access<br>(Code Execution)         | User            | 0                            | PC<22:1> 0  |               |                              | 0                  |
|                                                |                 | 0xx xxxx xxxx xxxx xxxx xxx0 |             |               |                              |                    |
| TBLRD/TBLWT<br>(Byte/Word Read/Write)          | User            | TB                           | TBLPAG<7:0> |               | Data EA<15:0>                |                    |
|                                                |                 | 0xxx xxxx xxxx xxxx xxxx     |             |               |                              |                    |
|                                                | Configuration   | TBLPAG<7:0>                  |             | Data EA<15:0> |                              |                    |
|                                                |                 | 1xxx xxxx xxxx xxxx xxxx     |             |               |                              |                    |
| Program Space Visibility<br>(Block Remap/Read) | User            | 0                            | PSVPAG<7:0> |               | Data EA<14:0> <sup>(1)</sup> |                    |
|                                                |                 | 0                            | XXXX XXXX   | XXXX XXXX XX  |                              | xxx xxxx xxxx xxxx |

**Note 1:** Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.





**2:** Table operations are not required to be word-aligned. Table read operations are permitted in the configuration memory space.

#### 4.6.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit-wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
  - In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
  - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom byte', will always be '0'.
  - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

Similarly, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

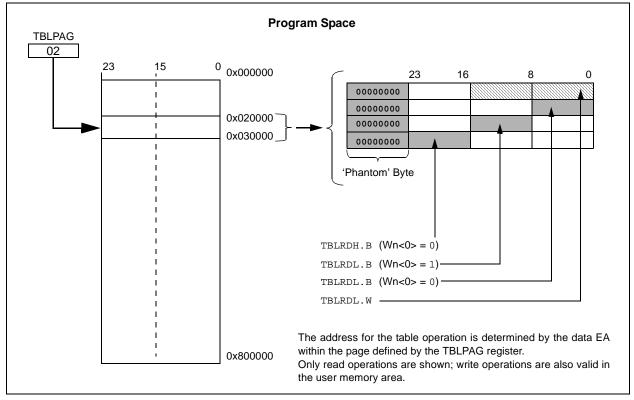



FIGURE 4-10: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

#### 4.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

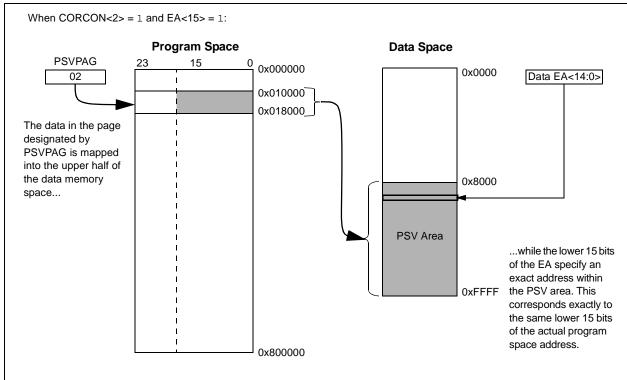
The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access to stored constant data from the data space without the need to use special instructions (such as TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add a cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address 8000h and higher maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.


| Note: | PSV access is temporarily disabled during |
|-------|-------------------------------------------|
|       | table reads/writes.                       |

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV. D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, and are executed inside a REPEAT loop, these instances require two instruction cycles in addition to the specified execution time of the instruction:

- Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction using PSV to access data, to execute in a single cycle.



#### FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION

### 5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/606/608/610 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

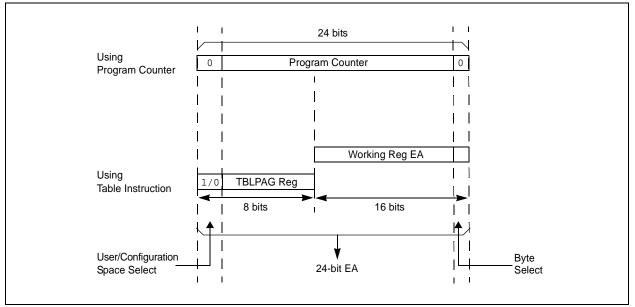
Flash memory can be programmed in two ways:

- In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows a dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGC1/PGD1, PGC2/PGD2 or PGC3/PGD3),

and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write program memory data, either in blocks or 'rows' of 64 instructions (192 bytes) at a time, or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.


### 5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

#### FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS



© 2010 Microchip Technology Inc.

### 5.2 RTSP Operation

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/606/608/610 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (512 instructions) at a time, and to program one row or one word at a time. Table 27-12 shows typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers sequentially. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions.

All of the table write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row.

### 5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

The programming time depends on the FRC accuracy (see Table 27-20) and the value of the FRC Oscillator Tuning register (see Register 9-4). Use the following formula to calculate the minimum and maximum values for the Row Write Time, Page Erase Time, and Word Write Cycle Time parameters (see Table 27-12).

| EQUATION 5-1: | PROGRAMMING | TIME |
|---------------|-------------|------|
|               |             |      |

| Т                                                        |
|----------------------------------------------------------|
| $7.37 MHz \times (FRC Accuracy)\% \times (FRC Tuning)\%$ |

For example, if the device is operating at +125°C, the FRC accuracy will be  $\pm 5\%$ . If the TUN<5:0> bits (see Register 9-4) are set to `b000000, the Minimum Row Write Time is:

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 + 0.05) \times (1 - 0)} = 1.43 ms$$

and, the Maximum Row Write Time is:

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 - 0.05) \times (1 - 0)} = 1.58 ms$$

Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.

### 5.4 Control Registers

Two SFRs are used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 5.3** "**Programming Operations**" for further details.

| R/SO-0 <sup>(1)</sup> | R/W-0 <sup>(1)</sup>                                                                                          | R/W-0 <sup>(1)</sup>              | U-0          | U-0                  | U-0                  | U-0                  | U-0                  |
|-----------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------|----------------------|----------------------|----------------------|----------------------|
| WR                    | WREN                                                                                                          | WRERR                             | _            | —                    | —                    | _                    |                      |
| bit 15                |                                                                                                               |                                   |              |                      |                      |                      | bit                  |
|                       |                                                                                                               |                                   |              |                      |                      |                      |                      |
| U-0                   | R/W-0 <sup>(1)</sup>                                                                                          | U-0                               | U-0          | R/W-0 <sup>(1)</sup> | R/W-0 <sup>(1)</sup> | R/W-0 <sup>(1)</sup> | R/W-0 <sup>(1)</sup> |
| _                     | ERASE                                                                                                         | _                                 |              |                      | NVMOF                | <3:0> <sup>(2)</sup> |                      |
| bit 7                 |                                                                                                               |                                   |              |                      |                      |                      | bi                   |
| Legend:               |                                                                                                               | SO = Settab                       | le Only bit  |                      |                      |                      |                      |
| R = Readable          | e bit                                                                                                         | W = Writable                      | e bit        | U = Unimpler         | nented bit, read     | l as '0'             |                      |
| -n = Value at         | POR                                                                                                           | '1' = Bit is se                   | et           | '0' = Bit is cle     | ared                 | x = Bit is unkr      | nown                 |
| L:4 4 5               |                                                                                                               | - 4 1  - 14                       |              |                      |                      |                      |                      |
| bit 15                | WR: Write Cor                                                                                                 |                                   | v program o  | or erase operatio    | n The operatio       | on is self-timed     | and the hit          |
|                       |                                                                                                               | hardware onc                      |              |                      |                      | Sin is self-timed    |                      |
|                       | •                                                                                                             |                                   | •            | lete and inactive    | ;                    |                      |                      |
| bit 14                | WREN: Write I                                                                                                 | Enable bit                        |              |                      |                      |                      |                      |
|                       | 1 = Enable Fla                                                                                                |                                   |              |                      |                      |                      |                      |
|                       | 0 = Inhibit Fla                                                                                               |                                   | -            | ons                  |                      |                      |                      |
| bit 13                | WRERR: Write                                                                                                  | •                                 | •            |                      |                      |                      |                      |
|                       |                                                                                                               |                                   |              | equence attemp       | ot or termination    | on has occurre       | ed (bit is           |
|                       |                                                                                                               | ally on any set<br>am or erase or |              |                      |                      |                      |                      |
| bit 12-7              | <ul> <li>0 = The program or erase operation completed normally</li> <li>Unimplemented: Read as '0'</li> </ul> |                                   |              |                      |                      |                      |                      |
| bit 6                 | ERASE: Erase/Program Enable bit                                                                               |                                   |              |                      |                      |                      |                      |
|                       |                                                                                                               | -                                 |              | ed by NVMOP<3        | :0> on the next      | WR command           |                      |
|                       |                                                                                                               |                                   |              | cified by NVMOF      |                      |                      |                      |
| bit 5-4               | Unimplemented: Read as '0'                                                                                    |                                   |              |                      |                      |                      |                      |
| bit 3-0               | NVMOP<3:0>                                                                                                    | NVM Operation                     | on Select bi | ts <sup>(2)</sup>    |                      |                      |                      |
|                       | <u> If ERASE = 1:</u>                                                                                         |                                   |              |                      |                      |                      |                      |
|                       | 1111 = Memore<br>1101 = Erase                                                                                 |                                   |              |                      |                      |                      |                      |
|                       | 0011 = No ope                                                                                                 | • •                               | 71 IL        |                      |                      |                      |                      |
|                       | 0010 = Memo                                                                                                   |                                   | operation    |                      |                      |                      |                      |
|                       | 0001 = No ope                                                                                                 |                                   |              |                      |                      |                      |                      |
|                       | 0000 = Erase                                                                                                  | a single Config                   | juration reg | ister byte           |                      |                      |                      |
|                       | If ERASE = 0:                                                                                                 |                                   |              |                      |                      |                      |                      |
|                       | 1111 = No ope                                                                                                 |                                   |              |                      |                      |                      |                      |
|                       | 1101 = No ope                                                                                                 |                                   |              |                      |                      |                      |                      |
|                       | 0011 = Memor<br>0010 = No ope                                                                                 |                                   | m operatior  | 1                    |                      |                      |                      |
|                       | 0001 = Memor                                                                                                  |                                   | operation    |                      |                      |                      |                      |
|                       | 0000 = Progra                                                                                                 |                                   |              | egister byte         |                      |                      |                      |
| Note 4.               | haan hita aan art                                                                                             | he Beester                        |              |                      |                      |                      |                      |
|                       | hese bits can only                                                                                            |                                   |              |                      |                      |                      |                      |

2: All other combinations of NVMOP<3:0> are unimplemented.

| U-0             | U-0 | U-0              | U-0  | U-0              | U-0             | U-0             | U-0   |
|-----------------|-----|------------------|------|------------------|-----------------|-----------------|-------|
| —               | -   | —                | _    | —                | —               | —               | —     |
| bit 15          |     |                  |      |                  |                 |                 | bit 8 |
|                 |     |                  |      |                  |                 |                 |       |
| W-0             | W-0 | W-0              | W-0  | W-0              | W-0             | W-0             | W-0   |
|                 |     |                  | NVMK | (EY<7:0>         |                 |                 |       |
| bit 7           |     |                  |      |                  |                 |                 | bit 0 |
|                 |     |                  |      |                  |                 |                 |       |
| Legend:         |     |                  |      |                  |                 |                 |       |
| R = Readable    | bit | W = Writable b   | bit  | U = Unimpler     | nented bit, rea | d as '0'        |       |
| -n = Value at F | POR | '1' = Bit is set |      | '0' = Bit is cle | ared            | x = Bit is unkr | nown  |

#### REGISTER 5-2: NVMKEY: NON-VOLATILE MEMORY KEY REGISTER

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register bits (write-only)

#### 5.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

One row of program Flash memory can be programmed at a time. To achieve this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
  - a) Set the NVMOP bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
  - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
  - c) Write 0x55 to NVMKEY.
  - d) Write 0xAA to NVMKEY.
  - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
  - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
  - b) Write 0x55 to NVMKEY.
  - c) Write 0xAA to NVMKEY.
  - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

#### EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

| ; Set up NVMCO | N for block erase operation          |                                         |
|----------------|--------------------------------------|-----------------------------------------|
| MOV            | #0x4042, W0                          | ;                                       |
| MOV            | W0, NVMCON                           | ; Initialize NVMCON                     |
| ; Init pointer | to row to be ERASED                  |                                         |
| MOV            | <pre>#tblpage(PROG_ADDR), W0</pre>   | ;                                       |
| MOV            | W0, TBLPAG                           | ; Initialize PM Page Boundary SFR       |
| MOV            | <pre>#tbloffset(PROG_ADDR), W0</pre> | ; Initialize in-page EA[15:0] pointer   |
| TBLWTL         | WO, [WO]                             | ; Set base address of erase block       |
| DISI           | #5                                   | ; Block all interrupts with priority <7 |
|                |                                      | ; for next 5 instructions               |
| MOV            | #0x55, W0                            |                                         |
| MOV            | W0, NVMKEY                           | ; Write the 55 key                      |
| MOV            | #0xAA, W1                            | ;                                       |
| MOV            | W1, NVMKEY                           | ; Write the AA key                      |
| BSET           | NVMCON, #WR                          | ; Start the erase sequence              |
| NOP            |                                      | ; Insert two NOPs after the erase       |
| NOP            |                                      | ; command is asserted                   |
|                |                                      |                                         |

### EXAMPLE 5-2: LOADING THE WRITE BUFFERS

|   | ; | Set up NVMCO  | N for row programming oper  | at: | ions                                  |
|---|---|---------------|-----------------------------|-----|---------------------------------------|
|   |   | MOV           | #0x4001, W0                 | ;   |                                       |
|   |   | MOV           | W0, NVMCON                  | ;   | Initialize NVMCON                     |
|   | ; | Set up a poir | nter to the first program   | mer | nory location to be written           |
|   | ; | program memo: | ry selected, and writes en  | ab  | led                                   |
|   |   | MOV           | #0x0000, W0                 | ;   |                                       |
|   |   | MOV           | W0, TBLPAG                  | ;   | Initialize PM Page Boundary SFR       |
|   |   | MOV           | #0x6000, W0                 | ;   | An example program memory address     |
|   | ; | Perform the   | TBLWT instructions to writ  | e t | the latches                           |
|   | ; | 0th_program_  | word                        |     |                                       |
|   |   | MOV           | #LOW_WORD_0, W2             | ;   |                                       |
|   |   | MOV           | <pre>#HIGH_BYTE_0, W3</pre> | ;   |                                       |
|   |   | TBLWTL        | W2, [W0]                    | ;   | Write PM low word into program latch  |
|   |   | TBLWTH        | W3, [W0++]                  | ;   | Write PM high byte into program latch |
|   | ; | lst_program_  | word                        |     |                                       |
|   |   | MOV           | #LOW_WORD_1, W2             | ;   |                                       |
|   |   | MOV           | #HIGH_BYTE_1, W3            | ;   |                                       |
|   |   | TBLWTL        | W2, [W0]                    | ;   | Write PM low word into program latch  |
|   |   | TBLWTH        | W3, [W0++]                  | ;   | Write PM high byte into program latch |
|   | ; | 2nd_program   | _word                       |     |                                       |
|   |   | MOV           | #LOW_WORD_2, W2             | ;   |                                       |
|   |   | MOV           | #HIGH_BYTE_2, W3            | ;   |                                       |
|   |   | TBLWTL        | W2, [W0]                    | ;   | Write PM low word into program latch  |
|   |   | TBLWTH        | W3, [W0++]                  | ;   | Write PM high byte into program latch |
|   |   | •             |                             |     |                                       |
|   |   | •             |                             |     |                                       |
|   |   | •             |                             |     |                                       |
|   | ; | 63rd_program  | —                           |     |                                       |
|   |   |               | #LOW_WORD_31, W2            | ;   |                                       |
|   |   |               | #HIGH_BYTE_31, W3           | ;   |                                       |
|   |   |               | W2, [W0]                    |     | Write PM low word into program latch  |
|   |   | TBLWTH        | W3, [W0++]                  | ;   | Write PM high byte into program latch |
| 1 |   |               |                             |     |                                       |

#### EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

| DISI | #5          | ; Block all interrupts with priority <7<br>; for next 5 instructions |
|------|-------------|----------------------------------------------------------------------|
| MOV  | #0x55, W0   |                                                                      |
| MOV  | W0, NVMKEY  | ; Write the 55 key                                                   |
| MOV  | #0xAA, W1   | ;                                                                    |
| MOV  | W1, NVMKEY  | ; Write the AA key                                                   |
| BSET | NVMCON, #WR | ; Start the erase sequence                                           |
| NOP  |             | ; Insert two NOPs after the                                          |
| NOP  |             | ; erase command is asserted                                          |
|      |             |                                                                      |

### 6.0 RESETS

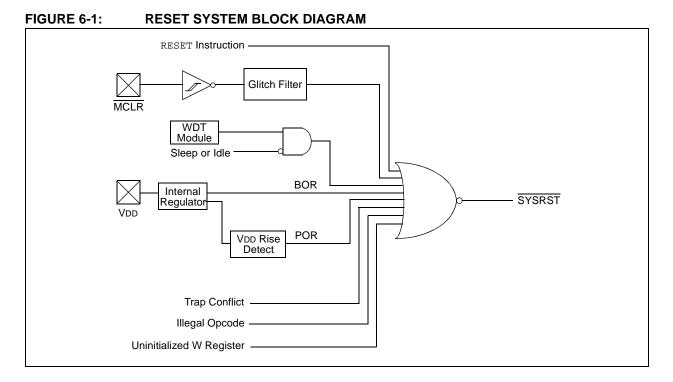
- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 8.** "**Reset**" (DS70192) in the "*dsPIC33F/PIC24H Family Reference Manual*", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: Software RESET Instruction
- WDTO: Watchdog Timer Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
  - Illegal Opcode Reset
  - Uninitialized W Register Reset
  - Security Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.


Note: Refer to the specific peripheral section or Section 3.0 "CPU" of this data sheet for register Reset states.

All types of device Reset sets a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR bit (RCON<0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.



| R/W-0           | R/W-0                             | U-0                                 | U-0           | U-0              | U-0              | U-0             | R/W-0        |
|-----------------|-----------------------------------|-------------------------------------|---------------|------------------|------------------|-----------------|--------------|
| TRAPR           | IOPUWR                            | _                                   | —             | _                |                  | —               | VREGS        |
| bit 15          |                                   |                                     |               |                  | L                |                 | bit 8        |
|                 |                                   |                                     |               |                  |                  |                 |              |
| R/W-0           | R/W-0                             | R/W-0                               | R/W-0         | R/W-0            | R/W-0            | R/W-1           | R/W-1        |
| EXTR            | SWR                               | SWDTEN <sup>(2)</sup>               | WDTO          | SLEEP            | IDLE             | BOR             | POR          |
| bit 7           |                                   |                                     |               |                  |                  |                 | bit (        |
| Legend:         |                                   |                                     |               |                  |                  |                 |              |
| R = Readable    | bit                               | W = Writable                        | bit           | U = Unimpler     | mented bit, read | d as '0'        |              |
| -n = Value at F |                                   | '1' = Bit is set                    |               | '0' = Bit is cle |                  | x = Bit is unk  | nown         |
|                 |                                   |                                     |               |                  |                  |                 |              |
| bit 15          | TRAPR: Trap                       | o Reset Flag bit                    |               |                  |                  |                 |              |
|                 |                                   | onflict Reset ha                    |               |                  |                  |                 |              |
|                 | •                                 | onflict Reset ha                    |               |                  |                  |                 |              |
| bit 14          |                                   | gal Opcode or                       |               |                  | •                |                 |              |
|                 |                                   | al opcode dete<br>Pointer caused    |               | gal address mo   | ode or uninitia  | lized W registe | er used as a |
|                 |                                   | l opcode or unit                    |               | Reset has not o  | ccurred          |                 |              |
| bit 13-9        | •                                 | ited: Read as '                     |               |                  |                  |                 |              |
| bit 8           | •                                 | age Regulator S                     |               | ng Sleep bit     |                  |                 |              |
|                 |                                   | egulator is activ                   | •             | •                |                  |                 |              |
|                 | 0 = Voltage re                    | egulator goes ir                    | to Standby n  | node during Sle  | ep               |                 |              |
| bit 7           | EXTR: Extern                      | nal Reset Pin (N                    | ICLR) bit     |                  |                  |                 |              |
|                 |                                   | Clear (pin) Res                     |               |                  |                  |                 |              |
|                 |                                   | Clear (pin) Res                     |               |                  |                  |                 |              |
| bit 6           |                                   | are Reset Flag (                    | -             |                  |                  |                 |              |
|                 |                                   | instruction has instruction has     |               |                  |                  |                 |              |
| bit 5           |                                   | oftware Enable/                     |               |                  |                  |                 |              |
| 2.1.0           | 1 = WDT is e                      |                                     |               |                  |                  |                 |              |
|                 | 0 = WDT is d                      | isabled                             |               |                  |                  |                 |              |
| bit 4           | WDTO: Watc                        | hdog Timer Tim                      | ne-out Flag b | it               |                  |                 |              |
|                 |                                   | e-out has occur                     |               |                  |                  |                 |              |
|                 |                                   | e-out has not or                    |               |                  |                  |                 |              |
| bit 3           |                                   | e-up from Sleep                     | •             |                  |                  |                 |              |
|                 |                                   | as been in Slee<br>as not been in S |               |                  |                  |                 |              |
| bit 2           |                                   | up from Idle Fla                    | -             |                  |                  |                 |              |
| 511 2           |                                   | as in Idle mode                     | g bit         |                  |                  |                 |              |
|                 |                                   | as not in Idle m                    | ode           |                  |                  |                 |              |
| bit 1           | BOR: Brown-                       | -out Reset Flag                     | bit           |                  |                  |                 |              |
|                 | 1 = A Brown-                      | out Reset has o                     | occurred      |                  |                  |                 |              |
|                 | 0 = A Brown-                      | out Reset has r                     | not occurred  |                  |                  |                 |              |
| bit 0           |                                   | on Reset Flag I                     |               |                  |                  |                 |              |
|                 | 1 = A Power-up Reset has occurred |                                     |               |                  |                  |                 |              |
|                 |                                   | up Reset has o<br>up Reset has n    |               |                  |                  |                 |              |

# REGISTER 6-1: RCON: RESET CONTROL REGISTER<sup>(1)</sup>

- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
  - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

#### 6.1 System Reset

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices have two types of Reset:

- Cold Reset
- Warm Reset

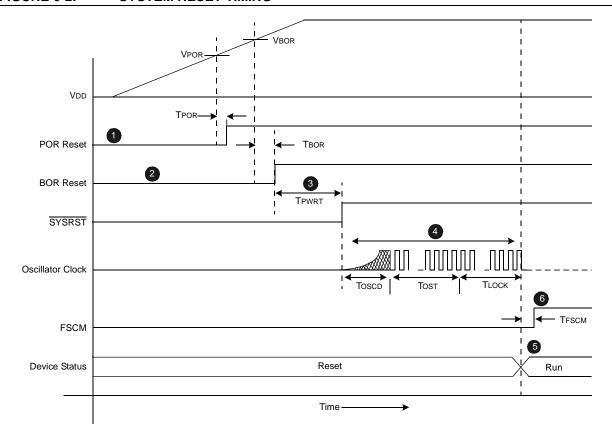
A cold Reset is the result of a Power-on Reset (POR) or a Brown-out Reset (BOR). On a cold Reset, the FNOSC Configuration bits in the FOSC Configuration register select the device clock source.

A warm Reset is the result of all the other Reset sources, including the RESET instruction. On warm Reset, the device will continue to operate from the current clock source as indicated by the Current Oscillator Selection (COSC<2:0>) bits in the Oscillator Control (OSCCON<14:12>) register.

The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. The sequence in which this occurs is detailed below and is shown in Figure 6-2.

1. **POR Reset:** A POR circuit holds the device in Reset when the power supply is turned on. The POR circuit is active until VDD crosses the VPOR threshold and the delay, TPOR, has elapsed.

- 2. **BOR Reset:** The on-chip voltage regulator has a BOR circuit that keeps the device in Reset until VDD crosses the VBOR threshold and the delay, TBOR, has elapsed. The delay, TBOR, ensures that the voltage regulator output becomes stable.
- 3. **PWRT Timer:** The programmable power-up timer continues to hold the processor in Reset for a specific period of time (TPWRT) after a BOR. The delay TPWRT ensures that the system power supplies have stabilized at the appropriate level for full-speed operation. After the delay, TPWRT, has elapsed, the SYSRST becomes inactive, which in turn enables the selected oscillator to start generating clock cycles.
- Oscillator Delay: The total delay for the clock to be ready for various clock source selections is given in Table 6-1. Refer to Section 9.0 "Oscillator Configuration" for more information.
- 5. When the oscillator clock is ready, the processor begins execution from location 0x000000. The user application programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.
- 6. The Fail-Safe Clock Monitor (FSCM), if enabled, begins to monitor the system clock when the system clock is ready and the delay, TFSCM, elapsed.


| Oscillator Mode        | Oscillator<br>Start-up Delay | Oscillator<br>Start-up Timer | PLL Lock Time        | Total Delay                                |  |  |
|------------------------|------------------------------|------------------------------|----------------------|--------------------------------------------|--|--|
| FRC, FRCDIV16, FRCDIVN | Toscd <sup>(1)</sup>         | _                            | _                    | Toscd <sup>(1)</sup>                       |  |  |
| FRCPLL                 | Toscd <sup>(1)</sup>         | —                            | ТLОСК <sup>(3)</sup> | Toscd + Tlock <sup>(1,3)</sup>             |  |  |
| XT                     | Toscd(1)                     | Tost <sup>(2)</sup>          | —                    | Toscd + Tost <sup>(1,2)</sup>              |  |  |
| HS                     | Toscd <sup>(1)</sup>         | Tost <sup>(2)</sup>          | —                    | Toscd + Tost <sup>(1,2)</sup>              |  |  |
| EC                     | —                            | —                            | —                    | —                                          |  |  |
| XTPLL                  | Toscd(1)                     | Tost <sup>(2)</sup>          | Тьоск <sup>(3)</sup> | Toscd + Tost +<br>Tlock <sup>(1,2,3)</sup> |  |  |
| HSPLL                  | Toscd <sup>(1)</sup>         | Tost <sup>(2)</sup>          | ТLОСК <sup>(3)</sup> | Toscd + Tost +<br>Tlock <sup>(1,2,3)</sup> |  |  |
| ECPLL                  | _                            | —                            | ТLОСК <sup>(3)</sup> | Тьоск <sup>(3)</sup>                       |  |  |
| LPRC                   | Toscd <sup>(1)</sup>         | —                            | —                    | Toscd <sup>(1)</sup>                       |  |  |

#### TABLE 6-1:OSCILLATOR DELAY

**Note 1:** ToscD = Oscillator start-up delay (1.1 μs max for FRC, 70 μs max for LPRC). Crystal oscillator start-up times vary with crystal characteristics, load capacitance, etc.

**2:** TOST = Oscillator start-up timer delay (1024 oscillator clock period). For example, TOST = 102.4 μs for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.

**3:** TLOCK = PLL lock time (1.5 ms nominal) if PLL is enabled.



#### FIGURE 6-2: SYSTEM RESET TIMING

- **Note 1: POR Reset:** A POR circuit holds the device in Reset when the power supply is turned on. The POR circuit is active until VDD crosses the VPOR threshold and the delay, TPOR, has elapsed.
  - 2: BOR Reset: The on-chip voltage regulator has a BOR circuit that keeps the device in Reset until VDD crosses the VBOR threshold and the delay, TBOR, has elapsed. The delay, TBOR, ensures the voltage regulator output becomes stable.
  - **3: PWRT Timer:** The programmable power-up timer continues to hold the processor in Reset for a specific period of time (TPWRT) after a BOR. The delay, TPWRT, ensures that the system power supplies have stabilized at the appropriate level for full-speed operation. After the delay, TPWRT has elapsed and the SYSRST becomes inactive, which in turn, enables the selected oscillator to start generating clock cycles.
  - 4: Oscillator Delay: The total delay for the clock to be ready for various clock source selections is given in Table 6-1. Refer to Section 9.0 "Oscillator Configuration" for more information.
  - 5: When the oscillator clock is ready, the processor begins execution from location 0x000000. The user application programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.
  - 6: If the Fail-Safe Clock Monitor (FSCM) is enabled, it begins to monitor the system clock when the system clock is ready and the delay, TFSCM, has elapsed.

| Note: | When the device exits the Reset condition (begins normal operation), the |
|-------|--------------------------------------------------------------------------|
|       | device operating parameters (voltage,                                    |
|       | frequency, temperature, etc.) must be                                    |
|       | within their operating ranges; otherwise,                                |
|       | the device may not function correctly.                                   |
|       | The user application must ensure that                                    |
|       | the delay between the time power is first                                |
|       | applied, and the time SYSRST becomes                                     |
|       | inactive, is long enough to get all operat-                              |
|       | ing parameters within specification.                                     |

### 6.2 Power-on Reset (POR)

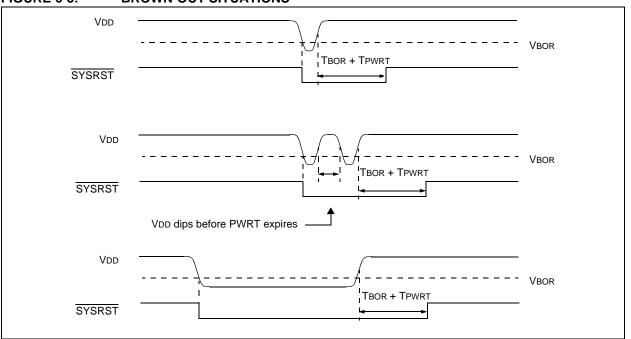
A Power-on Reset (POR) circuit ensures the device is reset from power-on. The POR circuit is active until VDD crosses the VPOR threshold and the delay, TPOR, has elapsed. The delay, TPOR, ensures the internal device bias circuits become stable.

The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to **Section 27.0 "Electrical Characteristics"** for details.

The POR Status (POR) bit in the Reset Control (RCON<0>) register is set to indicate the Power-on Reset.

#### 6.3 Brown-out Reset (BOR) and Power-up Timer (PWRT)

The on-chip regulator has a Brown-out Reset (BOR) circuit that resets the device when the VDD is too low (VDD < VBOR) for proper device operation. The BOR circuit keeps the device in Reset until VDD crosses the


VBOR threshold and the delay, TBOR, has elapsed. The delay, TBOR, ensures the voltage regulator output becomes stable.

The BOR Status (BOR) bit in the Reset Control (RCON<1>) register is set to indicate the Brown-out Reset.

The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full-speed operation. The PWRT provides power-up time delay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the SYSRST is released.

The power-up timer delay (TPWRT) is programmed by the Power-on Reset Timer Value Select (FPWRT<2:0>) bits in the POR Configuration (FPOR<2:0>) register, which provides eight settings (from 0 ms to 128 ms). Refer to **Section 24.0 "Special Features"** for further details.

Figure 6-3 shows the typical brown-out scenarios. The reset delay (TBOR + TPWRT) is initiated each time VDD rises above the VBOR trip point



#### FIGURE 6-3: BROWN-OUT SITUATIONS

### 6.4 External Reset (EXTR)

The external Reset is generated by driving the MCLR pin low. The MCLR pin is a Schmitt Trigger input with an additional glitch filter. Reset pulses that are longer than the minimum pulse width will generate a Reset. Refer to **Section 27.0 "Electrical Characteristics"** for minimum pulse width specifications. The external Reset (MCLR) pin (EXTR) bit in the Reset Control (RCON) register is set to indicate the MCLR Reset.

#### 6.4.0.1 EXTERNAL SUPERVISORY CIRCUIT

Many systems have external supervisory circuits that generate Reset signals to reset multiple devices in the system. This external Reset signal can be directly connected to the MCLR pin to reset the device when the rest of system is reset.

#### 6.4.0.2 INTERNAL SUPERVISORY CIRCUIT

When using the internal power supervisory circuit to reset the device, the external Reset pin (MCLR) should be tied directly or resistively to VDD. In this case, the MCLR pin will not be used to generate a Reset. The external Reset pin (MCLR) does not have an internal pull-up and must not be left unconnected.

#### 6.5 Software RESET Instruction (SWR)

Whenever the RESET instruction is executed, the device will assert SYSRST, placing the device in a special Reset state. This Reset state will not re-initialize the clock. The clock source in effect prior to the RESET instruction will remain. SYSRST is released at the next instruction cycle and the Reset vector fetch will commence.

The Software Reset (SWR) flag (instruction) in the Reset Control (RCON<6>) register is set to indicate the software Reset.

### 6.6 Watchdog Time-out Reset (WDTO)

Whenever a Watchdog time-out occurs, the device will asynchronously assert SYSRST. The clock source will remain unchanged. A WDT time-out during Sleep or Idle mode will wake-up the processor, but will not reset the processor.

The Watchdog Timer Time-out (WDTO) flag in the Reset Control (RCON<4>) register is set to indicate the Watchdog Reset. Refer to **Section 24.4 "Watchdog Timer (WDT)**" for more information on Watchdog Reset.

#### 6.7 Trap Conflict Reset

If a lower priority hard trap occurs while a higher priority trap is being processed, a hard Trap Conflict Reset occurs. The hard traps include exceptions of priority level 13 through level 15, inclusive. The address error (level 13) and oscillator error (level 14) traps fall into this category.

The Trap Reset (TRAPR) flag in the Reset Control (RCON<15>) register is set to indicate the Trap Conflict Reset. Refer to **Section 7.0 "Interrupt Controller"** for more information on Trap Conflict Resets.

### 6.8 Illegal Condition Device Reset

An illegal condition device Reset occurs due to the following sources:

- Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset

The Illegal Opcode or Uninitialized W Access Reset (IOPUWR) flag in the Reset Control (RCON<14>) register is set to indicate the illegal condition device Reset.

#### 6.8.1 ILLEGAL OPCODE RESET

A device Reset is generated if the device attempts to execute an illegal opcode value that is fetched from program memory.

The Illegal Opcode Reset function can prevent the device from executing program memory sections that are used to store constant data. To take advantage of the Illegal Opcode Reset, use only the lower 16 bits of each program memory section to store the data values. The upper 8 bits should be programmed with 3Fh, which is an illegal opcode value.

#### 6.8.2 UNINITIALIZED W REGISTER RESET

Any attempt to use the uninitialized W register as an Address Pointer will Reset the device. The W register array (with the exception of W15) is cleared during all Resets and is considered uninitialized until written to.

#### 6.8.3 SECURITY RESET

If a Program Flow Change (PFC) or Vector Flow Change (VFC) targets a restricted location in a protected segment (boot and secure segment), that operation will cause a Security Reset.

The PFC occurs when the program counter is reloaded as a result of a call, jump, computed jump, return, return from subroutine or other form of branch instruction.

The VFC occurs when the program counter is reloaded with an interrupt or trap vector.

Refer to Section 24.8 "Code Protection and CodeGuard<sup>™</sup> Security" for more information on Security Reset.

### 6.9 Using the RCON Status Bits

The user application can read the Reset Control (RCON) register after any device Reset to determine the cause of the Reset.

| Note: | The status bits in the RCON register      |
|-------|-------------------------------------------|
|       | should be cleared after they are read so  |
|       | that the next RCON register value after a |
|       | device Reset will be meaningful.          |

#### TABLE 6-2: RESET FLAG BIT OPERATION

Table 6-2 provides a summary of the Reset flag bit operation.

| Flag Bit         | Set by:                                                             | Cleared by:                                     |
|------------------|---------------------------------------------------------------------|-------------------------------------------------|
| TRAPR (RCON<15>) | Trap conflict event                                                 | POR,BOR                                         |
| IOPWR (RCON<14>) | Illegal opcode or uninitialized W register access or Security Reset | POR,BOR                                         |
| EXTR (RCON<7>)   | MCLR Reset                                                          | POR                                             |
| SWR (RCON<6>)    | RESET instruction                                                   | POR,BOR                                         |
| WDTO (RCON<4>)   | WDT time-out                                                        | PWRSAV instruction, CLRWDT instruction, POR,BOR |
| SLEEP (RCON<3>)  | PWRSAV #SLEEP instruction                                           | POR,BOR                                         |
| IDLE (RCON<2>)   | PWRSAV #IDLE instruction                                            | POR,BOR                                         |
| BOR (RCON<1>)    | POR, BOR                                                            |                                                 |
| POR (RCON<0>)    | POR                                                                 |                                                 |

Note: All Reset flag bits can be set or cleared by user software.

NOTES:

# 7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 47. "Interrupts (Part V)" (DS70597) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/606/608/610 interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 CPU. It has the following features:

- Up to eight processor exceptions and software traps
- Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

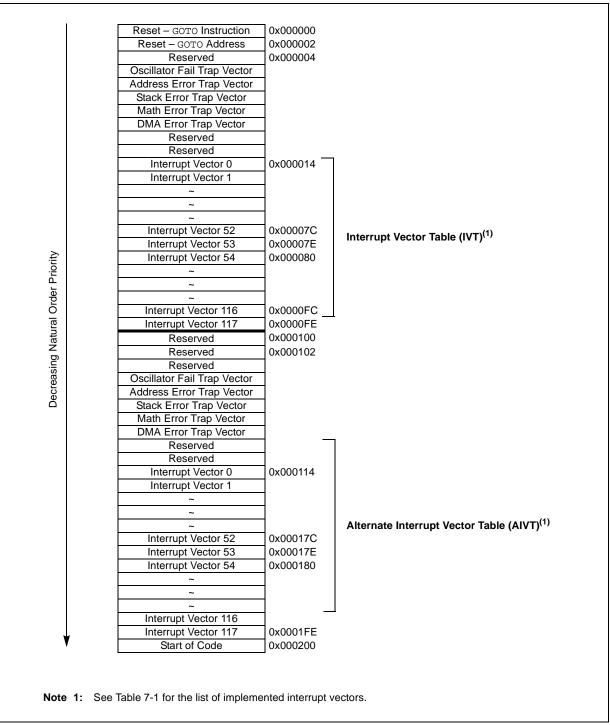
# 7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location 000004h. The IVT contains 126 vectors, consisting of eight nonmaskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit-wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR). Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with vector 0 will take priority over interrupts at any other vector address.

ThedsPIC33FJ32GS406/608/610anddsPIC33FJ64GS406/606/608/610devices implement upto71unique interrupts and five non-maskable traps.These are summarized in Table 7-1.

#### 7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.


The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

## 7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 device clears its registers in response to a Reset, which forces the PC to zero. The digital signal controller then begins program execution at location 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

**Note:** Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

#### FIGURE 7-1: dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 INTERRUPT VECTOR TABLE



| TABLE 7-1:       |                               |                       |                       |                                          |
|------------------|-------------------------------|-----------------------|-----------------------|------------------------------------------|
| Vector<br>Number | Interrupt<br>Request<br>(IQR) | IVT Address           | AIVT Address          | Interrupt Source                         |
|                  |                               | High                  | est Natural Order Pr  | iority                                   |
| 8                | 0                             | 0x000014              | 0x000114              | INT0 – External Interrupt 0              |
| 9                | 1                             | 0x000016              | 0x000116              | IC1 – Input Capture 1                    |
| 10               | 2                             | 0x000018              | 0x000118              | OC1 – Output Compare 1                   |
| 11               | 3                             | 0x00001A              | 0x00011A              | T1 – Timer1                              |
| 12               | 4                             | 0x00001C              | 0x00011C              | DMA0 – DMA Channel 0                     |
| 13               | 5                             | 0x00001E              | 0x00011E              | IC2 – Input Capture 2                    |
| 14               | 6                             | 0x000020              | 0x000120              | OC2 – Output Compare 2                   |
| 15               | 7                             | 0x000022              | 0x000122              | T2 – Timer2                              |
| 16               | 8                             | 0x000024              | 0x000124              | T3 – Timer3                              |
| 17               | 9                             | 0x000026              | 0x000126              | SPI1E – SPI1 Fault                       |
| 18               | 10                            | 0x000028              | 0x000128              | SPI1 – SPI1 Transfer Done                |
| 19               | 11                            | 0x00002A              | 0x00012A              | U1RX – UART1 Receiver                    |
| 20               | 12                            | 0x00002C              | 0x00012C              | U1TX – UART1 Transmitter                 |
| 21               | 13                            | 0x00002E              | 0x00012E              | ADC – ADC Group Convert Done             |
| 22               | 14                            | 0x000030              | 0x000130              | DMA1 – DMA Channel 1                     |
| 23               | 15                            | 0x000032              | 0x000132              | Reserved                                 |
| 24               | 16                            | 0x000034              | 0x000134              | SI2C1 – I2C1 Slave Event                 |
| 25               | 17                            | 0x000036              | 0x000136              | MI2C1 – I2C1 Master Event                |
| 26               | 18                            | 0x000038              | 0x000138              | CMP1 – Analog Comparator 1 Interrupt     |
| 27               | 19                            | 0x00003A              | 0x00013A              | CN – Input Change Notification Interrupt |
| 28               | 20                            | 0x00003C              | 0x00013C              | INT1 – External Interrupt 1              |
| 29-31            | 21-23                         | 0x00003E-<br>0x000042 | 0x00013E-<br>0x000142 | Reserved                                 |
| 32               | 24                            | 0x000044              | 0x000144              | DMA2 – DMA Channel 2                     |
| 33               | 25                            | 0x000046              | 0x000146              | OC3 – Output Compare 3                   |
| 34               | 26                            | 0x000048              | 0x000148              | OC4 – Output Compare 4                   |
| 35               | 27                            | 0x00004A              | 0x00014A              | T4 – Timer4                              |
| 36               | 28                            | 0x00004C              | 0x00014C              | T5 – Timer5                              |
| 37               | 29                            | 0x00004E              | 0x00014E              | INT2 – External Interrupt 2              |
| 38               | 30                            | 0x000050              | 0x000150              | U2RX – UART2 Receiver                    |
| 39               | 31                            | 0x000052              | 0x000152              | U2TX – UART2 Transmitter                 |
| 40               | 32                            | 0x000054              | 0x000154              | SPI2E – SPI2 Error                       |
| 41               | 33                            | 0x000056              | 0x000156              | SPI2 – SPI2 Transfer Done                |
| 42               | 34                            | 0x000058              | 0x000158              | C1RX – ECAN1 Receive Data Ready          |
| 43               | 35                            | 0x00005A              | 0x00015A              | C1 – ECAN1 Event                         |
| 44               | 36                            | 0x00005C              | 0x00015C              | DMA3 – DMA Channel 3                     |
| 45               | 37                            | 0x00005E              | 0x00015E              | IC3 – Input Capture 3                    |
| 46               | 38                            | 0x000060              | 0x000160              | IC4 – Input Capture 4                    |
| 47-56            | 39-48                         | 0x000062-<br>0x000074 | 0x000162-<br>0x000174 | Reserved                                 |
| 57               | 49                            | 0x000076              | 0x000176              | SI2C2 – I2C2 Slave Events                |
| 58               | 50                            | 0x000078              | 0x000178              | MI2C2 – I2C2 Master Events               |
| 59-60            | 51-52                         | 0x00007A-<br>0x00007C | 0x00017A-<br>0x00017C | Reserved                                 |
| 61               | 53                            | 0x00007E              | 0x00017E              | INT3 – External Interrupt 3              |
| 62               | 54                            | 0x000080              | 0x000180              | INT4 – External Interrupt 4              |

# TABLE 7-1:INTERRUPT VECTORS

| ABLE 7-1: INTERRUPT VECTORS (CONTINUED) |                               |                       |                       |                                    |  |  |  |  |
|-----------------------------------------|-------------------------------|-----------------------|-----------------------|------------------------------------|--|--|--|--|
| Vector<br>Number                        | Interrupt<br>Request<br>(IQR) | IVT Address           | AIVT Address          | Interrupt Source                   |  |  |  |  |
| 63-64                                   | 55-56                         | 0x000082-<br>0x000084 | 0x000182-<br>0x000184 | Reserved                           |  |  |  |  |
| 65                                      | 57                            | 0x000086              | 0x000186              | PWM PSEM Special Event Match       |  |  |  |  |
| 66                                      | 58                            | 0x000088              | 0x000188              | QEI1 – Position Counter Compare    |  |  |  |  |
| 67-72                                   | 59-64                         | 0x00008A-<br>0x000094 | 0x00018A-<br>0x000194 | Reserved                           |  |  |  |  |
| 73                                      | 65                            | 0x000096              | 0x000196              | U1E – UART1 Error Interrupt        |  |  |  |  |
| 74                                      | 66                            | 0x000098              | 0x000198              | U2E – UART2 Error Interrupt        |  |  |  |  |
| 75-77                                   | 67-69                         | 0x00009A-<br>0x00009E | 0x00019A-<br>0x00019E | Reserved                           |  |  |  |  |
| 78                                      | 70                            | 0x0000A0              | 0x0001A0              | C1TX – ECAN1 Transmit Data Request |  |  |  |  |
| 79                                      | 71                            | 0x0000A2              | 0x0001A2              | Reserved                           |  |  |  |  |
| 80                                      | 72                            | 0x0000A4              | 0x0001A4              | Reserved                           |  |  |  |  |
| 81                                      | 73                            | 0x0000A6              | 0x0001A6              | PWM Secondary Special Event Match  |  |  |  |  |
| 82                                      | 74                            | 0x0000A8              | 0x0001A8              | Reserved                           |  |  |  |  |
| 83                                      | 75                            | 0x0000AA              | 0x0001AA              | QEI2 – Position Counter Compare    |  |  |  |  |
| 84-88                                   | 76-80                         | 0x0000AC-<br>0x0000B4 | 0x0001AC-<br>0x0001B4 | Reserved                           |  |  |  |  |
| 89                                      | 81                            | 0x0000B6              | 0x0001B6              | ADC Pair 8 Conversion Done         |  |  |  |  |
| 90                                      | 82                            | 0x0000B8              | 0x0001B8              | ADC Pair 9 Conversion Done         |  |  |  |  |
| 91                                      | 83                            | 0x0000BA              | 0x0001BA              | ADC Pair 10 Conversion Done        |  |  |  |  |
| 92                                      | 84                            | 0x0000BC              | 0x0001BC              | ADC Pair 11 Conversion Done        |  |  |  |  |
| 93                                      | 85                            | 0x0000BE              | 0x0001BE              | ADC Pair 12 Conversion Done        |  |  |  |  |
| 94-101                                  | 86-93                         | 0x0000C0-<br>0x0000CE | 0x0001C0-<br>0x0001CE | Reserved                           |  |  |  |  |
| 102                                     | 94                            | 0x0000D0              | 0x0001D0              | PWM1 – PWM1 Interrupt              |  |  |  |  |
| 103                                     | 95                            | 0x0000D2              | 0x0001D2              | PWM2 – PWM2 Interrupt              |  |  |  |  |
| 104                                     | 96                            | 0x0000D4              | 0x0001D4              | PWM3 – PWM3 Interrupt              |  |  |  |  |
| 105                                     | 97                            | 0x0000D6              | 0x0001D6              | PWM4 – PWM4 Interrupt              |  |  |  |  |
| 106                                     | 98                            | 0x0000D8              | 0x0001D8              | PWM5 – PWM5 Interrupt              |  |  |  |  |
| 107                                     | 99                            | 0x0000DA              | 0x0001DA              | PWM6 – PWM6 Interrupt              |  |  |  |  |
| 108                                     | 100                           | 0x0000DC              | 0x0001DC              | PWM7– PWM7 Interrupt               |  |  |  |  |
| 109                                     | 101                           | 0x0000DE              | 0x0001DE              | PWM8 – PWM8 Interrupt              |  |  |  |  |
| 110                                     | 102                           | 0x0000E0              | 0x0001E0              | PWM9 – PWM9 Interrupt              |  |  |  |  |
| 111                                     | 103                           | 0x0000E2              | 0x00001E2             | CMP2 – Analog Comparator 2         |  |  |  |  |
| 112                                     | 104                           | 0x0000E4              | 0x0001E4              | CMP3 – Analog Comparator 3         |  |  |  |  |
| 113                                     | 105                           | 0x0000E6              | 0x0001E6              | CMP4 – Analog Comparator 4         |  |  |  |  |
| 114-117                                 | 106-109                       | 0x0000E8-<br>0x0000EE | 0x0001E8-<br>0x0001EE | Reserved                           |  |  |  |  |
| 118                                     | 110                           | 0x0000F0              | 0x0001F0              | ADC Pair 0 Convert Done            |  |  |  |  |
| 119                                     | 111                           | 0x0000F2              | 0x0001F2              | ADC Pair 1 Convert Done            |  |  |  |  |
| 120                                     | 112                           | 0x0000F4              | 0x0001F4              | ADC Pair 2 Convert Done            |  |  |  |  |
| 121                                     | 113                           | 0x0000F6              | 0x0001F6              | ADC Pair 3 Convert Done            |  |  |  |  |
| 122                                     | 114                           | 0x0000F8              | 0x0001F8              | ADC Pair 4 Convert Done            |  |  |  |  |
| 123                                     | 115                           | 0x0000FA              | 0x0001FA              | ADC Pair 5 Convert Done            |  |  |  |  |
| 124                                     | 116                           | 0x0000FC              | 0x0001FC              | ADC Pair 6 Convert Done            |  |  |  |  |
| 125                                     | 117                           | 0x0000FE              | 0x0001FE              | ADC Pair 7 Convert Done            |  |  |  |  |

TABLE 7-1: INTERRUPT VECTORS (CONTINUED)

#### 7.3 Interrupt Control and Status Registers

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/606/608/610 devices implement 27 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFSx
- IECx
- IPCx
- INTTREG

#### 7.3.1 INTCON1 AND INTCON2

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

#### 7.3.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

#### 7.3.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

#### 7.3.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

#### 7.3.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt priority Level, which are latched into the Vector Number (VECNUM<6:0>) and Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit is found in IEC0<0> and the INT0IP bits are found in the first position of IPC0 (IPC0<2:0>).

#### 7.3.6 STATUS/CONTROL REGISTERS

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality.

- The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt Priority Level. The user can change the current CPU priority level by writing to the IPL bits.
- The CORCON register contains the IPL3 bit, which together with IPL<2:0>, indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-46 in the following pages.

| R-0                  | R/C-0                      | R/C-0                                                                                      | R-0                                                       | R/C-0                                                                                                                                                                                                                            | R -0                                                                                                                                             | R/W-0                                                                                                                                                           |
|----------------------|----------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OB                   | SA                         | SB                                                                                         | OAB                                                       | SAB                                                                                                                                                                                                                              | DA                                                                                                                                               | DC                                                                                                                                                              |
|                      |                            |                                                                                            |                                                           |                                                                                                                                                                                                                                  |                                                                                                                                                  | bit 8                                                                                                                                                           |
|                      |                            |                                                                                            |                                                           |                                                                                                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                                 |
| R/W-0 <sup>(3)</sup> | R/W-0 <sup>(3)</sup>       | R-0                                                                                        | R/W-0                                                     | R/W-0                                                                                                                                                                                                                            | R/W-0                                                                                                                                            | R/W-0                                                                                                                                                           |
| IPL1 <sup>(2)</sup>  | IPL0 <sup>(2)</sup>        | RA                                                                                         | N                                                         | OV                                                                                                                                                                                                                               | Z                                                                                                                                                | С                                                                                                                                                               |
|                      | · · ·                      |                                                                                            |                                                           |                                                                                                                                                                                                                                  |                                                                                                                                                  | bit 0                                                                                                                                                           |
|                      |                            |                                                                                            |                                                           |                                                                                                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                                 |
|                      |                            |                                                                                            |                                                           |                                                                                                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                                 |
|                      | R = Readable               | bit                                                                                        | U = Unimpler                                              | nented bit, read                                                                                                                                                                                                                 | as '0'                                                                                                                                           |                                                                                                                                                                 |
|                      | W = Writable b             | bit                                                                                        | -n = Value at                                             | POR                                                                                                                                                                                                                              |                                                                                                                                                  |                                                                                                                                                                 |
|                      | '0' = Bit is clea          | red                                                                                        | x = Bit is unki                                           | nown                                                                                                                                                                                                                             |                                                                                                                                                  |                                                                                                                                                                 |
| -                    | OB<br>R/W-0 <sup>(3)</sup> | OBSA $R/W-0^{(3)}$ $R/W-0^{(3)}$ $IPL1^{(2)}$ $IPL0^{(2)}$ $R$ = Readable $W$ = Writable b | OB SA SB<br>R/W-0 <sup>(3)</sup> R/W-0 <sup>(3)</sup> R-0 | OB     SA     SB     OAB       R/W-0 <sup>(3)</sup> R/W-0 <sup>(3)</sup> R-0     R/W-0       IPL1 <sup>(2)</sup> IPL0 <sup>(2)</sup> RA     N         R = Readable bit     U = Unimpler       W = Writable bit     -n = Value at | OBSASBOABSABR/W-0(3)R/W-0(3)R-0R/W-0R/W-0IPL1(2)IPL0(2)RANOVR = Readable bit<br>W = Writable bitU = Unimplemented bit, read<br>-n = Value at POR | OBSASBOABSABDAR/W-0(3)R/W-0(3)R-0R/W-0R/W-0R/W-0IPL1(2)IPL0(2)RANOVZR = Readable bit<br>W = Writable bitU = Unimplemented bit, read as '0'<br>-n = Value at POR |

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits<sup>(2)</sup> 111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)

**Note 1:** For complete register details, see Register 3-1.

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

|        | 2. 0010 |       |        |                     |       |         |       |
|--------|---------|-------|--------|---------------------|-------|---------|-------|
| U-0    | U-0     | U-0   | U-0    | R/W-0               | R-0   | R-0     | R-0   |
| _      | —       | —     | US     | EDT                 |       | DL<2:0> |       |
| bit 15 |         |       |        |                     |       |         | bit 8 |
| R/W-0  | R/W-0   | R/W-1 | R/W-0  | R/C-0               | R/W-0 | R/W-0   | R/W-0 |
| SATA   | SATB    | SATDW | ACCSAT | IPL3 <sup>(2)</sup> | PSV   | RND     | IF    |
| bit 7  |         |       |        |                     |       |         | bit 0 |
|        |         |       |        |                     |       |         |       |

#### **REGISTER 7-2:** CORCON: CORE CONTROL REGISTER<sup>(1)</sup>

| Legend:             | C = Clearable bit   |                        |                  |  |
|---------------------|---------------------|------------------------|------------------|--|
| R = Readable bit    | W = Writable bit    | -n = Value at POR      | '1' = Bit is set |  |
| 0' = Bit is cleared | 'x = Bit is unknown | U = Unimplemented bit, | read as '0'      |  |

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3<sup>(2)</sup> 1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

| REGISTER 7      | -3: INTCO                      | N1: INTERR                               |                 |                                   | ER 1             |                 |       |
|-----------------|--------------------------------|------------------------------------------|-----------------|-----------------------------------|------------------|-----------------|-------|
| R/W-0           | R/W-0                          | R/W-0                                    | R/W-0           | R/W-0                             | R/W-0            | R/W-0           | R/W-0 |
| NSTDIS          | OVAERR                         | OVBERR                                   | COVAERR         | COVBERR                           | OVATE            | OVBTE           | COVTE |
| bit 15          | •                              |                                          | •               |                                   |                  |                 | bit 8 |
|                 |                                |                                          |                 |                                   |                  |                 |       |
| R/W-0           | R/W-0                          | R/W-0                                    | R/W-0           | R/W-0                             | R/W-0            | R/W-0           | U-0   |
| SFTACERR        | DIV0ERR                        | DMACERR                                  | MATHERR         | ADDRERR                           | STKERR           | OSCFAIL         | —     |
| bit 7           |                                |                                          |                 |                                   |                  |                 | bit 0 |
| Legend:         |                                |                                          |                 |                                   |                  |                 |       |
| R = Readable    | bit                            | W = Writable                             | bit             | U = Unimpler                      | nented bit, read | 1 as '0'        |       |
| -n = Value at F | POR                            | '1' = Bit is set                         |                 | '0' = Bit is clea                 |                  | x = Bit is unkn | own   |
|                 |                                |                                          |                 |                                   |                  |                 |       |
| bit 15          |                                | rrupt Nesting D                          |                 |                                   |                  |                 |       |
|                 |                                | nesting is disat                         |                 |                                   |                  |                 |       |
| bit 14          | •                              | nesting is enab<br>cumulator A O         |                 | log bit                           |                  |                 |       |
| DIL 14          |                                | caused by ove                            |                 |                                   |                  |                 |       |
|                 |                                | not caused by                            |                 |                                   |                  |                 |       |
| bit 13          | OVBERR: Ac                     | cumulator B O                            | verflow Trap F  | -lag bit                          |                  |                 |       |
|                 |                                | caused by ove                            |                 |                                   |                  |                 |       |
| h:: 10          | -                              | not caused by                            |                 |                                   | 1 l- 14          |                 |       |
| bit 12          |                                |                                          |                 | Dverflow Trap F<br>flow of Accumu | -                |                 |       |
|                 | •                              | •                                        | •               | overflow of Acc                   |                  |                 |       |
| bit 11          | COVBERR: A                     | Accumulator B                            | Catastrophic (  | Overflow Trap F                   | lag bit          |                 |       |
|                 |                                |                                          |                 | flow of Accumu                    |                  |                 |       |
| bit 10          | OVATE: Accu                    | umulator A Ove                           | rflow Trap En   | able bit                          |                  |                 |       |
|                 | 1 = Trap over<br>0 = Trap disa | flow of Accum<br>bled                    | ulator A        |                                   |                  |                 |       |
| bit 9           | OVBTE: Accu                    | umulator B Ove                           | erflow Trap En  | able bit                          |                  |                 |       |
|                 | 1 = Trap over<br>0 = Trap disa | flow of Accum<br>bled                    | ulator B        |                                   |                  |                 |       |
| bit 8           | -                              | astrophic Overf                          | low Trap Enat   | ole bit                           |                  |                 |       |
|                 | 1 = Trap on c<br>0 = Trap disa |                                          | erflow of Accur | mulator A or B                    | enabled          |                 |       |
| bit 7           | SFTACERR:                      | Shift Accumula                           | tor Error Statu | us bit                            |                  |                 |       |
|                 |                                |                                          |                 | alid accumulato<br>invalid accumu |                  |                 |       |
| bit 6           | DIV0ERR: Ar                    | ithmetic Error S                         | Status bit      |                                   |                  |                 |       |
|                 |                                | or trap was caus<br>or trap was not      | •               | •                                 |                  |                 |       |
| bit 5           | DMACERR: [                     | DMA Controller                           | Error Status I  | bit                               |                  |                 |       |
|                 |                                | troller error trap<br>troller error trap |                 |                                   |                  |                 |       |
| bit 4           | MATHERR: A                     | Arithmetic Error                         | Status bit      |                                   |                  |                 |       |
|                 |                                | or trap has occu<br>or trap has not o    |                 |                                   |                  |                 |       |
|                 |                                | •                                        |                 |                                   |                  |                 |       |

#### ----- - - - - -

# REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

| bit 3 | ADDRERR: Address Error Trap Status bit             |
|-------|----------------------------------------------------|
|       | 1 = Address error trap has occurred                |
|       | 0 = Address error trap has not occurred            |
| bit 2 | STKERR: Stack Error Trap Status bit                |
|       | 1 = Stack error trap has occurred                  |
|       | 0 = Stack error trap has not occurred              |
| bit 1 | <b>OSCFAIL:</b> Oscillator Failure Trap Status bit |
|       | 1 = Oscillator failure trap has occurred           |
|       | 0 = Oscillator failure trap has not occurred       |
| bit 0 | Unimplemented: Read as '0'                         |

| R/W-0                      | R-0                                                                                                         | U-0                                                                                                                                                            | U-0                                                                | U-0              | U-0              | U-0             | U-0    |
|----------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------|------------------|-----------------|--------|
| ALTIVT                     | DISI                                                                                                        |                                                                                                                                                                |                                                                    |                  |                  |                 | —      |
| bit 15                     |                                                                                                             |                                                                                                                                                                |                                                                    |                  |                  |                 | bit 8  |
|                            |                                                                                                             |                                                                                                                                                                |                                                                    |                  |                  |                 |        |
| U-0                        | U-0                                                                                                         | U-0                                                                                                                                                            | R/W-0                                                              | R/W-0            | R/W-0            | R/W-0           | R/W-0  |
| —                          | —                                                                                                           | —                                                                                                                                                              | INT4EP                                                             | INT3EP           | INT2EP           | INT1EP          | INT0EP |
| bit 7                      |                                                                                                             |                                                                                                                                                                |                                                                    |                  |                  |                 | bit (  |
| Legend:                    |                                                                                                             |                                                                                                                                                                |                                                                    |                  |                  |                 |        |
| R = Readabl                | e bit                                                                                                       | W = Writable                                                                                                                                                   | bit                                                                | U = Unimpler     | nented bit, read | l as '0'        |        |
| -n = Value at              | POR                                                                                                         | '1' = Bit is se                                                                                                                                                | t                                                                  | '0' = Bit is cle | ared             | x = Bit is unkn | iown   |
| bit 13-5<br>bit 4<br>bit 3 | 1 = DISI ins<br>0 = DISI ins<br>Unimplement<br>INT4EP: Ext<br>1 = Interrupt<br>0 = Interrupt<br>INT3EP: Ext | nstruction State<br>struction is activ<br>struction is not<br><b>nted:</b> Read as<br>rernal Interrupt<br>on negative ed<br>rernal Interrupt<br>on negative ed | ve<br>active<br>'o'<br>4 Edge Detect<br>Ige<br>ge<br>3 Edge Detect | ·                |                  |                 |        |
| bit 2                      | 0 = Interrupt<br>INT2EP: Ext<br>1 = Interrupt                                                               | on positive ed<br>ernal Interrupt<br>on negative ed<br>on positive ed                                                                                          | ge<br>2 Edge Detect<br>Ige                                         | Polarity Select  | t bit            |                 |        |
| bit 1                      | 1 = Interrupt                                                                                               | ernal Interrupt<br>on negative ec<br>on positive ed                                                                                                            | lge                                                                | Polarity Select  | t bit            |                 |        |
| bit 0                      |                                                                                                             | ernal Interrupt<br>on negative ed                                                                                                                              | lge                                                                | Polarity Select  | t bit            |                 |        |

| REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 |               |                                  |                 |                                   |                  |                 |        |  |  |
|------------------------------------------------------|---------------|----------------------------------|-----------------|-----------------------------------|------------------|-----------------|--------|--|--|
| U-0                                                  | R/W-0         | R/W-0                            | R/W-0           | R/W-0                             | R/W-0            | R/W-0           | R/W-0  |  |  |
| —                                                    | DMA1IF        | ADIF                             | U1TXIF          | U1RXIF                            | SPI1IF           | SPI1EIF         | T3IF   |  |  |
| bit 15                                               |               |                                  |                 |                                   |                  |                 | bit    |  |  |
| R/W-0                                                | R/W-0         | R/W-0                            | R/W-0           | R/W-0                             | R/W-0            | R/W-0           | R/W-0  |  |  |
| T2IF                                                 | OC2IF         | IC2IF                            | DMA0IF          | T1IF                              | OC1IF            | IC1IF           | INTOIF |  |  |
| bit 7                                                | 002.          | 102.11                           | Dimiton         |                                   | 00111            | 10111           | bi     |  |  |
| Legend:                                              |               |                                  |                 |                                   |                  |                 |        |  |  |
| R = Readab                                           | le hit        | W = Writable                     | hit             | II – Unimplen                     | nented bit, read | 1 as 'O'        |        |  |  |
| -n = Value a                                         |               | '1' = Bit is se                  |                 | $0^{\circ} = \text{Bit is clear}$ |                  |                 |        |  |  |
| -n = value a                                         | IPUR          | I = DILIS SE                     | l               |                                   | areu             | x = Bit is unkr | IOWN   |  |  |
| bit 15                                               | Unimplemer    | nted: Read as                    | 'O'             |                                   |                  |                 |        |  |  |
| bit 14                                               | DMA1IF: DM    | 1A Channel 1 E                   | Data Transfer C | Complete Interro                  | upt Flag Status  | bit             |        |  |  |
|                                                      | 1 = Interrupt | request has or request has no    | curred          | ·                                 |                  |                 |        |  |  |
| bit 13                                               | -             | -                                |                 | Interrupt Flag S                  | tatus bit        |                 |        |  |  |
|                                                      |               | request has or                   | -               |                                   |                  |                 |        |  |  |
|                                                      | 0 = Interrupt | request has no                   | ot occurred     |                                   |                  |                 |        |  |  |
| bit 12                                               |               | RT1 Transmitte                   |                 | g Status bit                      |                  |                 |        |  |  |
|                                                      |               | request has or                   |                 |                                   |                  |                 |        |  |  |
|                                                      | -             | request has no                   |                 |                                   |                  |                 |        |  |  |
| bit 11                                               |               | RT1 Receiver l<br>request has or |                 | Status bit                        |                  |                 |        |  |  |
|                                                      |               | request has no                   |                 |                                   |                  |                 |        |  |  |
| oit 10                                               |               | Event Interrup                   |                 | oit                               |                  |                 |        |  |  |
|                                                      |               | request has oc                   |                 |                                   |                  |                 |        |  |  |
|                                                      | 0 = Interrupt | request has no                   | ot occurred     |                                   |                  |                 |        |  |  |
| bit 9                                                |               | 11 Fault Interru                 |                 | bit                               |                  |                 |        |  |  |
|                                                      |               | request has or                   |                 |                                   |                  |                 |        |  |  |
| bit 8                                                | -             | request has no<br>Interrupt Flag |                 |                                   |                  |                 |        |  |  |
|                                                      |               | request has or                   |                 |                                   |                  |                 |        |  |  |
|                                                      |               | request has no                   |                 |                                   |                  |                 |        |  |  |
| bit 7                                                | T2IF: Timer2  | Interrupt Flag                   | Status bit      |                                   |                  |                 |        |  |  |
|                                                      |               | request has or                   |                 |                                   |                  |                 |        |  |  |
|                                                      | -             | request has no                   |                 |                                   |                  |                 |        |  |  |
| bit 6                                                | -             | =                                |                 | upt Flag Status                   | bit              |                 |        |  |  |
|                                                      |               | request has or request has no    |                 |                                   |                  |                 |        |  |  |
| bit 5                                                | -             | Capture Chanr                    |                 | Flag Status bit                   |                  |                 |        |  |  |
|                                                      |               | request has or                   |                 | lag Olalus bit                    |                  |                 |        |  |  |
|                                                      |               | request has no                   |                 |                                   |                  |                 |        |  |  |
| oit 4                                                | DMA0IF: DM    | 1A Channel 0 E                   | Data Transfer C | Complete Interre                  | upt Flag Status  | bit             |        |  |  |
|                                                      |               | request has or                   |                 |                                   |                  |                 |        |  |  |
|                                                      | -             | request has no                   |                 |                                   |                  |                 |        |  |  |
| bit 3                                                |               | Interrupt Flag                   |                 |                                   |                  |                 |        |  |  |
|                                                      |               | request has or                   |                 |                                   |                  |                 |        |  |  |
|                                                      |               | request has no                   | n occurred      |                                   |                  |                 |        |  |  |

#### ...

#### REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

| bit 2 | OC1IF: Outpu | t Compare Chan | nel 1 Interrupt Flag | Status bit |
|-------|--------------|----------------|----------------------|------------|
|       |              |                |                      |            |

- 1 = Interrupt request has occurred
  - 0 = Interrupt request has not occurred

bit 1 IC1IF: Input Capture Channel 1 Interrupt Flag Status bit

- 1 = Interrupt request has occurred
- 0 = Interrupt request has not occurred
- bit 0 INTOIF: External Interrupt 0 Flag Status bit
  - 1 = Interrupt request has occurred
  - 0 = Interrupt request has not occurred

| R/W-0         | R/W-0         | R/W-0                            | R/W-0             | R/W-0            | R/W-0            | R/W-0           | R/W-0   |
|---------------|---------------|----------------------------------|-------------------|------------------|------------------|-----------------|---------|
| U2TXIF        | U2RXIF        | INT2IF                           | T5IF              | T4IF             | OC4IF            | OC3IF           | DMA2IF  |
| bit 15        |               |                                  |                   | •                |                  |                 | bit 8   |
| U-0           | U-0           | U-0                              | R/W-0             | R/W-0            | R/W-0            | R/W-0           | R/W-0   |
| _             | —             |                                  | INT1IF            | CNIF             | AC1IF            | MI2C1IF         | SI2C1IF |
| bit 7         |               |                                  |                   |                  |                  |                 | bit (   |
| Legend:       |               |                                  |                   |                  |                  |                 |         |
| R = Readabl   | e bit         | W = Writable                     | bit               | U = Unimplen     | nented bit, read | d as '0'        |         |
| -n = Value at | POR           | '1' = Bit is se                  | t                 | '0' = Bit is cle | ared             | x = Bit is unkr | nown    |
| bit 12        | U2TXIF: UAF   | RT2 Transmitte                   | er Interrupt Flag | status bit       |                  |                 |         |
|               | 1 = Interrupt | request has or<br>request has no | curred            | -                |                  |                 |         |
| bit 11        | •             | •                                | nterrupt Flag S   | Status bit       |                  |                 |         |
|               |               | request has or<br>request has no |                   |                  |                  |                 |         |
| bit 13        | •             | •                                | Flag Status bit   | t                |                  |                 |         |
|               |               | request has or                   |                   | -                |                  |                 |         |
|               |               | request has no                   |                   |                  |                  |                 |         |
| bit 12        | T5IF: Timer5  | Interrupt Flag                   | Status bit        |                  |                  |                 |         |
|               |               | request has or                   |                   |                  |                  |                 |         |
|               | -             | request has no                   |                   |                  |                  |                 |         |
| bit 11        |               | Interrupt Flag                   |                   |                  |                  |                 |         |
|               |               | request has or<br>request has no |                   |                  |                  |                 |         |
| bit 10        | -             |                                  | nannel 4 Interru  | int Flag Status  | bit              |                 |         |
|               | -             | request has or                   |                   | apt i lag elatae | <b>D</b> IC      |                 |         |
|               |               | request has no                   |                   |                  |                  |                 |         |
| bit 9         | OC3IF: Outp   | ut Compare Cl                    | nannel 3 Interru  | upt Flag Status  | bit              |                 |         |
|               |               | request has or                   |                   |                  |                  |                 |         |
|               | -             | request has no                   |                   |                  |                  |                 |         |
| bit 8         |               |                                  | Data Transfer C   | omplete Interr   | upt Flag Status  | s bit           |         |
|               |               | request has or<br>request has no |                   |                  |                  |                 |         |
| bit 7-5       | -             | ntequest has he<br>nted: Read as |                   |                  |                  |                 |         |
| bit 4         | -             |                                  | Flag Status bit   | F.               |                  |                 |         |
|               |               | request has or                   | -                 | L                |                  |                 |         |
|               |               | request has no                   |                   |                  |                  |                 |         |
| bit 3         | •             | •                                | ation Interrupt I | Flag Status bit  |                  |                 |         |
|               | -             | request has or                   | -                 | 0                |                  |                 |         |
|               |               | request has no                   |                   |                  |                  |                 |         |
| bit 2         | AC1IF: Analo  | og Comparator                    | 1 Interrupt Fla   | g Status bit     |                  |                 |         |
|               |               | request has or                   |                   |                  |                  |                 |         |
| 1.16.4        | -             | request has no                   |                   | <b>0</b> ,       |                  |                 |         |
| bit 1         |               |                                  | nts Interrupt Fla | ag Status bit    |                  |                 |         |
|               |               | request has or<br>request has no |                   |                  |                  |                 |         |
| bit 0         | -             | -                                | s Interrupt Flag  | Status hit       |                  |                 |         |
|               |               |                                  |                   |                  |                  |                 |         |
|               | 1 = Interrupt | request has or                   | curred            |                  |                  |                 |         |

| U-0          | U-0                            | U-0              | U-0             | U-0                          | U-0                  | U-0             | U-0     |
|--------------|--------------------------------|------------------|-----------------|------------------------------|----------------------|-----------------|---------|
| —            | —                              | —                | —               | —                            |                      | _               | _       |
| bit 15       |                                |                  |                 |                              |                      |                 | bit     |
|              |                                |                  |                 |                              |                      |                 |         |
| U-0          | R/W-0                          | R/W-0            | R/W-0           | R/W-0                        | R/W-0                | R/W-0           | R/W-0   |
| —            | IC4IF                          | IC3IF            | DMA3IF          | C1IF <sup>(1)</sup>          | C1EIF <sup>(1)</sup> | SPI2IF          | SPI2EIF |
| bit 7        |                                |                  |                 |                              |                      |                 | bit     |
|              |                                |                  |                 |                              |                      |                 |         |
| Legend:      |                                |                  |                 |                              |                      |                 |         |
| R = Readat   |                                | W = Writable     |                 |                              | nented bit, read     |                 |         |
| -n = Value a | at POR                         | '1' = Bit is set |                 | '0' = Bit is cle             | ared                 | x = Bit is unkı | nown    |
| bit 15-7     |                                | tod. Dood oo (   | 0'              |                              |                      |                 |         |
| bit 6        | Unimplement<br>IC4IF: Input C  |                  |                 | log Status bit               |                      |                 |         |
|              | 1 = Interrupt r                | •                | •               | hag Status bit               |                      |                 |         |
|              |                                | equest has oc    |                 |                              |                      |                 |         |
| bit 5        | IC3IF: Input C                 | •                |                 | lag Status bit               |                      |                 |         |
|              | 1 = Interrupt r                | equest has oc    | curred          | -                            |                      |                 |         |
|              | 0 = Interrupt r                | equest has no    | t occurred      |                              |                      |                 |         |
| bit 4        |                                |                  |                 | omplete Interr               | upt Flag Status      | bit             |         |
|              |                                | equest has oc    |                 |                              |                      |                 |         |
| bit 3        | 0 = Interrupt r<br>C1IF: ECAN1 | equest has no    |                 | ⊢;+(1)                       |                      |                 |         |
| DIL 3        |                                | equest has oc    |                 |                              |                      |                 |         |
|              |                                | equest has oc    |                 |                              |                      |                 |         |
| bit 2        | •                              | •                |                 | ag Status bit <sup>(1)</sup> | )                    |                 |         |
|              |                                | equest has oc    | •               | 0                            |                      |                 |         |
|              | 0 = Interrupt r                | equest has no    | t occurred      |                              |                      |                 |         |
| bit 1        | SPI2IF: SPI2                   | Event Interrup   | t Flag Status b | bit                          |                      |                 |         |
|              |                                | equest has oc    |                 |                              |                      |                 |         |
|              | •                              | equest has no    |                 |                              |                      |                 |         |
| bit 0        | SPI2EIF: SPI                   |                  | U               | bit                          |                      |                 |         |
|              | 1 = Interrupt r                | aguast has as    | ourrod          |                              |                      |                 |         |

### REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

Note 1: Interrupts disabled on devices without ECAN™ modules

| U-0       R/W-0       R/W-0       U-0       R/W-0       R/W-0       U-0         —       INT4IF       INT3IF       —       MI2C2IF       SI2C2IF       —         bit 7         Legend:         R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U-0          | U-0                                          | U-0              | U-0 | U-0              | R/W-0            | R/W-0            | U-0   |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------|------------------|-----|------------------|------------------|------------------|-------|--|--|
| U-0       R/W-0       R/W-0       U-0       R/W-0       R/W-0       U-0         —       INT4IF       INT3IF       —       MI2C2IF       SI2C2IF       —         bit 7         Legend:         R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _            |                                              |                  | _   | _                | QEI1IF           | PSEMIF           | _     |  |  |
| -       INT4IF       INT3IF       -       MI2C2IF       SI2C2IF       -         bit 7         Legend:       R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15-11       Unimplemented: Read as '0'       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bit 15       | ÷                                            |                  |     |                  |                  |                  | bit 8 |  |  |
| -       INT4IF       INT3IF       -       MI2C2IF       SI2C2IF       -         bit 7         Legend:       R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15-11       Unimplemented: Read as '0'       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                                              |                  |     |                  |                  |                  |       |  |  |
| bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-11 Unimplemented: Read as '0' bit 10 QE11IF: QE11 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has occurred bit 9 PSEMIF: PWM Special Event Match Interrupt Flag Status bit 1 = Interrupt request has not occurred 0 = Interrupt request has occurred 1 = Interrupt request has occurred 0 = Interrupt re | U-0          | R/W-0                                        | R/W-0            | U-0 | U-0              | R/W-0            | R/W-0            | U-0   |  |  |
| Legend:         R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         -n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15-11       Unimplemented: Read as '0'       it is cleared       x = Bit is unknown         bit 15-11       Unimplemented: Read as '0'       it is cleared       x = Bit is unknown         bit 10       QE11IF: QE11 Event Interrupt Flag Status bit       1 = Interrupt request has occurred       0 = Interrupt request has not occurred         bit 9       PSEMIF: PWM Special Event Match Interrupt Flag Status bit       1 = Interrupt request has not occurred       0 = Interrupt request has occurred         bit 8-7       Unimplemented: Read as '0'       bit 6       INT4IF: External Interrupt 4 Flag Status bit         1 = Interrupt request has not occurred       0 = Interrupt request has occurred       0 = Interrupt request has not occurred         bit 5       INT3IF: External Interrupt 3 Flag Status bit       1 = Interrupt request has not occurred         bit 4-3       Unimplemented: Read as '0'       bit 4-3         bit 4-3       Unimplemented: Read as '0'         bit 2       MI2C2IF: I2C2 Master Events Interrupt Flag Status bit         1 = Interrupt request has occurred       0 = Interrupt request has occurred         bit 1       SI2C2IF: I2C2 Slave Events Int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | INT4IF                                       | INT3IF           |     | —                | MI2C2IF          | SI2C2IF          |       |  |  |
| R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         In = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15-11       Unimplemented: Read as '0'       it' = Bit is cleared       x = Bit is unknown         bit 10       QEI1IF: QEI1 Event Interrupt Flag Status bit       1       = Interrupt request has occurred         0 = Interrupt request has not occurred       0 = Interrupt request has occurred       0 = Interrupt request has occurred         bit 9       PSEMIF: PWM Special Event Match Interrupt Flag Status bit       1       = Interrupt request has occurred         0 = Interrupt request has occurred       0 = Interrupt request has occurred       0       = Interrupt request has occurred         bit 8-7       Unimplemented: Read as '0'       Interrupt request has not occurred       0       = Interrupt request has occurred         0 = Interrupt request has not occurred       0 = Interrupt request has occurred       0       = Interrupt request has not occurred         bit 5       INT3IF: External Interrupt 3 Flag Status bit       1       = Interrupt request has not occurred         bit 4-3       Unimplemented: Read as '0'       Interrupt request has not occurred       Interrupt request has not occurred         bit 2       MI2C2IF: I2C2 Master Events Interrupt Flag Status bit       1 = Interrupt request has not occurre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bit 7        |                                              |                  |     |                  |                  |                  | bit   |  |  |
| Implemented:       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15-11       Unimplemented:       Read as '0'         bit 10       QE11IF:       QE11 Event Interrupt Flag Status bit         1 = Interrupt request has occurred       0 = Interrupt request has not occurred         0 = Interrupt request has not occurred       0 = Interrupt request has not occurred         bit 9       PSEMIF:       PWM Special Event Match Interrupt Flag Status bit         1 = Interrupt request has not occurred       0 = Interrupt request has not occurred         bit 8-7       Unimplemented:       Read as '0'         bit 6       INT4IF:       External Interrupt 4 Flag Status bit         1 = Interrupt request has occurred       0 = Interrupt request has not occurred         0 = Interrupt request has not occurred       0 = Interrupt request has not occurred         bit 5       INT3IF:       External Interrupt 3 Flag Status bit         1 = Interrupt request has not occurred       0 = Interrupt request has not occurred         bit 4-3       Unimplemented:       Read as '0'         bit 2       MI2C2IF:       I2C2 Master Events Interrupt Flag Status bit         1 = Interrupt request has not occurred       0 = Interrupt request has not occurred         bit 1       SI2C2IF:       I2C2 Slave Events Interrupt Flag Status bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Legend:      |                                              |                  |     |                  |                  |                  |       |  |  |
| bit 15-11       Unimplemented: Read as '0'         bit 10       QEI1IF: QEI1 Event Interrupt Flag Status bit         1 = Interrupt request has occurred       0 = Interrupt request has not occurred         bit 9       PSEMIF: PWM Special Event Match Interrupt Flag Status bit         1 = Interrupt request has occurred       0 = Interrupt request has not occurred         bit 9       PSEMIF: PWM Special Event Match Interrupt Flag Status bit         1 = Interrupt request has not occurred       0 = Interrupt request has not occurred         bit 8-7       Unimplemented: Read as '0'         bit 6       INT4IF: External Interrupt 4 Flag Status bit         1 = Interrupt request has not occurred         0 = Interrupt request has not occurred         bit 5       INT3IF: External Interrupt 3 Flag Status bit         1 = Interrupt request has not occurred         0 = Interrupt request has not occurred         bit 4-3       Unimplemented: Read as '0'         bit 4-3       Unimplemented: Read as '0'         bit 2       MI2C2IF: I2C2 Master Events Interrupt Flag Status bit         1 = Interrupt request has not occurred         0 = Interru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R = Readab   | le bit                                       | W = Writable     | bit | U = Unimple      | mented bit, read | d as '0'         |       |  |  |
| bit 10QEI1IF: QEI1 Event Interrupt Flag Status bit1 = Interrupt request has occurred0 = Interrupt request has not occurredbit 9PSEMIF: PWM Special Event Match Interrupt Flag Status bit1 = Interrupt request has occurred0 = Interrupt request has not occurredbit 8-7Unimplemented: Read as '0'bit 6INT4IF: External Interrupt 4 Flag Status bit1 = Interrupt request has occurred0 = Interrupt request has not occurredbit 5INT3IF: External Interrupt 4 Flag Status bit1 = Interrupt request has occurred0 = Interrupt request has not occurredbit 5INT3IF: External Interrupt 3 Flag Status bit1 = Interrupt request has occurred0 = Interrupt request has occurred0 = Interrupt request has not occurredbit 4-3Unimplemented: Read as '0'bit 4-3Unimplemented: Read as '0'bit 4-3Interrupt request has not occurredbit 1 = Interrupt request has not occurredbit 2MI2C2IF: I2C2 Master Events Interrupt Flag Status bit1 = Interrupt request has not occurredbit 1SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit1 = Interrupt request has not occurredbit 1Interrupt request has not occurred<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -n = Value a | t POR                                        | '1' = Bit is set |     | '0' = Bit is cle | eared            | x = Bit is unkno | own   |  |  |
| bit 10QEI1F: QEI1 Event Interrupt Flag Status bit<br>1 = Interrupt request has occurred<br>0 = Interrupt request has not occurredbit 9PSEMIF: PWM Special Event Match Interrupt Flag Status bit<br>1 = Interrupt request has occurred<br>0 = Interrupt request has not occurredbit 9PSEMIF: PWM Special Event Match Interrupt Flag Status bit<br>1 = Interrupt request has occurred<br>0 = Interrupt request has not occurredbit 8-7Unimplemented: Read as '0'bit 6INT4IF: External Interrupt 4 Flag Status bit<br>1 = Interrupt request has not occurred<br>0 = Interrupt request has not occurred                                                                                                                                                                                                                                                                                                                                              |              |                                              |                  |     |                  |                  |                  |       |  |  |
| 1 = Interrupt request has occurred         0 = Interrupt request has not occurred         bit 9 <b>PSEMIF:</b> PWM Special Event Match Interrupt Flag Status bit         1 = Interrupt request has occurred       0 = Interrupt request has occurred         bit 8-7 <b>Unimplemented:</b> Read as '0'         bit 6 <b>INT4IF:</b> External Interrupt 4 Flag Status bit         1 = Interrupt request has occurred       0 = Interrupt request has not occurred         0 = Interrupt request has not occurred       0 = Interrupt request has not occurred         bit 5 <b>INT3IF:</b> External Interrupt 3 Flag Status bit         1 = Interrupt request has not occurred       0 = Interrupt request has not occurred         bit 4-3 <b>Unimplemented:</b> Read as '0'         bit 2 <b>MI2C2IF:</b> I2C2 Master Events Interrupt Flag Status bit         1 = Interrupt request has occurred       0 = Interrupt request has not occurred         bit 1 <b>SI2C2IF:</b> I2C2 Slave Events Interrupt Flag Status bit         1 = Interrupt request has not occurred       0 = Interrupt request has not occurred         bit 1 <b>SI2C2IF:</b> I2C2 Slave Events Interrupt Flag Status bit         1 = Interrupt request has not occurred       0 = Interrupt request has not occurred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | oit 15-11    | Unimplemen                                   | ted: Read as '   | 0'  |                  |                  |                  |       |  |  |
| 0 = Interrupt request has not occurred         bit 9 <b>PSEMIF:</b> PWM Special Event Match Interrupt Flag Status bit         1 = Interrupt request has occurred       0 = Interrupt request has not occurred         bit 8-7 <b>Unimplemented:</b> Read as '0'         bit 6 <b>INT4IF:</b> External Interrupt 4 Flag Status bit         1 = Interrupt request has occurred       0 = Interrupt request has occurred         bit 5 <b>INT3IF:</b> External Interrupt 3 Flag Status bit         1 = Interrupt request has not occurred       0 = Interrupt request has not occurred         bit 5 <b>INT3IF:</b> External Interrupt 3 Flag Status bit         1 = Interrupt request has not occurred       0 = Interrupt request has not occurred         bit 4-3 <b>Unimplemented:</b> Read as '0'         bit 4-3 <b>Unimplemented:</b> Read as '0'         bit 2 <b>MI2C2IF:</b> I2C2 Master Events Interrupt Flag Status bit         1 = Interrupt request has occurred       0 = Interrupt request has not occurred         bit 1       Interrupt request has not occurred         bit 1       SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit         1 = Interrupt request has occurred       0 = Interrupt request has not occurred         bit 1       Interrupt request has not occurred         bit 1       Interrupt request has not occurred         bit 1       Interrupt r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | bit 10       |                                              |                  |     |                  |                  |                  |       |  |  |
| bit 9PSEMIF: PWM Special Event Match Interrupt Flag Status bit<br>1 = Interrupt request has occurred<br>0 = Interrupt request has not occurredbit 8-7Unimplemented: Read as '0'bit 6INT4IF: External Interrupt 4 Flag Status bit<br>1 = Interrupt request has occurred<br>0 = Interrupt request has occurred<br>0 = Interrupt request has not occurredbit 5INT3IF: External Interrupt 3 Flag Status bit<br>1 = Interrupt request has occurred<br>0 = Interrupt request has occurred<br>0 = Interrupt request has not occurredbit 4-3Unimplemented: Read as '0'bit 4-3Unimplemented: Read as '0'bit 4-3Unimplemented: Read as '0'bit 1 = Interrupt request has not occurred<br>0 = Interrupt request has not occurred<br>0 = Interrupt request has not occurredbit 2MI2C2IF: I2C2 Master Events Interrupt Flag Status bit<br>1 = Interrupt request has not occurred<br>0 = Interrupt request has not occurredbit 1SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit<br>1 = Interrupt request has not occurred<br>0 = Interrupt request has not occurred<br>0 = Interrupt request has not occurred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                              |                  |     |                  |                  |                  |       |  |  |
| 1 = Interrupt request has occurred         0 = Interrupt request has not occurred         bit 8-7       Unimplemented: Read as '0'         bit 6       INT4IF: External Interrupt 4 Flag Status bit         1 = Interrupt request has occurred       0 = Interrupt request has not occurred         bit 5       INT3IF: External Interrupt 3 Flag Status bit         1 = Interrupt request has occurred       0 = Interrupt request has not occurred         bit 5       INT3IF: External Interrupt 3 Flag Status bit         1 = Interrupt request has occurred       0 = Interrupt request has not occurred         bit 4-3       Unimplemented: Read as '0'         bit 4-3       Unimplemented: Read as '0'         bit 2       MI2C2IF: I2C2 Master Events Interrupt Flag Status bit         1 = Interrupt request has occurred       0 = Interrupt request has not occurred         bit 1       SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit         1 = Interrupt request has occurred       0 = Interrupt request has not occurred         bit 1       SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit         1 = Interrupt request has occurred       0 = Interrupt request has not occurred         0 = Interrupt request has not occurred       0 = Interrupt request has not occurred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hit Q        |                                              |                  |     |                  |                  |                  |       |  |  |
| 0 = Interrupt request has not occurred         bit 8-7       Unimplemented: Read as '0'         bit 6       INT4IF: External Interrupt 4 Flag Status bit         1 = Interrupt request has occurred       0 = Interrupt request has not occurred         bit 5       INT3IF: External Interrupt 3 Flag Status bit         1 = Interrupt request has occurred       0 = Interrupt request has occurred         bit 5       INT3IF: External Interrupt 3 Flag Status bit         1 = Interrupt request has occurred       0 = Interrupt request has not occurred         bit 4-3       Unimplemented: Read as '0'         bit 2       MI2C2IF: I2C2 Master Events Interrupt Flag Status bit         1 = Interrupt request has not occurred       0 = Interrupt request has not occurred         bit 1       SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit         1 = Interrupt request has not occurred       0 = Interrupt request has not occurred         bit 1       Interrupt request has not occurred         bit 1       SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit         1 = Interrupt request has not occurred       0 = Interrupt request has not occurred         bit 1       Interrupt request has not occurred         0 = Interrupt request has not occurred       0 = Interrupt request has not occurred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DIT 9        |                                              |                  |     |                  |                  |                  |       |  |  |
| bit 6INT4IF: External Interrupt 4 Flag Status bit<br>1 = Interrupt request has occurred<br>0 = Interrupt request has not occurredbit 5INT3IF: External Interrupt 3 Flag Status bit<br>1 = Interrupt request has occurred<br>0 = Interrupt request has not occurredbit 4-3Unimplemented: Read as '0'bit 2MI2C2IF: I2C2 Master Events Interrupt Flag Status bit<br>1 = Interrupt request has not occurred<br>0 = Interrupt request has not occurredbit 1SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit<br>1 = Interrupt request has not occurred<br>0 = Interrupt request has not occurred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                              |                  |     |                  |                  |                  |       |  |  |
| 1 = Interrupt request has occurred         0 = Interrupt request has not occurred         bit 5       INT3IF: External Interrupt 3 Flag Status bit         1 = Interrupt request has occurred         0 = Interrupt request has not occurred         bit 4-3       Unimplemented: Read as '0'         bit 2       MI2C2IF: I2C2 Master Events Interrupt Flag Status bit         1 = Interrupt request has not occurred         0 = Interrupt request has occurred         0 = Interrupt request has not occurred         bit 1       SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit         1 = Interrupt request has occurred       0         bit 1       SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit         1 = Interrupt request has occurred       0         bit 1       SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit         1 = Interrupt request has occurred       0         0 = Interrupt request has not occurred       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | bit 8-7      | Unimplemen                                   | ted: Read as '   | 0'  |                  |                  |                  |       |  |  |
| <ul> <li>bit 5</li> <li>INT3IF: External Interrupt 3 Flag Status bit</li> <li>1 = Interrupt request has occurred</li> <li>0 = Interrupt request has not occurred</li> <li>bit 4-3</li> <li>Unimplemented: Read as '0'</li> <li>bit 2</li> <li>MI2C2IF: I2C2 Master Events Interrupt Flag Status bit</li> <li>1 = Interrupt request has not occurred</li> <li>bit 1</li> <li>SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit</li> <li>1 = Interrupt request has not occurred</li> <li>bit 1</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bit 6        | INT4IF: External Interrupt 4 Flag Status bit |                  |     |                  |                  |                  |       |  |  |
| bit 5       INT3IF: External Interrupt 3 Flag Status bit         1 = Interrupt request has occurred         0 = Interrupt request has not occurred         bit 4-3       Unimplemented: Read as '0'         bit 2       MI2C2IF: I2C2 Master Events Interrupt Flag Status bit         1 = Interrupt request has not occurred         0 = Interrupt request has occurred         0 = Interrupt request has not occurred         bit 1       SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit         1 = Interrupt request has occurred         0 = Interrupt request has not occurred         bit 1       SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit         1 = Interrupt request has occurred       0 = Interrupt request has not occurred         0 = Interrupt request has not occurred       0 = Interrupt request has not occurred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                                              |                  |     |                  |                  |                  |       |  |  |
| 1 = Interrupt request has occurred         0 = Interrupt request has not occurred         bit 4-3       Unimplemented: Read as '0'         bit 2       MI2C2IF: I2C2 Master Events Interrupt Flag Status bit         1 = Interrupt request has occurred       0         0 = Interrupt request has not occurred       0         bit 1       SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit         1 = Interrupt request has occurred       0         bit 1       SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit         1 = Interrupt request has occurred       0         0 = Interrupt request has not occurred       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                              |                  |     |                  |                  |                  |       |  |  |
| <ul> <li>0 = Interrupt request has not occurred</li> <li>bit 4-3 Unimplemented: Read as '0'</li> <li>bit 2 MI2C2IF: I2C2 Master Events Interrupt Flag Status bit         <ol> <li>1 = Interrupt request has occurred</li> <li>0 = Interrupt request has not occurred</li> </ol> </li> <li>bit 1 SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit         <ol> <li>1 = Interrupt request has occurred</li> <li>0 = Interrupt request has not occurred</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bit 5        |                                              |                  |     |                  |                  |                  |       |  |  |
| bit 4-3       Unimplemented: Read as '0'         bit 2       MI2C2IF: I2C2 Master Events Interrupt Flag Status bit         1 = Interrupt request has occurred       0 = Interrupt request has not occurred         bit 1       SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit         1 = Interrupt request has occurred       0         bit 1       SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit         1 = Interrupt request has occurred       0         0 = Interrupt request has not occurred       0         0 = Interrupt request has not occurred       0         0 = Interrupt request has not occurred       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                              |                  |     |                  |                  |                  |       |  |  |
| bit 2       MI2C2IF: I2C2 Master Events Interrupt Flag Status bit         1 = Interrupt request has occurred         0 = Interrupt request has not occurred         bit 1       SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit         1 = Interrupt request has occurred         0 = Interrupt request has occurred         0 = Interrupt request has occurred         0 = Interrupt request has not occurred         0 = Interrupt request has not occurred         0 = Interrupt request has not occurred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | bit 4-3      |                                              | •                |     |                  |                  |                  |       |  |  |
| 1 = Interrupt request has occurred         0 = Interrupt request has not occurred         bit 1       SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit         1 = Interrupt request has occurred         0 = Interrupt request has not occurred         0 = Interrupt request has not occurred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | bit 2        | •                                            |                  |     |                  |                  |                  |       |  |  |
| bit 1 SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit<br>1 = Interrupt request has occurred<br>0 = Interrupt request has not occurred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                              |                  |     |                  |                  |                  |       |  |  |
| <ul> <li>1 = Interrupt request has occurred</li> <li>0 = Interrupt request has not occurred</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                                              |                  |     |                  |                  |                  |       |  |  |
| 0 = Interrupt request has not occurred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | bit 1        |                                              |                  |     | g Status bit     |                  |                  |       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                              |                  |     |                  |                  |                  |       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bit 0        | •                                            | •                |     |                  |                  |                  |       |  |  |

| U-0              | U-0                                                                       | U-0                                                                                | U-0                                  | R/W-0                                                                                              | U-0                       | R/W-0            | U-0   |  |  |  |  |  |  |
|------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------|------------------|-------|--|--|--|--|--|--|
| _                |                                                                           | _                                                                                  | _                                    | QEI2IF                                                                                             | _                         | PSESMIF          | _     |  |  |  |  |  |  |
| bit 15           |                                                                           |                                                                                    |                                      |                                                                                                    |                           |                  | bit 8 |  |  |  |  |  |  |
|                  |                                                                           |                                                                                    |                                      |                                                                                                    |                           |                  |       |  |  |  |  |  |  |
| U-0              | R/W-0                                                                     | U-0                                                                                | U-0                                  | U-0                                                                                                | R/W-0                     | R/W-0            | U-0   |  |  |  |  |  |  |
| _                | C1TXIF <sup>(1)</sup>                                                     |                                                                                    |                                      |                                                                                                    | U2EIF                     | U1EIF            | _     |  |  |  |  |  |  |
| bit 7            |                                                                           |                                                                                    |                                      |                                                                                                    |                           |                  | bit ( |  |  |  |  |  |  |
|                  |                                                                           |                                                                                    |                                      |                                                                                                    |                           |                  |       |  |  |  |  |  |  |
| Legend:          |                                                                           |                                                                                    |                                      |                                                                                                    |                           |                  |       |  |  |  |  |  |  |
| R = Readable     | e bit                                                                     | W = Writable b                                                                     | oit                                  | U = Unimpler                                                                                       | mented bit, rea           | d as '0'         |       |  |  |  |  |  |  |
| -n = Value at    | POR                                                                       | '1' = Bit is set                                                                   |                                      | '0' = Bit is cle                                                                                   | ared                      | x = Bit is unkno | wn    |  |  |  |  |  |  |
|                  |                                                                           |                                                                                    |                                      |                                                                                                    |                           |                  |       |  |  |  |  |  |  |
| bit 15-12        | -                                                                         | ted: Read as '0                                                                    |                                      |                                                                                                    |                           |                  |       |  |  |  |  |  |  |
| bit 11           |                                                                           | QEI2IF: QEI2 Event Interrupt Flag Status bit<br>1 = Interrupt request has occurred |                                      |                                                                                                    |                           |                  |       |  |  |  |  |  |  |
|                  |                                                                           | request has occ<br>request has not                                                 |                                      |                                                                                                    |                           |                  |       |  |  |  |  |  |  |
| bit 10           | •                                                                         | ted: Read as '0                                                                    |                                      |                                                                                                    |                           |                  |       |  |  |  |  |  |  |
| bit 9            | PSESMIF: P                                                                | NM Special Eve                                                                     | ent Secondar                         | y Match Interru                                                                                    | pt Flag Status            | bit              |       |  |  |  |  |  |  |
|                  | 1 = Interrupt                                                             | request has occ                                                                    | urred                                | -                                                                                                  |                           |                  |       |  |  |  |  |  |  |
|                  | 0 = Interrupt                                                             | request has not                                                                    | occurred                             |                                                                                                    |                           |                  |       |  |  |  |  |  |  |
| bit 8-7          | Unimplemen                                                                | ted: Read as 'o                                                                    | )'                                   |                                                                                                    |                           |                  |       |  |  |  |  |  |  |
| bit 6            | C1TXIF: ECA                                                               | N1 Transmit Da                                                                     | ata Request I                        | Interrupt Flag S                                                                                   | Status bit <sup>(1)</sup> |                  |       |  |  |  |  |  |  |
|                  | 1 = Interrupt request has occurred                                        |                                                                                    |                                      |                                                                                                    |                           |                  |       |  |  |  |  |  |  |
|                  | •                                                                         | request has not                                                                    |                                      |                                                                                                    |                           |                  |       |  |  |  |  |  |  |
|                  | -                                                                         | ted: Read as '0                                                                    |                                      |                                                                                                    |                           |                  |       |  |  |  |  |  |  |
|                  | U2EIF: UART2 Error Interrupt Flag Status bit                              |                                                                                    |                                      |                                                                                                    |                           |                  |       |  |  |  |  |  |  |
| bit 5-3<br>bit 2 |                                                                           |                                                                                    |                                      | <ol> <li>I = Interrupt request has occurred</li> <li>Interrupt request has not occurred</li> </ol> |                           |                  |       |  |  |  |  |  |  |
|                  | 1 = Interrupt                                                             |                                                                                    |                                      |                                                                                                    |                           |                  |       |  |  |  |  |  |  |
| bit 2            | 1 = Interrupt  <br>0 = Interrupt                                          | request has not                                                                    | occurred                             | , hit                                                                                              |                           |                  |       |  |  |  |  |  |  |
| bit 2            | 1 = Interrupt<br>0 = Interrupt<br><b>U1EIF:</b> UART                      | request has not<br>1 Error Interrup                                                | occurred<br>ot Flag Status           | s bit                                                                                              |                           |                  |       |  |  |  |  |  |  |
|                  | 1 = Interrupt  <br>0 = Interrupt  <br><b>U1EIF:</b> UART<br>1 = Interrupt | request has not                                                                    | occurred<br>ot Flag Status<br>surred | s bit                                                                                              |                           |                  |       |  |  |  |  |  |  |

Note 1: Interrupts disabled on devices without ECAN<sup>™</sup> modules.

| REGISTER 7       | -10: 1535:1                                                     | NIERRUPI                                                                   | LAG SIAI                                                                                                                                                                      | US REGISTE        | R 5              |                  |       |  |  |  |
|------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|------------------|-------|--|--|--|
| R/W-0            | R/W-0                                                           | R/W-0                                                                      | U-0                                                                                                                                                                           | U-0               | U-0              | U-0              | U-0   |  |  |  |
| PWM2IF           | PWM1IF                                                          | ADCP12IF                                                                   |                                                                                                                                                                               |                   | —                | _                | —     |  |  |  |
| bit 15           |                                                                 |                                                                            |                                                                                                                                                                               |                   |                  |                  | bit 8 |  |  |  |
| U-0              | U-0                                                             | U-0                                                                        | R/W-0                                                                                                                                                                         | R/W-0             | R/W-0            | R/W-0            | U-0   |  |  |  |
|                  | 0-0                                                             | 0-0                                                                        | ADCP11IF                                                                                                                                                                      | ADCP10IF          | ADCP9IF          | ADCP8IF          |       |  |  |  |
| bit 7            |                                                                 |                                                                            |                                                                                                                                                                               |                   | ADOI 31          | ADDI OII         | bit ( |  |  |  |
|                  |                                                                 |                                                                            |                                                                                                                                                                               |                   |                  |                  |       |  |  |  |
| Legend:          |                                                                 |                                                                            |                                                                                                                                                                               |                   |                  |                  |       |  |  |  |
| R = Readable     | bit                                                             | W = Writable                                                               | bit                                                                                                                                                                           | U = Unimplen      | nented bit, read | as '0'           |       |  |  |  |
| -n = Value at F  | POR                                                             | '1' = Bit is set                                                           |                                                                                                                                                                               | '0' = Bit is clea | ared             | x = Bit is unkno | wn    |  |  |  |
| bit 15<br>bit 14 | 1 = Interrupt r<br>0 = Interrupt r                              | /M2 Interrupt Fl<br>request has occ<br>request has not<br>/M1 Interrupt Fl | curred<br>occurred                                                                                                                                                            |                   |                  |                  |       |  |  |  |
|                  | 1 = Interrupt r                                                 | request has occ<br>request has not                                         | curred                                                                                                                                                                        |                   |                  |                  |       |  |  |  |
| bit 13           | 1 = Interrupt r                                                 | DC Pair 12 Co<br>request has occ<br>request has not                        | curred                                                                                                                                                                        | e Interrupt Flag  | Status bit       |                  |       |  |  |  |
| bit 12-5         | Unimplemen                                                      | ted: Read as '                                                             | )'                                                                                                                                                                            |                   |                  |                  |       |  |  |  |
| bit 4            | ADCP11IF: ADC Pair 11 Conversion Done Interrupt Flag Status bit |                                                                            |                                                                                                                                                                               |                   |                  |                  |       |  |  |  |
|                  |                                                                 | request has occ<br>request has not                                         |                                                                                                                                                                               |                   |                  |                  |       |  |  |  |
| bit 3            | 1 = Interrupt r                                                 | DC Pair 10 Co<br>equest has occ<br>equest has not                          | curred                                                                                                                                                                        | e Interrupt Flag  | Status bit       |                  |       |  |  |  |
| bit 2            | ADCP9IF: AD                                                     | DC Pair 9 Conv<br>request has occ                                          | ersion Done Ir<br>curred                                                                                                                                                      | nterrupt Flag S   | atus bit         |                  |       |  |  |  |
| bit 1            | ADCP8IF: AD                                                     | C Pair 8 Conv<br>equest has occ                                            | <ul> <li>0 = Interrupt request has not occurred</li> <li>ADCP8IF: ADC Pair 8 Conversion Done Interrupt Flag Status bit</li> <li>1 = Interrupt request has occurred</li> </ul> |                   |                  |                  |       |  |  |  |
|                  |                                                                 | equest has not                                                             | occurreu                                                                                                                                                                      |                   |                  |                  |       |  |  |  |

#### - --~ - ....

| R/W-0          | R/W-0                                                                                                  | U-0                            | U-0           | U-0                                      | U-0              | R/W-0           | R/W-0  |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------------|--------------------------------|---------------|------------------------------------------|------------------|-----------------|--------|--|--|--|
| ADCP1IF        | ADCP0IF                                                                                                | _                              | _             |                                          | _                | AC4IF           | AC3IF  |  |  |  |
| bit 15         |                                                                                                        |                                |               |                                          |                  |                 | bit    |  |  |  |
| R/W-0          | R/W-0                                                                                                  | R/W-0                          | R/W-0         | R/W-0                                    | R/W-0            | R/W-0           | R/W-0  |  |  |  |
| AC2IF          | PWM9IF                                                                                                 | PWM8IF                         | PWM7IF        | PWM6IF                                   | PWM5IF           | PWM4IF          | PWM3IF |  |  |  |
| bit 7          | 1 1111011                                                                                              |                                |               |                                          |                  |                 | bit    |  |  |  |
| Legend:        |                                                                                                        |                                |               |                                          |                  |                 |        |  |  |  |
| R = Readable   | hit                                                                                                    | W = Writable                   | hit           | LI – Unimplor                            | nented bit, read |                 |        |  |  |  |
| n = Value at P |                                                                                                        | 1' = Bit is set                |               | 0 = 0 in the formula $0' = 0$ bit is cle |                  | x = Bit is unkn | 0000   |  |  |  |
|                | OR                                                                                                     | 1 - Dit 13 361                 |               |                                          | aleu             |                 | OWIT   |  |  |  |
| bit 15         | ADCP1IF: AF                                                                                            | )C Pair 1 Conv                 | ersion Done I | nterrupt Flag S                          | tatus bit        |                 |        |  |  |  |
|                |                                                                                                        | equest has oc                  |               |                                          |                  |                 |        |  |  |  |
|                |                                                                                                        | equest has no                  |               |                                          |                  |                 |        |  |  |  |
| bit 14         | ADCP0IF: AD                                                                                            | C Pair 0 Conv                  | ersion Done I | nterrupt Flag S                          | tatus bit        |                 |        |  |  |  |
|                | •                                                                                                      | equest has oc                  |               |                                          |                  |                 |        |  |  |  |
|                | -                                                                                                      | equest has no                  |               |                                          |                  |                 |        |  |  |  |
| bit 13-10      | Unimplemented: Read as '0'                                                                             |                                |               |                                          |                  |                 |        |  |  |  |
| bit 9          | AC4IF: Analog Comparator 4 Interrupt Flag Status bit<br>1 = Interrupt request has occurred             |                                |               |                                          |                  |                 |        |  |  |  |
|                | 0 = Interrupt request has not occurred                                                                 |                                |               |                                          |                  |                 |        |  |  |  |
| bit 8          | AC3IF: Analog Comparator 3 Interrupt Flag Status bit                                                   |                                |               |                                          |                  |                 |        |  |  |  |
|                |                                                                                                        | equest has oc<br>equest has no |               | -                                        |                  |                 |        |  |  |  |
| bit 7          | AC2IF: Analog Comparator 2 Interrupt Flag Status bit                                                   |                                |               |                                          |                  |                 |        |  |  |  |
|                |                                                                                                        | equest has oc<br>equest has no |               |                                          |                  |                 |        |  |  |  |
| bit 6          | <b>PWM9IF:</b> PWM9 Interrupt Flag Status bit                                                          |                                |               |                                          |                  |                 |        |  |  |  |
|                | 1 = Interrupt request has occurred                                                                     |                                |               |                                          |                  |                 |        |  |  |  |
|                | 0 = Interrupt request has not occurred                                                                 |                                |               |                                          |                  |                 |        |  |  |  |
| bit 5          | PWM8IF: PWM8 Interrupt Flag Status bit                                                                 |                                |               |                                          |                  |                 |        |  |  |  |
|                | <ul> <li>1 = Interrupt request has occurred</li> <li>0 = Interrupt request has not occurred</li> </ul> |                                |               |                                          |                  |                 |        |  |  |  |
| bit 4          | PWM7IF: PWM7 Interrupt Flag Status bit                                                                 |                                |               |                                          |                  |                 |        |  |  |  |
|                | 1 = Interrupt request has occurred                                                                     |                                |               |                                          |                  |                 |        |  |  |  |
|                | 0 = Interrupt request has not occurred                                                                 |                                |               |                                          |                  |                 |        |  |  |  |
| bit 3          | PWM6IF: PWM6 Interrupt Flag Status bit                                                                 |                                |               |                                          |                  |                 |        |  |  |  |
|                | <ul> <li>1 = Interrupt request has occurred</li> <li>0 = Interrupt request has not occurred</li> </ul> |                                |               |                                          |                  |                 |        |  |  |  |
| bit 2          | PWM5IF: PWM5 Interrupt Flag Status bit                                                                 |                                |               |                                          |                  |                 |        |  |  |  |
|                | 1 = Interrupt r                                                                                        | equest has oc<br>equest has no | curred        |                                          |                  |                 |        |  |  |  |
| bit 1          | -                                                                                                      | M4 Interrupt F                 |               |                                          |                  |                 |        |  |  |  |
|                |                                                                                                        | equest has oc                  | -             |                                          |                  |                 |        |  |  |  |
|                | •                                                                                                      | equest has no                  |               |                                          |                  |                 |        |  |  |  |
| bit 0          |                                                                                                        | M3 Interrupt F                 | -             |                                          |                  |                 |        |  |  |  |
|                | 1 = Interrupt r                                                                                        |                                |               |                                          |                  |                 |        |  |  |  |

| REGISTER 7-12: IFS7: INTERRUPT FLAG STATUS REGISTER 7 |               |                                                                                                                                   |               |                  |                  |                 |         |  |  |  |  |
|-------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|------------------|-----------------|---------|--|--|--|--|
| U-0                                                   | U-0           | U-0                                                                                                                               | U-0           | U-0              | U-0              | U-0             | U-0     |  |  |  |  |
| _                                                     | —             | —                                                                                                                                 | —             | —                | —                | —               | —       |  |  |  |  |
| bit 15                                                |               |                                                                                                                                   |               |                  |                  |                 | bit 8   |  |  |  |  |
|                                                       |               |                                                                                                                                   |               |                  |                  |                 |         |  |  |  |  |
| U-0                                                   | U-0           | R/W-0                                                                                                                             | R/W-0         | R/W-0            | R/W-0            | R/W-0           | R/W-0   |  |  |  |  |
|                                                       | —             | ADCP7IF                                                                                                                           | ADCP6IF       | ADCP5IF          | ADCP4IF          | ADCP3IF         | ADCP2IF |  |  |  |  |
| bit 7                                                 |               |                                                                                                                                   |               |                  |                  |                 | bit (   |  |  |  |  |
|                                                       |               |                                                                                                                                   |               |                  |                  |                 |         |  |  |  |  |
| Legend:                                               |               |                                                                                                                                   |               |                  |                  |                 |         |  |  |  |  |
| R = Readat                                            |               | W = Writable                                                                                                                      |               | -                | mented bit, read | d as '0'        |         |  |  |  |  |
| -n = Value a                                          | at POR        | '1' = Bit is set                                                                                                                  |               | '0' = Bit is cle | ared             | x = Bit is unkr | nown    |  |  |  |  |
|                                                       |               |                                                                                                                                   |               |                  |                  |                 |         |  |  |  |  |
| bit 15-6                                              | -             | ted: Read as '                                                                                                                    |               |                  |                  |                 |         |  |  |  |  |
| bit 5                                                 |               | ADCP7IF: ADC Pair 7 Conversion Done Interrupt Flag Status bit                                                                     |               |                  |                  |                 |         |  |  |  |  |
|                                                       |               | 1 = Interrupt request has occurred                                                                                                |               |                  |                  |                 |         |  |  |  |  |
| bit 4                                                 | -             | <ul> <li>0 = Interrupt request has not occurred</li> <li>ADCP6IF: ADC Pair 6 Conversion Done Interrupt Flag Status bit</li> </ul> |               |                  |                  |                 |         |  |  |  |  |
|                                                       |               | 1 = Interrupt request has occurred                                                                                                |               |                  |                  |                 |         |  |  |  |  |
|                                                       |               | 0 = Interrupt request has occurred                                                                                                |               |                  |                  |                 |         |  |  |  |  |
| bit 3                                                 | -             | ADCP5IF: ADC Pair 5 Conversion Done Interrupt Flag Status bit                                                                     |               |                  |                  |                 |         |  |  |  |  |
|                                                       | 1 = Interrupt | 1 = Interrupt request has occurred                                                                                                |               |                  |                  |                 |         |  |  |  |  |
|                                                       | 0 = Interrupt | 0 = Interrupt request has not occurred                                                                                            |               |                  |                  |                 |         |  |  |  |  |
| bit 2                                                 | ADCP4IF: A    | ADCP4IF: ADC Pair 4 Conversion Done Interrupt Flag Status bit                                                                     |               |                  |                  |                 |         |  |  |  |  |
|                                                       | •             | 1 = Interrupt request has occurred                                                                                                |               |                  |                  |                 |         |  |  |  |  |
|                                                       | 0 = Interrupt | 0 = Interrupt request has not occurred                                                                                            |               |                  |                  |                 |         |  |  |  |  |
| bit 1                                                 | ADCP3IF: AI   | DC Pair 3 Conv                                                                                                                    | ersion Done I | nterrupt Flag S  | Status bit       |                 |         |  |  |  |  |
|                                                       |               | 1 = Interrupt request has occurred                                                                                                |               |                  |                  |                 |         |  |  |  |  |
| 1.11.0                                                |               | request has no                                                                                                                    |               |                  |                  |                 |         |  |  |  |  |
| bit 0                                                 |               | DC Pair 2 Conv                                                                                                                    |               | nterrupt Flag S  | status bit       |                 |         |  |  |  |  |
|                                                       |               | request has oc<br>request has no                                                                                                  |               |                  |                  |                 |         |  |  |  |  |
|                                                       |               | iequest nas no                                                                                                                    |               |                  |                  |                 |         |  |  |  |  |

## REGISTER 7-12: IFS7: INTERRUPT FLAG STATUS REGISTER 7

| REGISTER      | 7-13: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |  |  |  |  |  |  |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|--|--|--|--|--|--|
| U-0           | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W-0 R/W-0                         |  |  |  |  |  |  |  |  |
| —             | DMA1IE ADIE U1TXIE U1RXIE SPI1E SPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1EIE T3IE                         |  |  |  |  |  |  |  |  |
| bit 15        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | bit 8                             |  |  |  |  |  |  |  |  |
| R/W-0         | R/W-0 | N-0 R/W-0                         |  |  |  |  |  |  |  |  |
| T2IE          | OC2IE IC2IE DMA0IE T1IE OC1IE IC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1IE INTOIE                        |  |  |  |  |  |  |  |  |
| bit 7         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | bit C                             |  |  |  |  |  |  |  |  |
| Legend:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |  |  |  |  |  |  |  |  |
| R = Readabl   | le bit W = Writable bit U = Unimplemented bit, read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |  |  |  |  |  |  |  |  |
| -n = Value at |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | is unknown                        |  |  |  |  |  |  |  |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |  |  |  |  |  |  |  |  |
| bit 15        | Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |  |  |  |  |  |  |  |  |
| bit 14        | DMA1IE: DMA Channel 1 Data Transfer Complete Interrupt Enable bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |  |  |  |  |  |  |  |  |
|               | <ul> <li>1 = Interrupt request enabled</li> <li>0 = Interrupt request not enabled</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |  |  |  |  |  |  |  |  |
| bit 13        | ADIE: ADC1 Conversion Complete Interrupt Enable bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |  |  |  |  |  |  |  |  |
|               | 1 = Interrupt request enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |  |  |  |  |  |  |  |  |
|               | 0 = Interrupt request not enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |  |  |  |  |  |  |  |  |
| bit 12        | U1TXIE: UART1 Transmitter Interrupt Enable bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |  |  |  |  |  |  |  |  |
|               | <ul><li>1 = Interrupt request enabled</li><li>0 = Interrupt request not enabled</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |  |  |  |  |  |  |  |  |
| bit 11        | U1RXIE: UART1 Receiver Interrupt Enable bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |  |  |  |  |  |  |  |  |
|               | <ul><li>1 = Interrupt request enabled</li><li>0 = Interrupt request not enabled</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |  |  |  |  |  |  |  |  |
| bit 10        | SPI1E: SPI1 Event Interrupt Enable bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |  |  |  |  |  |  |  |  |
|               | <ul> <li>1 = Interrupt request enabled</li> <li>0 = Interrupt request not enabled</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |  |  |  |  |  |  |  |  |
| bit 9         | SPI1EIE: SPI1 Event Interrupt Enable bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |  |  |  |  |  |  |  |  |
|               | 1 = Interrupt request enabled<br>0 = Interrupt request not enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |  |  |  |  |  |  |  |  |
| bit 8         | <b>T3IE:</b> Timer3 Interrupt Enable bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |  |  |  |  |  |  |  |  |
|               | 1 = Interrupt request enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |  |  |  |  |  |  |  |  |
| L:1 7         | 0 = Interrupt request not enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |  |  |  |  |  |  |  |  |
| bit 7         | T2IE: Timer2 Interrupt Enable bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |  |  |  |  |  |  |  |  |
|               | <ul> <li>1 = Interrupt request enabled</li> <li>0 = Interrupt request not enabled</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |  |  |  |  |  |  |  |  |
| bit 6         | OC2IE: Output Compare Channel 2 Interrupt Enable bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |  |  |  |  |  |  |  |  |
|               | 1 = Interrupt request enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |  |  |  |  |  |  |  |  |
| bit 5         | <b>IC2IE:</b> Input Capture Channel 2 Interrupt Enable bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 = Interrupt request not enabled |  |  |  |  |  |  |  |  |
| DIL J         | 1 = Interrupt request enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |  |  |  |  |  |  |  |  |
|               | 0 = Interrupt request not enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |  |  |  |  |  |  |  |  |
| bit 4         | DMA0IE: DMA Channel 0 Data Transfer Complete Interrupt Enable bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |  |  |  |  |  |  |  |  |
|               | 1 = Interrupt request enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |  |  |  |  |  |  |  |  |
| L:4 0         | 0 = Interrupt request not enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |  |  |  |  |  |  |  |  |
| bit 3         | T1IE: Timer1 Interrupt Enable bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |  |  |  |  |  |  |  |  |
|               | <ul> <li>1 = Interrupt request enabled</li> <li>0 = Interrupt request not enabled</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |  |  |  |  |  |  |  |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |  |  |  |  |  |  |  |  |

# REGISTER 7-13: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

## REGISTER 7-13: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

| bit 2 | OC1IE: Output Compare Channel 1 Interrupt Enable bit                                      |
|-------|-------------------------------------------------------------------------------------------|
|       | <ul><li>1 = Interrupt request enabled</li><li>0 = Interrupt request not enabled</li></ul> |
| bit 1 | IC1IE: Input Capture Channel 1 Interrupt Enable bit                                       |
|       | <ul><li>1 = Interrupt request enabled</li><li>0 = Interrupt request not enabled</li></ul> |
| bit 0 | INTOIE: External Interrupt 0 Enable bit                                                   |
|       | 1 = Interrupt request enabled                                                             |
|       | 0 = Interrupt request not enabled                                                         |

| R/W-0         | R/W-0                                                                                                               | R/W-0                            | R/W-0            | R/W-0             | R/W-0           | R/W-0           | R/W-0   |  |  |  |  |
|---------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------|-------------------|-----------------|-----------------|---------|--|--|--|--|
| U2TXIE        | U2RXIE                                                                                                              | INT2IE                           | T5IE             | T4IE              | OC4IE           | OC3IE           | DMA2IE  |  |  |  |  |
| bit 15        |                                                                                                                     |                                  |                  |                   |                 |                 | bit 8   |  |  |  |  |
| U-0           | U-0                                                                                                                 | U-0                              | R/W-0            | R/W-0             | R/W-0           | R/W-0           | R/W-0   |  |  |  |  |
| _             | _                                                                                                                   | —                                | INT1IE           | CNIE              | AC1IE           | MI2C1IE         | SI2C1IE |  |  |  |  |
| bit 7         |                                                                                                                     |                                  |                  |                   |                 |                 | bit C   |  |  |  |  |
| Legend:       |                                                                                                                     |                                  |                  |                   |                 |                 |         |  |  |  |  |
| R = Readable  | e bit                                                                                                               | W = Writable                     | bit              | U = Unimplen      | nented bit, rea | d as '0'        |         |  |  |  |  |
| -n = Value at | POR                                                                                                                 | '1' = Bit is set                 |                  | '0' = Bit is clea | ared            | x = Bit is unkr | nown    |  |  |  |  |
| bit 12        | U2TXIE: UAI                                                                                                         | RT2 Transmitte                   | r Interrupt Ena  | able bit          |                 |                 |         |  |  |  |  |
|               | 1 = Interrupt                                                                                                       | request enable                   | d                |                   |                 |                 |         |  |  |  |  |
|               |                                                                                                                     | request not ena                  |                  |                   |                 |                 |         |  |  |  |  |
| bit 11        |                                                                                                                     | RT2 Receiver I                   | •                | e bit             |                 |                 |         |  |  |  |  |
|               | •                                                                                                                   | request enable                   |                  |                   |                 |                 |         |  |  |  |  |
| bit 13        | -                                                                                                                   | request not ena                  |                  |                   |                 |                 |         |  |  |  |  |
| DIL 13        | INT2IE: External Interrupt 2 Enable bit                                                                             |                                  |                  |                   |                 |                 |         |  |  |  |  |
|               | <ul> <li>1 = Interrupt request enabled</li> <li>0 = Interrupt request not enabled</li> </ul>                        |                                  |                  |                   |                 |                 |         |  |  |  |  |
| bit 12        | -                                                                                                                   | Interrupt Enab                   |                  |                   |                 |                 |         |  |  |  |  |
|               | 1 = Interrupt request enabled                                                                                       |                                  |                  |                   |                 |                 |         |  |  |  |  |
|               | 0 = Interrupt                                                                                                       | request not ena                  | abled            |                   |                 |                 |         |  |  |  |  |
| bit 11        | T4IE: Timer4 Interrupt Enable bit                                                                                   |                                  |                  |                   |                 |                 |         |  |  |  |  |
|               | <ul> <li>1 = Interrupt request enabled</li> <li>0 = Interrupt request not enabled</li> </ul>                        |                                  |                  |                   |                 |                 |         |  |  |  |  |
| L:40          | -                                                                                                                   | -                                |                  | unt Enchla hit    |                 |                 |         |  |  |  |  |
| bit 10        | OC4IE: Output Compare Channel 4 Interrupt Enable bit                                                                |                                  |                  |                   |                 |                 |         |  |  |  |  |
|               | <ul> <li>1 = Interrupt request enabled</li> <li>0 = Interrupt request not enabled</li> </ul>                        |                                  |                  |                   |                 |                 |         |  |  |  |  |
| bit 9         | <ul> <li>Interrupt request not enabled</li> <li>OC3IE: Output Compare Channel 3 Interrupt Enable bit</li> </ul>     |                                  |                  |                   |                 |                 |         |  |  |  |  |
|               | 1 = Interrupt request enabled                                                                                       |                                  |                  |                   |                 |                 |         |  |  |  |  |
|               | 0 = Interrupt request not enabled                                                                                   |                                  |                  |                   |                 |                 |         |  |  |  |  |
| bit 8         | DMA2IE: DMA Channel 2 Data Transfer Complete Interrupt Enable bit                                                   |                                  |                  |                   |                 |                 |         |  |  |  |  |
|               | 1 = Interrupt request enabled                                                                                       |                                  |                  |                   |                 |                 |         |  |  |  |  |
|               | 0 = Interrupt request not enabled                                                                                   |                                  |                  |                   |                 |                 |         |  |  |  |  |
| bit 7-5       | -                                                                                                                   | nted: Read as '                  |                  |                   |                 |                 |         |  |  |  |  |
| bit 4         | INT1IE: External Interrupt 1 Enable bit                                                                             |                                  |                  |                   |                 |                 |         |  |  |  |  |
|               | 1 = Interrupt request enabled                                                                                       |                                  |                  |                   |                 |                 |         |  |  |  |  |
| bit 3         | <ul> <li>0 = Interrupt request not enabled</li> <li>CNIE: Input Change Notification Interrupt Enable bit</li> </ul> |                                  |                  |                   |                 |                 |         |  |  |  |  |
| bit 0         | -                                                                                                                   | -                                | -                |                   |                 |                 |         |  |  |  |  |
|               | <ul> <li>1 = Interrupt request enabled</li> <li>0 = Interrupt request not enabled</li> </ul>                        |                                  |                  |                   |                 |                 |         |  |  |  |  |
| bit 2         | -                                                                                                                   | og Comparator                    |                  | able bit          |                 |                 |         |  |  |  |  |
|               | 1 = Interrupt                                                                                                       | request enable                   | d                |                   |                 |                 |         |  |  |  |  |
|               | 0 = Interrupt                                                                                                       | request not ena                  | abled            |                   |                 |                 |         |  |  |  |  |
| bit 1         | MI2C1IE: 120                                                                                                        | C1 Master Ever                   | its Interrupt Er | nable bit         |                 |                 |         |  |  |  |  |
|               |                                                                                                                     | request enable                   |                  |                   |                 |                 |         |  |  |  |  |
|               | -                                                                                                                   | -                                |                  |                   |                 |                 |         |  |  |  |  |
|               | <ul> <li>0 = Interrupt request not enabled</li> <li>SI2C1IE: I2C1 Slave Events Interrupt Enable bit</li> </ul>      |                                  |                  |                   |                 |                 |         |  |  |  |  |
| bit 0         |                                                                                                                     | 1 Slave Events<br>request enable | -                | ible bit          |                 |                 |         |  |  |  |  |

| U-0          | U-0                                                                                  | U-0                                     | U-0    | U-0                 | U-0                   | U-0            | U-0     |  |  |  |  |
|--------------|--------------------------------------------------------------------------------------|-----------------------------------------|--------|---------------------|-----------------------|----------------|---------|--|--|--|--|
| _            | —                                                                                    | —                                       | —      | _                   | _                     | —              | _       |  |  |  |  |
| bit 15       |                                                                                      |                                         |        |                     |                       |                | bit     |  |  |  |  |
|              |                                                                                      |                                         |        |                     |                       |                |         |  |  |  |  |
| U-0          | R/W-0                                                                                | R/W-0                                   | R/W-0  | R/W-0               | R/W-0                 | R/W-0          | R/W-0   |  |  |  |  |
|              | IC4IE                                                                                | IC3IE                                   | DMA3IE | C1IE <sup>(1)</sup> | C1RXIE <sup>(1)</sup> | SPI2IE         | SPI2EIE |  |  |  |  |
| bit 7        |                                                                                      |                                         |        |                     |                       |                | bit     |  |  |  |  |
| Legend:      |                                                                                      |                                         |        |                     |                       |                |         |  |  |  |  |
| R = Readab   | ole bit                                                                              | W = Writable                            | bit    | U = Unimplei        | mented bit, read      | as '0'         |         |  |  |  |  |
| -n = Value a | at POR                                                                               | '1' = Bit is se                         | t      | '0' = Bit is cle    | eared                 | x = Bit is unk | nown    |  |  |  |  |
|              |                                                                                      |                                         |        |                     |                       |                |         |  |  |  |  |
| bit 15-7     | -                                                                                    | ted: Read as                            |        |                     |                       |                |         |  |  |  |  |
| bit 6        | IC4IE: Input Capture Channel 4 Interrupt Enable bit                                  |                                         |        |                     |                       |                |         |  |  |  |  |
|              | 1 = Interrupt request enabled<br>0 = Interrupt request not enabled                   |                                         |        |                     |                       |                |         |  |  |  |  |
| L:1 C        | •                                                                                    | •                                       |        | Frankla kit         |                       |                |         |  |  |  |  |
| bit 5        | IC3IE: Input Capture Channel 3 Interrupt Enable bit<br>1 = Interrupt request enabled |                                         |        |                     |                       |                |         |  |  |  |  |
|              | 1 = Interrupt request enabled<br>0 = Interrupt request not enabled                   |                                         |        |                     |                       |                |         |  |  |  |  |
| bit 4        | <b>DMA3IE:</b> DMA Channel 3 Data Transfer Complete Interrupt Enable bit             |                                         |        |                     |                       |                |         |  |  |  |  |
|              | 1 = Interrupt request enabled                                                        |                                         |        |                     |                       |                |         |  |  |  |  |
|              | 0 = Interrupt request has enabled                                                    |                                         |        |                     |                       |                |         |  |  |  |  |
| bit 3        | C1IE: ECAN1 Event Interrupt Enable bit <sup>(1)</sup>                                |                                         |        |                     |                       |                |         |  |  |  |  |
|              | 1 = Interrupt request enabled                                                        |                                         |        |                     |                       |                |         |  |  |  |  |
| bit 2        | 0 = Interrupt request not enabled                                                    |                                         |        |                     |                       |                |         |  |  |  |  |
| DILZ         | <b>C1RXIE:</b> ECAN1 Receive Data Ready Interrupt Enable bit <sup>(1)</sup>          |                                         |        |                     |                       |                |         |  |  |  |  |
|              | 1 = Interrupt request enabled<br>0 = Interrupt request not enabled                   |                                         |        |                     |                       |                |         |  |  |  |  |
| bit 1        | -                                                                                    | SPI2IE: SPI2 Event Interrupt Enable bit |        |                     |                       |                |         |  |  |  |  |
|              | 1 = Interrupt request enabled                                                        |                                         |        |                     |                       |                |         |  |  |  |  |
|              | 0 = Interrupt i                                                                      | request not en                          | abled  |                     |                       |                |         |  |  |  |  |
| bit 0        |                                                                                      | 2 Error Interru                         | •      |                     |                       |                |         |  |  |  |  |
|              |                                                                                      | request enable                          |        |                     |                       |                |         |  |  |  |  |
|              | 0 = Interrupt i                                                                      | request not en                          | abled  |                     |                       |                |         |  |  |  |  |
|              |                                                                                      |                                         |        |                     |                       |                |         |  |  |  |  |

# REGISTER 7-15: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

Note 1: Interrupts disabled on devices without ECAN<sup>™</sup> modules

| U-0          | U-0                           | U-0                                                                                                                 | U-0           | U-0              | R/W-0            | R/W-0             | U-0   |  |  |  |  |  |
|--------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------|------------------|------------------|-------------------|-------|--|--|--|--|--|
| _            |                               | —                                                                                                                   | _             |                  | QEI1IE           | PSEMIE            | _     |  |  |  |  |  |
| oit 15       |                               |                                                                                                                     |               |                  |                  |                   | bit 8 |  |  |  |  |  |
|              |                               |                                                                                                                     |               |                  |                  |                   |       |  |  |  |  |  |
| U-0          | R/W-0                         | R/W-0                                                                                                               | U-0           | U-0              | R/W-0            | R/W-0             | U-0   |  |  |  |  |  |
|              | INT4IE                        | INT3EI                                                                                                              | _             |                  | MI2C2IE          | SI2C2IE           |       |  |  |  |  |  |
| bit 7        |                               |                                                                                                                     |               |                  |                  |                   | bit ( |  |  |  |  |  |
| Legend:      |                               |                                                                                                                     |               |                  |                  |                   |       |  |  |  |  |  |
| R = Readab   |                               |                                                                                                                     | oit           | U = Unimplei     | mented bit, read | 1 as '0'          |       |  |  |  |  |  |
| -n = Value a |                               | '1' = Bit is set                                                                                                    |               | '0' = Bit is cle |                  | x = Bit is unknow | 'n    |  |  |  |  |  |
|              |                               |                                                                                                                     |               |                  |                  |                   |       |  |  |  |  |  |
| bit 15-11    | Unimplemer                    | nted: Read as 'd                                                                                                    | )'            |                  |                  |                   |       |  |  |  |  |  |
| bit 10       | QEI1IE: QEI                   | 1 Event Interrup                                                                                                    | t Enable bit  |                  |                  |                   |       |  |  |  |  |  |
|              |                               | request enabled                                                                                                     |               |                  |                  |                   |       |  |  |  |  |  |
|              | •                             | <ul> <li>0 = Interrupt request not enabled</li> <li>PSEMIE: PWM Special Event Match Interrupt Enable bit</li> </ul> |               |                  |                  |                   |       |  |  |  |  |  |
| bit 9        |                               |                                                                                                                     |               | rupt Enable bi   | t                |                   |       |  |  |  |  |  |
|              |                               | request enableo<br>request not ena                                                                                  |               |                  |                  |                   |       |  |  |  |  |  |
| bit 8-7      | -                             | nted: Read as '0                                                                                                    |               |                  |                  |                   |       |  |  |  |  |  |
| bit 6        | -                             | rnal Interrupt 4                                                                                                    |               |                  |                  |                   |       |  |  |  |  |  |
|              | 1 = Interrupt request enabled |                                                                                                                     |               |                  |                  |                   |       |  |  |  |  |  |
|              | 0 = Interrupt                 | request not ena                                                                                                     | bled          |                  |                  |                   |       |  |  |  |  |  |
| bit 6        |                               | rnal Interrupt 3                                                                                                    |               |                  |                  |                   |       |  |  |  |  |  |
|              |                               | request enabled<br>request not ena                                                                                  |               |                  |                  |                   |       |  |  |  |  |  |
| bit 4-3      | •                             | nted: Read as '(                                                                                                    |               |                  |                  |                   |       |  |  |  |  |  |
| oit 2        | -                             | 2 Master Event                                                                                                      |               | able bit         |                  |                   |       |  |  |  |  |  |
|              |                               | request enabled                                                                                                     | -             |                  |                  |                   |       |  |  |  |  |  |
|              |                               | request not ena                                                                                                     |               |                  |                  |                   |       |  |  |  |  |  |
| oit 1        | SI2C2IE: 12C                  | 2 Slave Events                                                                                                      | Interrupt Ena | ble bit          |                  |                   |       |  |  |  |  |  |
|              |                               | request enabled                                                                                                     |               |                  |                  |                   |       |  |  |  |  |  |
|              | 0 – Interrunt                 | request not ena                                                                                                     | hlad          |                  |                  |                   |       |  |  |  |  |  |
| bit 0        | -                             | nted: Read as '(                                                                                                    |               |                  |                  |                   |       |  |  |  |  |  |

| U-0              | U-0                                                                                       | U-0                                                                                              | U-0                                                           | R/W-0             | U-0                  | R/W-0            | U-0   |  |  |  |  |
|------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------|----------------------|------------------|-------|--|--|--|--|
| —                |                                                                                           | —                                                                                                | —                                                             | QEI2IE            | —                    | PSESMIE          | —     |  |  |  |  |
| bit 15           |                                                                                           |                                                                                                  |                                                               |                   |                      |                  | bit 8 |  |  |  |  |
|                  |                                                                                           |                                                                                                  |                                                               |                   |                      |                  |       |  |  |  |  |
| U-0              | R/W-0                                                                                     | U-0                                                                                              | U-0                                                           | U-0               | R/W-0                | R/W-0            | U-0   |  |  |  |  |
|                  | C1TXIE <sup>(1)</sup>                                                                     |                                                                                                  |                                                               |                   | U2EIE                | U1EIE            |       |  |  |  |  |
| bit 7            |                                                                                           |                                                                                                  |                                                               |                   |                      |                  | bit ( |  |  |  |  |
|                  |                                                                                           |                                                                                                  |                                                               |                   |                      |                  |       |  |  |  |  |
| Legend:          |                                                                                           |                                                                                                  | •.                                                            |                   |                      |                  |       |  |  |  |  |
| R = Readabl      |                                                                                           | W = Writable b                                                                                   | Dit                                                           | •                 | nented bit, rea      |                  |       |  |  |  |  |
| -n = Value at    | t POR                                                                                     | '1' = Bit is set                                                                                 |                                                               | '0' = Bit is clea | ared                 | x = Bit is unkno | wn    |  |  |  |  |
| bit 15-12        | Unimplemen                                                                                | nted: Read as '0                                                                                 | ۱'                                                            |                   |                      |                  |       |  |  |  |  |
| bit 11           | •                                                                                         | 2 Event Interrup                                                                                 |                                                               |                   |                      |                  |       |  |  |  |  |
|                  |                                                                                           | request enabled                                                                                  |                                                               |                   |                      |                  |       |  |  |  |  |
|                  | •                                                                                         | request not ena                                                                                  |                                                               |                   |                      |                  |       |  |  |  |  |
| bit 10           | Unimplemer                                                                                | ted: Read as '0                                                                                  | )'                                                            |                   |                      |                  |       |  |  |  |  |
| bit 9            | <b>PSESMIE:</b> PWM Special Event Secondary Match Error Interrupt Enable bit              |                                                                                                  |                                                               |                   |                      |                  |       |  |  |  |  |
|                  | 1 = Interrupt request enabled                                                             |                                                                                                  |                                                               |                   |                      |                  |       |  |  |  |  |
|                  |                                                                                           | request not ena                                                                                  |                                                               |                   |                      |                  |       |  |  |  |  |
| bit 8-7          | -                                                                                         | nted: Read as '0                                                                                 |                                                               |                   |                      |                  |       |  |  |  |  |
| bit 6            |                                                                                           | AN1 Transmit Da                                                                                  | •                                                             | Interrupt Enable  | e bit <sup>(1)</sup> |                  |       |  |  |  |  |
|                  |                                                                                           | request occurre                                                                                  |                                                               |                   |                      |                  |       |  |  |  |  |
|                  | 0 = Interrupt request not occurred                                                        |                                                                                                  |                                                               |                   |                      |                  |       |  |  |  |  |
|                  | -                                                                                         | •                                                                                                |                                                               |                   |                      |                  |       |  |  |  |  |
|                  | Unimplemen                                                                                | ted: Read as '0                                                                                  | )'                                                            |                   |                      |                  |       |  |  |  |  |
| bit 5-3<br>bit 2 | Unimplemer<br>U2EIE: UAR                                                                  | n <b>ted:</b> Read as 'd<br>T2 Error Interrup                                                    | )'<br>ot Enable bit                                           |                   |                      |                  |       |  |  |  |  |
|                  | Unimplemer<br>U2EIE: UAR<br>1 = Interrupt                                                 | nted: Read as '0<br>T2 Error Interrup<br>request enabled                                         | )'<br>ot Enable bit<br>I                                      |                   |                      |                  |       |  |  |  |  |
| bit 2            | Unimplemer<br>U2EIE: UAR<br>1 = Interrupt<br>0 = Interrupt                                | nted: Read as '0<br>T2 Error Interrup<br>request enabled<br>request not ena                      | ) <sup>,</sup><br>ot Enable bit<br>I<br>bled                  |                   |                      |                  |       |  |  |  |  |
|                  | Unimplemer<br>U2EIE: UAR<br>1 = Interrupt<br>0 = Interrupt<br>U1EIE: UAR                  | nted: Read as 'C<br>T2 Error Interrup<br>request enablec<br>request not ena<br>T1 Error Interrup | ) <sup>,</sup><br>ot Enable bit<br>I<br>bled<br>ot Enable bit |                   |                      |                  |       |  |  |  |  |
| bit 2            | Unimplemer<br>U2EIE: UAR<br>1 = Interrupt<br>0 = Interrupt<br>U1EIE: UAR<br>1 = Interrupt | nted: Read as '0<br>T2 Error Interrup<br>request enabled<br>request not ena                      | ) <sup>,</sup><br>ot Enable bit<br>I<br>bled<br>ot Enable bit |                   |                      |                  |       |  |  |  |  |

Note 1: Interrupts disabled on devices without ECAN<sup>™</sup> modules.

| R/W-0        | R/W-0           | R/W-0                                                                                              | U-0           | U-0               | U-0              | U-0              | U-0 |  |  |  |  |  |
|--------------|-----------------|----------------------------------------------------------------------------------------------------|---------------|-------------------|------------------|------------------|-----|--|--|--|--|--|
| PWM2IE       | PWM1IE          | ADCP12IE                                                                                           | —             | —                 | —                | —                | _   |  |  |  |  |  |
| bit 15       |                 |                                                                                                    |               |                   |                  | · · ·            | bit |  |  |  |  |  |
|              |                 |                                                                                                    |               |                   |                  |                  |     |  |  |  |  |  |
| U-0          | U-0             | U-0                                                                                                | R/W-0         | R/W-0             | R/W-0            | R/W-0            | U-0 |  |  |  |  |  |
| _            |                 | —                                                                                                  | ADCP11IE      | ADCP10IE          | ADCP9IE          | ADCP8IE          |     |  |  |  |  |  |
| bit 7        |                 |                                                                                                    |               |                   |                  |                  | bit |  |  |  |  |  |
|              |                 |                                                                                                    |               |                   |                  |                  |     |  |  |  |  |  |
| Legend:      |                 |                                                                                                    |               |                   |                  |                  |     |  |  |  |  |  |
| R = Readab   | le bit          | W = Writable                                                                                       | bit           | -                 | nented bit, read | as '0'           |     |  |  |  |  |  |
| -n = Value a | t POR           | '1' = Bit is set                                                                                   |               | '0' = Bit is clea | ared             | x = Bit is unkno | own |  |  |  |  |  |
|              |                 |                                                                                                    | (1)           |                   |                  |                  |     |  |  |  |  |  |
| bit 15       |                 | /M2 Interrupt E                                                                                    |               |                   |                  |                  |     |  |  |  |  |  |
|              |                 | request is enab<br>request is not e                                                                |               |                   |                  |                  |     |  |  |  |  |  |
| bit 14       | -               | /M1 Interrupt E                                                                                    |               |                   |                  |                  |     |  |  |  |  |  |
| bit 14       |                 | request is enab                                                                                    |               |                   |                  |                  |     |  |  |  |  |  |
|              |                 | request is not e                                                                                   |               |                   |                  |                  |     |  |  |  |  |  |
| bit 13       | ADCP12IE: A     | DC Pair 12 Co                                                                                      | nversion Done | e Interrupt Ena   | ble bit          |                  |     |  |  |  |  |  |
|              |                 | request is enab                                                                                    |               |                   |                  |                  |     |  |  |  |  |  |
|              | -               | request is not e                                                                                   |               |                   |                  |                  |     |  |  |  |  |  |
| bit 12-5     | •               | ted: Read as '                                                                                     |               |                   |                  |                  |     |  |  |  |  |  |
| bit 4        |                 |                                                                                                    |               | e Interrupt Enal  | ble bit          |                  |     |  |  |  |  |  |
|              |                 | <ul> <li>1 = Interrupt request is enabled</li> <li>0 = Interrupt request is not enabled</li> </ul> |               |                   |                  |                  |     |  |  |  |  |  |
| bit 3        | •               | •                                                                                                  |               | e Interrupt Ena   | ble hit          |                  |     |  |  |  |  |  |
| bit 0        |                 | request is enab                                                                                    |               |                   |                  |                  |     |  |  |  |  |  |
|              |                 | request is not e                                                                                   |               |                   |                  |                  |     |  |  |  |  |  |
| bit 2        | ADCP9IE: AI     | DC Pair 9 Conv                                                                                     | ersion Done I | nterrupt Enable   | e bit            |                  |     |  |  |  |  |  |
|              |                 | request is enab                                                                                    |               |                   |                  |                  |     |  |  |  |  |  |
|              | •               | request is not e                                                                                   |               |                   |                  |                  |     |  |  |  |  |  |
| bit 1        |                 |                                                                                                    |               | nterrupt Enable   | e bit            |                  |     |  |  |  |  |  |
|              | 1 – Interrupt i | raguage in anab                                                                                    | lod           |                   |                  |                  |     |  |  |  |  |  |
|              |                 | request is enab<br>request is not e                                                                |               |                   |                  |                  |     |  |  |  |  |  |

| ADCP1IE      | ADCP0IE                                         |                                     |                |                   |                  |                 | 1      |  |  |  |  |
|--------------|-------------------------------------------------|-------------------------------------|----------------|-------------------|------------------|-----------------|--------|--|--|--|--|
| hit 15       |                                                 | —                                   | —              | —                 | —                | AC4IE           | AC3IE  |  |  |  |  |
| 011 15       |                                                 |                                     |                |                   |                  |                 | bit 8  |  |  |  |  |
| R/W-0        | R/W-0                                           | R/W-0                               | R/W-0          | R/W-0             | R/W-0            | R/W-0           | R/W-0  |  |  |  |  |
| AC2IE        | PWM9IE                                          | PWM8IE                              | PWM7IE         | PWM6IE            | PWM5IE           | PWM4IE          | PWM3IE |  |  |  |  |
| bit 7        |                                                 |                                     | 1              |                   |                  |                 | bit (  |  |  |  |  |
| Legend:      |                                                 |                                     |                |                   |                  |                 |        |  |  |  |  |
| R = Readable | bit                                             | W = Writable                        | bit            | U = Unimplen      | nented bit, read | l as '0'        |        |  |  |  |  |
| n = Value at | POR                                             | '1' = Bit is set                    | :              | '0' = Bit is clea | ared             | x = Bit is unkn | own    |  |  |  |  |
| bit 15       | ADCP1IE: AI                                     | DC Pair 1 Conv                      | version Done I | nterrupt Enable   | e bit            |                 |        |  |  |  |  |
|              |                                                 | request is enat<br>request is not e |                |                   |                  |                 |        |  |  |  |  |
| bit 14       | ADCPOIE: AD                                     | DC Pair 0 Conv                      | version Done I | nterrupt Enable   | e bit            |                 |        |  |  |  |  |
|              |                                                 | request is enat<br>request is not e |                |                   |                  |                 |        |  |  |  |  |
| bit 13-10    | Unimplemen                                      | ted: Read as '                      | 0              |                   |                  |                 |        |  |  |  |  |
| bit 9        | AC4IE: Analo                                    | og Comparator                       | 4 Interrupt En | able bit          |                  |                 |        |  |  |  |  |
|              |                                                 | request is enat<br>request is not e |                |                   |                  |                 |        |  |  |  |  |
| bit 8        | AC3IE: Analog Comparator 3 Interrupt Enable bit |                                     |                |                   |                  |                 |        |  |  |  |  |
|              |                                                 | request is enat<br>request is not e |                |                   |                  |                 |        |  |  |  |  |
| bit 7        | AC2IE: Analo                                    | og Comparator                       | 2 Interrupt En | able bit          |                  |                 |        |  |  |  |  |
|              |                                                 | request is enat<br>request is not e |                |                   |                  |                 |        |  |  |  |  |
| bit 6        | PWM9IE: PWM9 Interrupt Enable bit               |                                     |                |                   |                  |                 |        |  |  |  |  |
|              |                                                 | request is enat<br>request is not e |                |                   |                  |                 |        |  |  |  |  |
| bit 5        | PWM8IE: PW                                      | VM8 Interrupt E                     | nable bit      |                   |                  |                 |        |  |  |  |  |
|              |                                                 | request is enat<br>request is not e |                |                   |                  |                 |        |  |  |  |  |
| bit 4        | PWM7IE: PW                                      | VM7 Interrupt E                     | nable bit      |                   |                  |                 |        |  |  |  |  |
|              |                                                 | request is enab                     |                |                   |                  |                 |        |  |  |  |  |
|              | -                                               | request is not e                    |                |                   |                  |                 |        |  |  |  |  |
| bit 3        |                                                 | VM6 Interrupt E                     |                |                   |                  |                 |        |  |  |  |  |
|              |                                                 | request is enat<br>request is not e |                |                   |                  |                 |        |  |  |  |  |
| bit 2        |                                                 | VM5 Interrupt E                     |                |                   |                  |                 |        |  |  |  |  |
|              | 1 = Interrupt                                   | request is enab<br>request is not e | bled           |                   |                  |                 |        |  |  |  |  |
| bit 1        | •                                               | VM4 Interrupt E                     |                |                   |                  |                 |        |  |  |  |  |
|              |                                                 | request is enat                     |                |                   |                  |                 |        |  |  |  |  |
|              | •                                               | request is not e                    |                |                   |                  |                 |        |  |  |  |  |
|              | PWM3IE: PW                                      | VM3 Interrupt E                     | nable bit      |                   |                  |                 |        |  |  |  |  |
| bit 0        |                                                 |                                     |                |                   |                  |                 |        |  |  |  |  |

| U-0               | U-0                                                      | U-0                                       | U-0                                                                                                | U-0              | U-0              | U-0             | U-0     |  |  |  |  |  |
|-------------------|----------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------|------------------|------------------|-----------------|---------|--|--|--|--|--|
| _                 | —                                                        | —                                         | —                                                                                                  | —                |                  | _               | —       |  |  |  |  |  |
| bit 15            |                                                          |                                           |                                                                                                    |                  |                  |                 | bit 8   |  |  |  |  |  |
| U-0               | U-0                                                      | R/W-0                                     | R/W-0                                                                                              | R/W-0            | R/W-0            | R/W-0           | R/W-0   |  |  |  |  |  |
|                   |                                                          | ADCP7IE                                   | ADCP6IE                                                                                            | ADCP5IE          | ADCP4IE          | ADCP3IE         | ADCP2IE |  |  |  |  |  |
| bit 7             |                                                          |                                           |                                                                                                    |                  | -                |                 | bit C   |  |  |  |  |  |
|                   |                                                          |                                           |                                                                                                    |                  |                  |                 |         |  |  |  |  |  |
| Legend:           |                                                          |                                           |                                                                                                    |                  |                  |                 |         |  |  |  |  |  |
| R = Readabl       | le bit                                                   | W = Writable                              | bit                                                                                                | U = Unimplen     | nented bit, read | d as '0'        |         |  |  |  |  |  |
| -n = Value at     | t POR                                                    | '1' = Bit is set                          |                                                                                                    | '0' = Bit is cle | ared             | x = Bit is unkr | nown    |  |  |  |  |  |
| bit 15-6<br>bit 5 | •                                                        | i <b>ted:</b> Read as '<br>DC Pair 7 Conv |                                                                                                    | nterrunt Enable  | e hit            |                 |         |  |  |  |  |  |
| bit 5             | 1 = Interrupt                                            | request is enab<br>request is not e       | led                                                                                                |                  | 5 Dit            |                 |         |  |  |  |  |  |
| bit 4             | ADCP6IE: AI                                              | DC Pair 6 Conv                            | ersion Done I                                                                                      | nterrupt Enable  | e bit            |                 |         |  |  |  |  |  |
|                   |                                                          | request is enab<br>request is not e       |                                                                                                    |                  |                  |                 |         |  |  |  |  |  |
| bit               | ADCP5IE: AI                                              | DC Pair 5 Conv                            | ersion Done I                                                                                      | nterrupt Enable  | e bit            |                 |         |  |  |  |  |  |
|                   |                                                          | request is enab<br>request is not e       |                                                                                                    |                  |                  |                 |         |  |  |  |  |  |
| bit               |                                                          | DC Pair 4 Conv                            |                                                                                                    | nterrupt Enable  | e bit            |                 |         |  |  |  |  |  |
|                   |                                                          | request is enab<br>request is not e       |                                                                                                    |                  |                  |                 |         |  |  |  |  |  |
|                   | -                                                        | -                                         |                                                                                                    | nterrupt Enable  | e bit            |                 |         |  |  |  |  |  |
| bit               | ADCP3IE: ADC Pair 3 Conversion Done Interrupt Enable bit |                                           |                                                                                                    |                  |                  |                 |         |  |  |  |  |  |
| bit               | 1 = Interrupt                                            | request is enab                           | <ul> <li>1 = Interrupt request is enabled</li> <li>0 = Interrupt request is not enabled</li> </ul> |                  |                  |                 |         |  |  |  |  |  |
| bit               | 1 = Interrupt<br>0 = Interrupt                           | request is enab<br>request is not e       | enabled                                                                                            |                  |                  |                 |         |  |  |  |  |  |
| bit               | 1 = Interrupt<br>0 = Interrupt<br>ADCP2IE: Al            | request is enab                           | enabled<br>rersion Done I                                                                          | nterrupt Enable  | e bit            |                 |         |  |  |  |  |  |

| U-0                    | R/W-1                                                        | R/W-0                                   | R/W-0          | U-0                                   | R/W-1           | R/W-0            | R/W-0   |  |  |  |  |  |
|------------------------|--------------------------------------------------------------|-----------------------------------------|----------------|---------------------------------------|-----------------|------------------|---------|--|--|--|--|--|
| —                      |                                                              | T1IP<2:0>                               |                |                                       |                 | OC1IP<2:0>       |         |  |  |  |  |  |
| bit 15                 |                                                              |                                         |                |                                       |                 |                  | bit     |  |  |  |  |  |
| U-0                    | R/W-1                                                        | R/W-0                                   | R/W-0          | U-0                                   | R/W-1           | R/W-0            | R/W-0   |  |  |  |  |  |
|                        | 1\/ \V                                                       | IC1IP<2:0>                              | 11/00-0        |                                       | 11/ 11-1        | INT0IP<2:0>      | 11/00-0 |  |  |  |  |  |
| bit 7                  |                                                              |                                         |                |                                       |                 |                  | bit (   |  |  |  |  |  |
| Lagandi                |                                                              |                                         |                |                                       |                 |                  |         |  |  |  |  |  |
| Legend:<br>R = Readabl | le bit                                                       | W = Writable b                          | oit            | U = Unimpler                          | nented bit, rea | ad as '0'        |         |  |  |  |  |  |
| -n = Value at          |                                                              | '1' = Bit is set                        |                | '0' = Bit is cle                      |                 | x = Bit is unkno | own     |  |  |  |  |  |
|                        |                                                              |                                         |                |                                       |                 |                  |         |  |  |  |  |  |
| bit 15                 | Unimpleme                                                    | ented: Read as '0                       | )'             |                                       |                 |                  |         |  |  |  |  |  |
| bit 14-12              | T1IP<2:0>: Timer1 Interrupt Priority bits                    |                                         |                |                                       |                 |                  |         |  |  |  |  |  |
|                        | 111 = Interr                                                 | upt is priority 7 (h                    | nighest priori | ty interrupt)                         |                 |                  |         |  |  |  |  |  |
|                        | •                                                            |                                         |                |                                       |                 |                  |         |  |  |  |  |  |
|                        | •                                                            |                                         |                |                                       |                 |                  |         |  |  |  |  |  |
|                        | 001 = Interr                                                 | 001 = Interrupt is priority 1           |                |                                       |                 |                  |         |  |  |  |  |  |
|                        |                                                              | upt source is disa                      | abled          |                                       |                 |                  |         |  |  |  |  |  |
| bit 11                 | Unimpleme                                                    | ented: Read as '0                       | )'             |                                       |                 |                  |         |  |  |  |  |  |
| bit 10-8               | OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits |                                         |                |                                       |                 |                  |         |  |  |  |  |  |
|                        | 111 = Interr                                                 | upt is priority 7 (h                    | nighest priori | ty interrupt)                         |                 |                  |         |  |  |  |  |  |
|                        | •                                                            |                                         |                |                                       |                 |                  |         |  |  |  |  |  |
|                        | •                                                            |                                         |                |                                       |                 |                  |         |  |  |  |  |  |
|                        | •<br>001 = Interrupt is priority 1                           |                                         |                |                                       |                 |                  |         |  |  |  |  |  |
|                        |                                                              | upt source is disa                      | abled          |                                       |                 |                  |         |  |  |  |  |  |
| bit 7                  | Unimpleme                                                    | ented: Read as '0                       | )'             |                                       |                 |                  |         |  |  |  |  |  |
| bit 6-4                | IC1IP<2:0>                                                   | : Input Capture C                       | hannel 1 Int   | errupt Priority b                     | its             |                  |         |  |  |  |  |  |
|                        | 111 = Interr                                                 | upt is priority 7 (h                    | nighest priori | ty interrupt)                         |                 |                  |         |  |  |  |  |  |
|                        | •                                                            |                                         |                |                                       |                 |                  |         |  |  |  |  |  |
|                        | •                                                            |                                         |                |                                       |                 |                  |         |  |  |  |  |  |
|                        |                                                              | upt is priority 1<br>upt source is disa | ahled          |                                       |                 |                  |         |  |  |  |  |  |
| bit 3                  |                                                              | ented: Read as '0                       |                |                                       |                 |                  |         |  |  |  |  |  |
| bit 2-0                | -                                                            | >: External Interr                      |                | bits                                  |                 |                  |         |  |  |  |  |  |
| 511 2 0                |                                                              | upt is priority 7 (h                    |                |                                       |                 |                  |         |  |  |  |  |  |
|                        | •                                                            | · · · · · · · · · · · · · · · · · · ·   | J              | · · · · · · · · · · · · · · · · · · · |                 |                  |         |  |  |  |  |  |
|                        | •                                                            |                                         |                |                                       |                 |                  |         |  |  |  |  |  |
|                        | •                                                            | upt is priority 1                       |                |                                       |                 |                  |         |  |  |  |  |  |
|                        |                                                              |                                         |                |                                       |                 |                  |         |  |  |  |  |  |

| U-0          | R/W-1                                                        | R/W-0                                   | R/W-0          | U-0               | R/W-1           | R/W-0           | R/W-0 |  |  |  |  |
|--------------|--------------------------------------------------------------|-----------------------------------------|----------------|-------------------|-----------------|-----------------|-------|--|--|--|--|
| _            |                                                              | T2IP<2:0>                               |                |                   |                 | OC2IP<2:0>      |       |  |  |  |  |
| oit 15       |                                                              |                                         |                |                   |                 |                 | bit   |  |  |  |  |
|              |                                                              |                                         |                |                   |                 |                 |       |  |  |  |  |
| U-0          | R/W-1                                                        | R/W-0                                   | R/W-0          | U-0               | R/W-1           | R/W-0           | R/W-0 |  |  |  |  |
| _            |                                                              | IC2IP<2:0>                              |                | —                 |                 | DMA0IP<2:0>     |       |  |  |  |  |
| oit 7        |                                                              |                                         |                |                   |                 |                 | bit   |  |  |  |  |
| Legend:      |                                                              |                                         |                |                   |                 |                 |       |  |  |  |  |
| R = Readab   | le bit                                                       | W = Writable I                          | bit            | U = Unimplei      | mented bit, rea | d as '0'        |       |  |  |  |  |
| -n = Value a | t POR                                                        | '1' = Bit is set                        |                | '0' = Bit is cle  |                 | x = Bit is unkn | own   |  |  |  |  |
|              |                                                              |                                         |                |                   |                 |                 |       |  |  |  |  |
| bit 15       | Unimpleme                                                    | nted: Read as 'o                        | )'             |                   |                 |                 |       |  |  |  |  |
| bit 14-12    | T2IP<2:0>:                                                   | Timer2 Interrupt                        | Priority bits  |                   |                 |                 |       |  |  |  |  |
|              | 111 = Interro                                                | upt is priority 7 (I                    | nighest priori | ity interrupt)    |                 |                 |       |  |  |  |  |
|              | •                                                            |                                         |                |                   |                 |                 |       |  |  |  |  |
|              | •                                                            |                                         |                |                   |                 |                 |       |  |  |  |  |
|              | 001 = Interro                                                | upt is priority 1                       |                |                   |                 |                 |       |  |  |  |  |
|              | 000 = Interro                                                | upt source is dis                       | abled          |                   |                 |                 |       |  |  |  |  |
| bit 11       | Unimpleme                                                    | nted: Read as 'o                        | )'             |                   |                 |                 |       |  |  |  |  |
| bit 10-8     | OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits |                                         |                |                   |                 |                 |       |  |  |  |  |
|              | 111 = Interro                                                | upt is priority 7 (I                    | nighest priori | ity interrupt)    |                 |                 |       |  |  |  |  |
|              | •                                                            |                                         |                |                   |                 |                 |       |  |  |  |  |
|              | •                                                            |                                         |                |                   |                 |                 |       |  |  |  |  |
|              |                                                              | upt is priority 1<br>upt source is disa | abled          |                   |                 |                 |       |  |  |  |  |
| bit 7        |                                                              | nted: Read as '(                        |                |                   |                 |                 |       |  |  |  |  |
| bit 6-4      | -                                                            | Input Capture C                         |                | errupt Priority b | its             |                 |       |  |  |  |  |
|              |                                                              | upt is priority 7 (I                    |                |                   |                 |                 |       |  |  |  |  |
|              | •                                                            |                                         | <b>.</b>       |                   |                 |                 |       |  |  |  |  |
|              | •                                                            |                                         |                |                   |                 |                 |       |  |  |  |  |
|              | •<br>001 = Interr                                            | upt is priority 1                       |                |                   |                 |                 |       |  |  |  |  |
|              |                                                              | upt source is dis                       | abled          |                   |                 |                 |       |  |  |  |  |
| oit 3-0      | DMA0IP<2:                                                    | D>: DMA Channe                          | el 0 Data Tra  | Insfer Complete   | Interrupt Prior | ity bits        |       |  |  |  |  |
|              | 111 = Interro                                                | upt is priority 7 (ł                    | nighest priori | ty interrupt)     |                 |                 |       |  |  |  |  |
|              | •                                                            |                                         |                |                   |                 |                 |       |  |  |  |  |
|              | •                                                            |                                         |                |                   |                 |                 |       |  |  |  |  |
|              | -                                                            |                                         |                |                   |                 |                 |       |  |  |  |  |
|              | 001 = interror                                               | upt is priority 1                       |                |                   |                 |                 |       |  |  |  |  |

| U-0           | R/W-1                                                               | R/W-0                                                  | R/W-0          | U-0              | R/W-1           | R/W-0            | R/W-0 |  |  |  |  |  |
|---------------|---------------------------------------------------------------------|--------------------------------------------------------|----------------|------------------|-----------------|------------------|-------|--|--|--|--|--|
| —             |                                                                     | U1RXIP<2:0>                                            |                |                  |                 | SPI1IP<2:0>      |       |  |  |  |  |  |
| bit 15        |                                                                     |                                                        |                |                  | •               |                  | bit   |  |  |  |  |  |
|               |                                                                     |                                                        |                |                  |                 |                  |       |  |  |  |  |  |
| U-0           | R/W-1                                                               | R/W-0                                                  | R/W-0          | U-0              | R/W-1           | R/W-0            | R/W-0 |  |  |  |  |  |
|               |                                                                     | SPI1EIP<2:0>                                           |                |                  |                 | T3IP<2:0>        | L.11  |  |  |  |  |  |
| bit 7         |                                                                     |                                                        |                |                  |                 |                  | bit   |  |  |  |  |  |
| Legend:       |                                                                     |                                                        |                |                  |                 |                  |       |  |  |  |  |  |
| R = Readabl   | e bit                                                               | W = Writable b                                         | oit            | U = Unimplei     | mented bit, rea | ad as '0'        |       |  |  |  |  |  |
| -n = Value at | POR                                                                 | '1' = Bit is set                                       |                | '0' = Bit is cle | eared           | x = Bit is unkno | own   |  |  |  |  |  |
|               |                                                                     |                                                        |                |                  |                 |                  |       |  |  |  |  |  |
| bit 15        | Unimplem                                                            | ented: Read as '0                                      | )'             |                  |                 |                  |       |  |  |  |  |  |
| bit 14-12     | U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits                 |                                                        |                |                  |                 |                  |       |  |  |  |  |  |
|               | 111 = Interrupt is priority 7 (highest priority interrupt)          |                                                        |                |                  |                 |                  |       |  |  |  |  |  |
|               | •                                                                   |                                                        |                |                  |                 |                  |       |  |  |  |  |  |
|               | •                                                                   |                                                        |                |                  |                 |                  |       |  |  |  |  |  |
|               | 001 = Interrupt is priority 1                                       |                                                        |                |                  |                 |                  |       |  |  |  |  |  |
|               |                                                                     | rupt source is disa                                    |                |                  |                 |                  |       |  |  |  |  |  |
| bit 11        | -                                                                   | ented: Read as '0                                      |                |                  |                 |                  |       |  |  |  |  |  |
| bit 10-8      | SPI1IP<2:0>: SPI1 Event Interrupt Priority bits                     |                                                        |                |                  |                 |                  |       |  |  |  |  |  |
|               | 111 = Inter                                                         | rupt is priority 7 (h                                  | highest priori | ity interrupt)   |                 |                  |       |  |  |  |  |  |
|               | •                                                                   |                                                        |                |                  |                 |                  |       |  |  |  |  |  |
|               | •                                                                   |                                                        |                |                  |                 |                  |       |  |  |  |  |  |
|               | 001 = Interrupt is priority 1<br>000 = Interrupt source is disabled |                                                        |                |                  |                 |                  |       |  |  |  |  |  |
| h:+ 7         |                                                                     | -                                                      |                |                  |                 |                  |       |  |  |  |  |  |
| bit 7         | -                                                                   | ented: Read as '0                                      |                |                  |                 |                  |       |  |  |  |  |  |
| bit 6-4       |                                                                     | : <b>0&gt;:</b> SPI1 Error In<br>rupt is priority 7 (h | •              | •                |                 |                  |       |  |  |  |  |  |
|               | •                                                                   |                                                        | lighest phon   | ity interrupt)   |                 |                  |       |  |  |  |  |  |
|               | •                                                                   |                                                        |                |                  |                 |                  |       |  |  |  |  |  |
|               | •                                                                   |                                                        |                |                  |                 |                  |       |  |  |  |  |  |
|               |                                                                     | rupt is priority 1<br>rupt source is disa              | abled          |                  |                 |                  |       |  |  |  |  |  |
| bit 3         |                                                                     | ented: Read as '0                                      |                |                  |                 |                  |       |  |  |  |  |  |
| bit 2-0       | -                                                                   | Timer3 Interrupt                                       |                |                  |                 |                  |       |  |  |  |  |  |
|               |                                                                     | rupt is priority 7 (h                                  | -              | ity interrupt)   |                 |                  |       |  |  |  |  |  |
|               | •                                                                   |                                                        | <b>U</b>       |                  |                 |                  |       |  |  |  |  |  |
|               | •                                                                   |                                                        |                |                  |                 |                  |       |  |  |  |  |  |
|               | •                                                                   |                                                        |                |                  |                 |                  |       |  |  |  |  |  |
|               | ()() = inter                                                        | rupt is priority 1                                     |                |                  |                 |                  |       |  |  |  |  |  |

|                  | U-0                                                                                                                                       | U-0                                                                                                                                                                                 | U-0                                                                  | U-0                                | R/W-1           | R/W-0           | R/W-0 |  |  |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------|-----------------|-----------------|-------|--|--|--|--|
| —                | _                                                                                                                                         |                                                                                                                                                                                     | _                                                                    | _                                  |                 | DMA1IP<2:0>     |       |  |  |  |  |
| oit 15           |                                                                                                                                           |                                                                                                                                                                                     |                                                                      |                                    |                 |                 | bit   |  |  |  |  |
|                  |                                                                                                                                           |                                                                                                                                                                                     |                                                                      |                                    |                 |                 |       |  |  |  |  |
| U-0              | R/W-1                                                                                                                                     | R/W-0                                                                                                                                                                               | R/W-0                                                                | U-0                                | R/W-1           | R/W-0           | R/W-0 |  |  |  |  |
| —                |                                                                                                                                           | ADIP<2:0>                                                                                                                                                                           |                                                                      | —                                  |                 | U1TXIP<2:0>     |       |  |  |  |  |
| bit 7            |                                                                                                                                           |                                                                                                                                                                                     |                                                                      |                                    |                 |                 | bit   |  |  |  |  |
| Legend:          |                                                                                                                                           |                                                                                                                                                                                     |                                                                      |                                    |                 |                 |       |  |  |  |  |
| R = Readab       | = Readable bit W = Writable bit                                                                                                           |                                                                                                                                                                                     |                                                                      |                                    | nented bit, rea | ad as '0'       |       |  |  |  |  |
| -n = Value a     | at POR                                                                                                                                    | '1' = Bit is set                                                                                                                                                                    |                                                                      | '0' = Bit is cle                   | ared            | x = Bit is unkn | own   |  |  |  |  |
| oit 15 11        | Unimplomo                                                                                                                                 | tod. Pood os fo                                                                                                                                                                     | ,                                                                    |                                    |                 |                 |       |  |  |  |  |
| bit 15-11        | -                                                                                                                                         | nted: Read as '0                                                                                                                                                                    |                                                                      |                                    |                 |                 |       |  |  |  |  |
| bit 10-8         | <b>DMA1IP&lt;2:0&gt;:</b> DMA Channel 1 Data Transfer Complete Interrupt Priority bits                                                    |                                                                                                                                                                                     |                                                                      |                                    |                 |                 |       |  |  |  |  |
|                  | <ul> <li>111 = Interrupt is priority 7 (highest priority interrupt)</li> </ul>                                                            |                                                                                                                                                                                     |                                                                      |                                    |                 |                 |       |  |  |  |  |
|                  | •                                                                                                                                         |                                                                                                                                                                                     |                                                                      |                                    |                 |                 |       |  |  |  |  |
|                  | •                                                                                                                                         |                                                                                                                                                                                     |                                                                      |                                    |                 |                 |       |  |  |  |  |
|                  |                                                                                                                                           |                                                                                                                                                                                     |                                                                      |                                    |                 |                 |       |  |  |  |  |
|                  |                                                                                                                                           | pt is priority 1                                                                                                                                                                    | abled                                                                |                                    |                 |                 |       |  |  |  |  |
| bit 7            | 000 = Interru                                                                                                                             | pt source is disa                                                                                                                                                                   |                                                                      |                                    |                 |                 |       |  |  |  |  |
| bit 7<br>bit 6-4 | 000 = Interru<br>Unimplemer                                                                                                               | ipt source is disanted: Read as '0                                                                                                                                                  | )'                                                                   | Interrupt Priorit                  | ty bits         |                 |       |  |  |  |  |
|                  | 000 = Interru<br>Unimplemer<br>ADIP<2:0>:                                                                                                 | ipt source is disa<br>nted: Read as '0<br>ADC1 Conversio                                                                                                                            | )'<br>on Complete                                                    | •                                  | ty bits         |                 |       |  |  |  |  |
|                  | 000 = Interru<br>Unimplemer<br>ADIP<2:0>:                                                                                                 | ipt source is disanted: Read as '0                                                                                                                                                  | )'<br>on Complete                                                    | •                                  | ty bits         |                 |       |  |  |  |  |
|                  | 000 = Interru<br>Unimplemer<br>ADIP<2:0>:                                                                                                 | ipt source is disa<br>nted: Read as '0<br>ADC1 Conversio                                                                                                                            | )'<br>on Complete                                                    | •                                  | ty bits         |                 |       |  |  |  |  |
|                  | 000 = Interru<br>Unimplemen<br>ADIP<2:0>:<br>111 = Interru<br>•<br>•                                                                      | ipt source is disa<br>nted: Read as 'o<br>ADC1 Conversio<br>ipt is priority 7 (h                                                                                                    | )'<br>on Complete                                                    | •                                  | ty bits         |                 |       |  |  |  |  |
|                  | 000 = Interru<br>Unimplemen<br>ADIP<2:0>: .<br>111 = Interru<br>•<br>•<br>001 = Interru                                                   | nted: Read as 'C<br>ADC1 Conversion<br>pt is priority 7 (h                                                                                                                          | <sub>)</sub> ,<br>on Complete<br>highest priori                      | •                                  | ty bits         |                 |       |  |  |  |  |
| bit 6-4          | 000 = Interru<br>Unimplemer<br>ADIP<2:0>:<br>111 = Interru                                                                                | ipt source is disa<br><b>nted:</b> Read as '0<br>ADC1 Conversion<br>upt is priority 7 (h<br>upt is priority 1<br>upt source is disa                                                 | <sub>)</sub> ,<br>on Complete<br>nighest priori<br>abled             | •                                  | ty bits         |                 |       |  |  |  |  |
| bit 6-4<br>bit 3 | 000 = Interru<br>Unimplemer<br>ADIP<2:0>:<br>111 = Interru<br>•<br>•<br>001 = Interru<br>000 = Interru<br>Unimplemer                      | npt source is disa<br>nted: Read as '0<br>ADC1 Conversion<br>opt is priority 7 (h<br>npt is priority 1<br>npt source is disa<br>nted: Read as '0                                    | <sub>)'</sub><br>on Complete<br>nighest priori<br>abled              | ty interrupt)                      | ty bits         |                 |       |  |  |  |  |
| bit 6-4          | 000 = Interru<br>Unimplemen<br>ADIP<2:0>: .<br>111 = Interru<br>•<br>•<br>001 = Interru<br>000 = Interru<br>Unimplemen<br>U1TXIP<2:0:     | ipt source is disa<br><b>nted:</b> Read as '0<br>ADC1 Conversion<br>upt is priority 7 (from<br>upt is priority 1<br>upt source is disa<br><b>nted:</b> Read as '0<br>>: UART1 Trans | )'<br>on Complete<br>highest priori<br>abled<br>o'<br>mitter Interru | ty interrupt)<br>upt Priority bits | ty bits         |                 |       |  |  |  |  |
| bit 6-4<br>bit 3 | 000 = Interru<br>Unimplemen<br>ADIP<2:0>: .<br>111 = Interru<br>•<br>•<br>001 = Interru<br>000 = Interru<br>Unimplemen<br>U1TXIP<2:0:     | npt source is disa<br>nted: Read as '0<br>ADC1 Conversion<br>opt is priority 7 (h<br>npt is priority 1<br>npt source is disa<br>nted: Read as '0                                    | )'<br>on Complete<br>highest priori<br>abled<br>o'<br>mitter Interru | ty interrupt)<br>upt Priority bits | ty bits         |                 |       |  |  |  |  |
| bit 6-4<br>bit 3 | 000 = Interru<br>Unimplemen<br>ADIP<2:0>: .<br>111 = Interru<br>•<br>•<br>001 = Interru<br>000 = Interru<br>Unimplemen<br>U1TXIP<2:0:     | ipt source is disa<br><b>nted:</b> Read as '0<br>ADC1 Conversion<br>upt is priority 7 (from<br>upt is priority 1<br>upt source is disa<br><b>nted:</b> Read as '0<br>>: UART1 Trans | )'<br>on Complete<br>highest priori<br>abled<br>o'<br>mitter Interru | ty interrupt)<br>upt Priority bits | ty bits         |                 |       |  |  |  |  |
| bit 6-4<br>bit 3 | 000 = Interru<br>Unimplemer<br>ADIP<2:0>:<br>111 = Interru<br>001 = Interru<br>000 = Interru<br>Unimplemer<br>U1TXIP<2:0<br>111 = Interru | ipt source is disa<br><b>nted:</b> Read as '0<br>ADC1 Conversion<br>upt is priority 7 (from<br>upt is priority 1<br>upt source is disa<br><b>nted:</b> Read as '0<br>>: UART1 Trans | )'<br>on Complete<br>highest priori<br>abled<br>o'<br>mitter Interru | ty interrupt)<br>upt Priority bits | ty bits         |                 |       |  |  |  |  |

## © 2010 Microchip Technology Inc.

| U-0          | R/W-1                                                                                                                 | R/W-0                                                                                     | R/W-0          | U-0                | R/W-1          | R/W-0            | R/W-0 |  |  |  |  |  |
|--------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------|--------------------|----------------|------------------|-------|--|--|--|--|--|
| _            |                                                                                                                       | CNIP<2:0>                                                                                 |                |                    |                | AC1IP<2:0>       |       |  |  |  |  |  |
| bit 15       |                                                                                                                       |                                                                                           |                |                    |                |                  | bit   |  |  |  |  |  |
| U-0          | R/W-1                                                                                                                 | R/W-0                                                                                     | R/W-0          | U-0                | R/W-1          | R/W-0            | R/W-0 |  |  |  |  |  |
| _            |                                                                                                                       | MI2C1IP<2:0>                                                                              |                |                    |                | SI2C1IP<2:0>     |       |  |  |  |  |  |
| bit 7        |                                                                                                                       |                                                                                           |                |                    |                |                  | bit   |  |  |  |  |  |
| Legend:      |                                                                                                                       |                                                                                           |                |                    |                |                  |       |  |  |  |  |  |
| R = Readab   | le bit                                                                                                                | W = Writable b                                                                            | bit            | U = Unimpler       | nented bit, re | ad as '0'        |       |  |  |  |  |  |
| -n = Value a | t POR                                                                                                                 | '1' = Bit is set                                                                          |                | '0' = Bit is cle   | ared           | x = Bit is unkno | own   |  |  |  |  |  |
|              |                                                                                                                       |                                                                                           |                |                    |                |                  |       |  |  |  |  |  |
| bit 15       | Unimplem                                                                                                              | ented: Read as '0                                                                         | ,              |                    |                |                  |       |  |  |  |  |  |
| bit 14-12    | CNIP<2:0>: Change Notification Interrupt Priority bits                                                                |                                                                                           |                |                    |                |                  |       |  |  |  |  |  |
|              | 111 = Inte                                                                                                            | rrupt is priority 7 (h                                                                    | ighest priori  | ty interrupt)      |                |                  |       |  |  |  |  |  |
|              | •                                                                                                                     |                                                                                           |                |                    |                |                  |       |  |  |  |  |  |
|              | •                                                                                                                     |                                                                                           |                |                    |                |                  |       |  |  |  |  |  |
|              | 001 = Interrupt is priority 1<br>000 = Interrupt source is disabled                                                   |                                                                                           |                |                    |                |                  |       |  |  |  |  |  |
|              |                                                                                                                       | -                                                                                         |                |                    |                |                  |       |  |  |  |  |  |
| bit 11       | Unimplemented: Read as '0'                                                                                            |                                                                                           |                |                    |                |                  |       |  |  |  |  |  |
| bit 10-8     | AC1IP<2:0>: Analog Comparator 1 Interrupt Priority bits<br>111 = Interrupt is priority 7 (highest priority interrupt) |                                                                                           |                |                    |                |                  |       |  |  |  |  |  |
|              | ⊥⊥⊥ = inte<br>•                                                                                                       | rrupt is priority 7 (r                                                                    | lignest priori | ty interrupt)      |                |                  |       |  |  |  |  |  |
|              | •                                                                                                                     |                                                                                           |                |                    |                |                  |       |  |  |  |  |  |
|              | •                                                                                                                     |                                                                                           |                |                    |                |                  |       |  |  |  |  |  |
|              | 001 = Interrupt is priority 1<br>000 = Interrupt source is disabled                                                   |                                                                                           |                |                    |                |                  |       |  |  |  |  |  |
| bit 7        |                                                                                                                       | nented: Read as '0                                                                        |                |                    |                |                  |       |  |  |  |  |  |
| bit 6-4      | -                                                                                                                     | 2:0>: I2C1 Master                                                                         |                | runt Priority hits | :              |                  |       |  |  |  |  |  |
|              |                                                                                                                       |                                                                                           |                |                    |                |                  |       |  |  |  |  |  |
|              | •                                                                                                                     | <ul> <li>111 = Interrupt is priority 7 (highest priority interrupt)</li> <li>•</li> </ul> |                |                    |                |                  |       |  |  |  |  |  |
|              | •                                                                                                                     |                                                                                           |                |                    |                |                  |       |  |  |  |  |  |
|              | •<br>001 = Inte                                                                                                       | rrupt is priority 1                                                                       |                |                    |                |                  |       |  |  |  |  |  |
|              |                                                                                                                       | rrupt source is disa                                                                      | abled          |                    |                |                  |       |  |  |  |  |  |
| bit 3        | Unimplem                                                                                                              | nented: Read as '0                                                                        | ,              |                    |                |                  |       |  |  |  |  |  |
| bit 2-0      | SI2C1IP<2                                                                                                             | 2:0>: I2C1 Slave E                                                                        | vents Interru  | upt Priority bits  |                |                  |       |  |  |  |  |  |
|              | 111 = Inte                                                                                                            | rrupt is priority 7 (h                                                                    | ighest priori  | ty interrupt)      |                |                  |       |  |  |  |  |  |
|              | •                                                                                                                     |                                                                                           |                |                    |                |                  |       |  |  |  |  |  |
|              | •                                                                                                                     |                                                                                           |                |                    |                |                  |       |  |  |  |  |  |
|              | 001 = Inte                                                                                                            | rrupt is priority 1                                                                       |                |                    |                |                  |       |  |  |  |  |  |
|              |                                                                                                                       |                                                                                           |                |                    |                |                  |       |  |  |  |  |  |

| <b>REGISTER 7-</b> | 26: IPC5:                          | INTERRUPT    |     |                                         | EGISTER 5        |             |       |  |
|--------------------|------------------------------------|--------------|-----|-----------------------------------------|------------------|-------------|-------|--|
| U-0                | U-0                                | U-0          | U-0 | U-0                                     | U-0              | U-0         | U-0   |  |
| —                  | —                                  | —            | —   |                                         | —                | —           | —     |  |
| bit 15             |                                    | ·            |     |                                         | ·                |             | bit 8 |  |
|                    |                                    |              |     |                                         |                  |             |       |  |
| U-0                | U-0                                | U-0          | U-0 | U-0                                     | R/W-1            | R/W-0       | R/W-0 |  |
| _                  | —                                  | —            | _   |                                         |                  | INT1IP<2:0> |       |  |
| bit 7              | •                                  | ·            |     |                                         |                  |             | bit 0 |  |
|                    |                                    |              |     |                                         |                  |             |       |  |
| Legend:            |                                    |              |     |                                         |                  |             |       |  |
| R = Readable b     | bit                                | W = Writable | bit | U = Unimpler                            | mented bit, read | d as '0'    |       |  |
| -n = Value at P    | -n = Value at POR '1' = Bit is set |              |     | '0' = Bit is cleared x = Bit is unknown |                  |             | nown  |  |
|                    |                                    |              |     |                                         |                  |             |       |  |

bit 2-0 **INT1IP<2:0>:** External Interrupt 1 Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

.

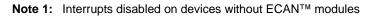
.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

|                             | R/W-1                                                                   | R/W-0                                                     | R/W-0             | U-0                                                                                                                                     | R/W-1           | R/W-0           | R/W-0  |  |  |  |  |  |  |
|-----------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|--------|--|--|--|--|--|--|
| _                           |                                                                         | T4IP<2:0>                                                 |                   |                                                                                                                                         |                 | OC4IP<2:0>      |        |  |  |  |  |  |  |
| bit 15                      |                                                                         |                                                           |                   |                                                                                                                                         |                 |                 | bit    |  |  |  |  |  |  |
| U-0                         | R/W-1                                                                   | R/W-0                                                     | R/W-0             | U-0                                                                                                                                     | R/W-1           | R/W-0           | R/W-0  |  |  |  |  |  |  |
|                             |                                                                         | OC3IP<2:0>                                                | 1010 0            |                                                                                                                                         |                 | DMA2IP<2:0>     | 1000 0 |  |  |  |  |  |  |
| bit 7                       |                                                                         |                                                           |                   |                                                                                                                                         |                 |                 | bit    |  |  |  |  |  |  |
| Legend:                     |                                                                         |                                                           |                   |                                                                                                                                         |                 |                 |        |  |  |  |  |  |  |
| R = Readab                  | le bit                                                                  | W = Writable b                                            | oit               | U = Unimpler                                                                                                                            | mented bit, rea | d as '0'        |        |  |  |  |  |  |  |
| -n = Value a                | t POR                                                                   | '1' = Bit is set                                          |                   | '0' = Bit is cle                                                                                                                        |                 | x = Bit is unkn | iown   |  |  |  |  |  |  |
| bit 15                      | Unimpleme                                                               | ented: Read as '0                                         | ,                 |                                                                                                                                         |                 |                 |        |  |  |  |  |  |  |
| bit 14-12                   | Unimplemented: Read as '0'<br>T4IP<2:0>: Timer4 Interrupt Priority bits |                                                           |                   |                                                                                                                                         |                 |                 |        |  |  |  |  |  |  |
|                             | 111 = Interrupt is priority 7 (highest priority interrupt)              |                                                           |                   |                                                                                                                                         |                 |                 |        |  |  |  |  |  |  |
|                             | •                                                                       |                                                           |                   |                                                                                                                                         |                 |                 |        |  |  |  |  |  |  |
|                             | •                                                                       |                                                           |                   |                                                                                                                                         |                 |                 |        |  |  |  |  |  |  |
|                             | 001 = Interr                                                            | upt is priority 1                                         |                   |                                                                                                                                         |                 |                 |        |  |  |  |  |  |  |
|                             |                                                                         | upt source is disa                                        | bled              |                                                                                                                                         |                 |                 |        |  |  |  |  |  |  |
| bit 11                      |                                                                         | nted: Read as '0                                          |                   |                                                                                                                                         |                 |                 |        |  |  |  |  |  |  |
| bit 10-8                    | OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits            |                                                           |                   |                                                                                                                                         |                 |                 |        |  |  |  |  |  |  |
|                             | 111 = Interrupt is priority 7 (highest priority interrupt)              |                                                           |                   |                                                                                                                                         |                 |                 |        |  |  |  |  |  |  |
|                             | •                                                                       |                                                           |                   |                                                                                                                                         |                 |                 |        |  |  |  |  |  |  |
|                             | •                                                                       |                                                           |                   |                                                                                                                                         |                 |                 |        |  |  |  |  |  |  |
|                             | •<br>001 = Interr                                                       | upt is priority 1                                         |                   |                                                                                                                                         |                 |                 |        |  |  |  |  |  |  |
|                             |                                                                         | upt source is disa                                        | bled              |                                                                                                                                         |                 |                 |        |  |  |  |  |  |  |
| bit 7                       |                                                                         | nted: Read as '0                                          |                   |                                                                                                                                         |                 |                 |        |  |  |  |  |  |  |
|                             | OC3IP<2:0:                                                              | >: Output Compare                                         | re Channel :      | 3 Interrupt Prior                                                                                                                       | ity bits        |                 |        |  |  |  |  |  |  |
| bit 6-4                     |                                                                         |                                                           |                   | <b>OC3IP&lt;2:0&gt;:</b> Output Compare Channel 3 Interrupt Priority bits<br>111 = Interrupt is priority 7 (highest priority interrupt) |                 |                 |        |  |  |  |  |  |  |
| bit 6-4                     | •                                                                       |                                                           | •                 |                                                                                                                                         |                 |                 |        |  |  |  |  |  |  |
| bit 6-4                     |                                                                         |                                                           |                   | ,                                                                                                                                       |                 |                 |        |  |  |  |  |  |  |
| bit 6-4                     | •                                                                       |                                                           |                   | ,                                                                                                                                       |                 |                 |        |  |  |  |  |  |  |
| bit 6-4                     | •<br>•<br>001 = Interr                                                  | unt is priority 1                                         |                   | ,                                                                                                                                       |                 |                 |        |  |  |  |  |  |  |
| bit 6-4                     |                                                                         | upt is priority 1<br>upt source is disa                   | bled              | .,                                                                                                                                      |                 |                 |        |  |  |  |  |  |  |
|                             | 000 = Interr                                                            | upt source is disa                                        |                   | ,                                                                                                                                       |                 |                 |        |  |  |  |  |  |  |
| bit 3                       | 000 = Interr<br>Unimpleme                                               |                                                           | 3                 |                                                                                                                                         | Interrupt Prior | ity bits        |        |  |  |  |  |  |  |
| bit 3                       | 000 = Interr<br>Unimpleme<br>DMA2IP<2:                                  | upt source is disa<br>ented: Read as '0                   | ,<br>I 2 Data Tra | insfer Complete                                                                                                                         | Interrupt Prior | ity bits        |        |  |  |  |  |  |  |
| bit 3                       | 000 = Interr<br>Unimpleme<br>DMA2IP<2:                                  | upt source is disa<br>ented: Read as '0<br>0>: DMA Channe | ,<br>I 2 Data Tra | insfer Complete                                                                                                                         | Interrupt Prior | ity bits        |        |  |  |  |  |  |  |
| bit 6-4<br>bit 3<br>bit 2-0 | 000 = Interr<br>Unimpleme<br>DMA2IP<2:                                  | upt source is disa<br>ented: Read as '0<br>0>: DMA Channe | ,<br>I 2 Data Tra | insfer Complete                                                                                                                         | Interrupt Prior | rity bits       |        |  |  |  |  |  |  |
| bit 3                       | 000 = Interr<br>Unimpleme<br>DMA2IP<2:<br>111 = Interr<br>•<br>•        | upt source is disa<br>ented: Read as '0<br>0>: DMA Channe | ,<br>I 2 Data Tra | insfer Complete                                                                                                                         | Interrupt Prior | ity bits        |        |  |  |  |  |  |  |

## REGISTER 7-27: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6


| U-0          | R/W-1                                                                                                                          | R/W-0                                    | R/W-0           | U-0               | R/W-1           | R/W-0           | R/W-0 |  |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------|-------------------|-----------------|-----------------|-------|--|--|--|--|
| —            |                                                                                                                                | U2TXIP<2:0>                              |                 | —                 |                 | U2RXIP<2:0>     |       |  |  |  |  |
| bit 15       |                                                                                                                                |                                          |                 |                   |                 |                 | bit 8 |  |  |  |  |
| U-0          | R/W-1                                                                                                                          | R/W-0                                    | R/W-0           | U-0               | R/W-1           | R/W-0           | R/W-0 |  |  |  |  |
| _            |                                                                                                                                | INT2IP<2:0>                              |                 |                   |                 | T5IP<2:0>       |       |  |  |  |  |
| bit 7        |                                                                                                                                |                                          |                 |                   |                 |                 | bit 0 |  |  |  |  |
| Legend:      |                                                                                                                                |                                          |                 |                   |                 |                 |       |  |  |  |  |
| R = Readab   | le bit                                                                                                                         | W = Writable                             | bit             | U = Unimple       | mented bit, rea | nd as '0'       |       |  |  |  |  |
| -n = Value a | t POR                                                                                                                          | '1' = Bit is set                         |                 | '0' = Bit is cle  | eared           | x = Bit is unkr | nown  |  |  |  |  |
|              |                                                                                                                                |                                          |                 |                   |                 |                 |       |  |  |  |  |
| bit 15       | Unimpleme                                                                                                                      | ented: Read as '                         | 0'              |                   |                 |                 |       |  |  |  |  |
| bit 14-12    | U2TXIP<2:                                                                                                                      | 0>: UART2 Trans                          | smitter Interro | upt Priority bits |                 |                 |       |  |  |  |  |
|              | 111 = Interr                                                                                                                   | rupt is priority 7 (                     | highest priori  | ty interrupt)     |                 |                 |       |  |  |  |  |
|              | •                                                                                                                              |                                          |                 |                   |                 |                 |       |  |  |  |  |
|              | •                                                                                                                              |                                          |                 |                   |                 |                 |       |  |  |  |  |
|              | 001 = Interr                                                                                                                   | rupt is priority 1                       |                 |                   |                 |                 |       |  |  |  |  |
|              |                                                                                                                                | rupt source is dis                       | abled           |                   |                 |                 |       |  |  |  |  |
| bit 11       | Unimplemented: Read as '0'                                                                                                     |                                          |                 |                   |                 |                 |       |  |  |  |  |
| bit 10-8     | <b>U2RXIP&lt;2:0&gt;:</b> UART2 Receiver Interrupt Priority bits<br>111 = Interrupt is priority 7 (highest priority interrupt) |                                          |                 |                   |                 |                 |       |  |  |  |  |
|              | 111 = Interr                                                                                                                   | rupt is priority 7 (                     | highest priori  | ty interrupt)     |                 |                 |       |  |  |  |  |
|              | •                                                                                                                              |                                          |                 |                   |                 |                 |       |  |  |  |  |
|              | •                                                                                                                              |                                          |                 |                   |                 |                 |       |  |  |  |  |
|              |                                                                                                                                | rupt is priority 1<br>rupt source is dis | abled           |                   |                 |                 |       |  |  |  |  |
| bit 7        | Unimpleme                                                                                                                      | ented: Read as '                         | 0'              |                   |                 |                 |       |  |  |  |  |
| bit 6-4      | INT2IP<2:0                                                                                                                     | >: External Inter                        | rupt 2 Priority | / bits            |                 |                 |       |  |  |  |  |
|              | 111 = Interr                                                                                                                   | rupt is priority 7 (                     | highest priori  | ty interrupt)     |                 |                 |       |  |  |  |  |
|              | •                                                                                                                              |                                          |                 |                   |                 |                 |       |  |  |  |  |
|              | •                                                                                                                              |                                          |                 |                   |                 |                 |       |  |  |  |  |
|              |                                                                                                                                | rupt is priority 1<br>rupt source is dis | abled           |                   |                 |                 |       |  |  |  |  |
| bit 3        |                                                                                                                                | ented: Read as '                         |                 |                   |                 |                 |       |  |  |  |  |
| bit 2-0      | -                                                                                                                              | Timer5 Interrupt                         |                 |                   |                 |                 |       |  |  |  |  |
|              |                                                                                                                                | rupt is priority 7 (                     | -               | ty interrupt)     |                 |                 |       |  |  |  |  |
|              | •                                                                                                                              |                                          |                 | ,                 |                 |                 |       |  |  |  |  |
|              | •                                                                                                                              |                                          |                 |                   |                 |                 |       |  |  |  |  |
|              | •<br>001 = Inter                                                                                                               | rupt is priority 1                       |                 |                   |                 |                 |       |  |  |  |  |
|              |                                                                                                                                |                                          |                 |                   |                 |                 |       |  |  |  |  |

## REGISTER 7-28: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

001 = Interrupt is priority 1 000 = Interrupt source is disabled

|                  | 7-29: IPC8                                                                   |                                                                 |                   |                  | EGISTER 8      |                            |       |  |  |  |  |  |
|------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------|------------------|----------------|----------------------------|-------|--|--|--|--|--|
| U-0              | R/W-1                                                                        | R/W-0                                                           | R/W-0             | U-0              | R/W-1          | R/W-0                      | R/W-0 |  |  |  |  |  |
| —                |                                                                              | C1IP<2:0> <sup>(1)</sup>                                        |                   | _                |                | C1RXIP<2:0> <sup>(1)</sup> |       |  |  |  |  |  |
| bit 15           |                                                                              |                                                                 |                   |                  |                |                            | bit   |  |  |  |  |  |
| U-0              | R/W-1                                                                        | R/W-0                                                           | R/W-0             | U-0              | R/W-1          | R/W-0                      | R/W-0 |  |  |  |  |  |
| _                |                                                                              | SPI2IP<2:0>                                                     |                   |                  |                | SPI2EIP<2:0>               |       |  |  |  |  |  |
| bit 7            |                                                                              |                                                                 |                   |                  |                |                            | bit   |  |  |  |  |  |
| Legend:          |                                                                              |                                                                 |                   |                  |                |                            |       |  |  |  |  |  |
| R = Readabl      | le bit                                                                       | W = Writable b                                                  | it                | U = Unimple      | mented bit, re | ead as '0'                 |       |  |  |  |  |  |
| -n = Value at    | t POR                                                                        | '1' = Bit is set                                                |                   | '0' = Bit is cle | eared          | x = Bit is unkno           | wn    |  |  |  |  |  |
|                  |                                                                              |                                                                 |                   |                  |                |                            |       |  |  |  |  |  |
| bit 15           | Unimpleme                                                                    | ented: Read as '0'                                              | ,                 |                  |                |                            |       |  |  |  |  |  |
| bit 14-12        | C1IP<2:0>:                                                                   | C1IP<2:0>: ECAN1 Event Interrupt Priority bits <sup>(1)</sup>   |                   |                  |                |                            |       |  |  |  |  |  |
|                  | 111 = Interrupt is priority 7 (highest priority interrupt)                   |                                                                 |                   |                  |                |                            |       |  |  |  |  |  |
|                  | •                                                                            |                                                                 |                   |                  |                |                            |       |  |  |  |  |  |
|                  | •                                                                            |                                                                 |                   |                  |                |                            |       |  |  |  |  |  |
|                  | 001 = Interr                                                                 | rupt is priority 1                                              |                   |                  |                |                            |       |  |  |  |  |  |
|                  |                                                                              | rupt source is disa                                             | bled              |                  |                |                            |       |  |  |  |  |  |
| bit 11           | Unimpleme                                                                    | ented: Read as '0'                                              | ,                 |                  |                |                            |       |  |  |  |  |  |
| bit 10-8         | C1RXIP<2:0>: ECAN1 Receive Data Ready Interrupt Priority bits <sup>(1)</sup> |                                                                 |                   |                  |                |                            |       |  |  |  |  |  |
|                  | 111 = Interrupt is priority 7 (highest priority interrupt)                   |                                                                 |                   |                  |                |                            |       |  |  |  |  |  |
|                  | •                                                                            |                                                                 |                   |                  |                |                            |       |  |  |  |  |  |
|                  | •                                                                            |                                                                 |                   |                  |                |                            |       |  |  |  |  |  |
|                  | 001 = Interr                                                                 | rupt is priority 1                                              |                   |                  |                |                            |       |  |  |  |  |  |
|                  |                                                                              | rupt source is disa                                             | bled              |                  |                |                            |       |  |  |  |  |  |
| bit 7            | Unimpleme                                                                    | ented: Read as '0'                                              | ,                 |                  |                |                            |       |  |  |  |  |  |
| bit 6-4          | SPI2IP<2:0                                                                   | >: SPI2 Event Inte                                              | errupt Priori     | ty bits          |                |                            |       |  |  |  |  |  |
|                  | 111 = Interr                                                                 | rupt is priority 7 (hi                                          | ighest priori     | ity interrupt)   |                |                            |       |  |  |  |  |  |
|                  | •                                                                            |                                                                 |                   |                  |                |                            |       |  |  |  |  |  |
|                  | •                                                                            |                                                                 |                   |                  |                |                            |       |  |  |  |  |  |
|                  | 001 – Interr                                                                 |                                                                 |                   |                  |                |                            |       |  |  |  |  |  |
|                  |                                                                              | rupt is priority 1                                              |                   |                  |                |                            |       |  |  |  |  |  |
|                  |                                                                              | rupt is priority 1<br>rupt source is disa                       | bled              |                  |                |                            |       |  |  |  |  |  |
| bit 3            | 000 = Interr                                                                 |                                                                 |                   |                  |                |                            |       |  |  |  |  |  |
| bit 3<br>bit 2-0 | 000 = Interr<br>Unimpleme                                                    | rupt source is disa                                             | ,                 | ity bits         |                |                            |       |  |  |  |  |  |
|                  | 000 = Interr<br>Unimpleme<br>SPI2EIP<2:                                      | rupt source is disa<br>ented: Read as '0'                       | ,<br>errupt Prior | -                |                |                            |       |  |  |  |  |  |
|                  | 000 = Interr<br>Unimpleme<br>SPI2EIP<2:                                      | rupt source is disa<br>ented: Read as '0'<br>0>: SPI2 Error Int | ,<br>errupt Prior | -                |                |                            |       |  |  |  |  |  |
|                  | 000 = Interr<br>Unimpleme<br>SPI2EIP<2:                                      | rupt source is disa<br>ented: Read as '0'<br>0>: SPI2 Error Int | ,<br>errupt Prior | -                |                |                            |       |  |  |  |  |  |
|                  | 000 = Interr<br>Unimpleme<br>SPI2EIP<2:<br>111 = Interr<br>•                 | rupt source is disa<br>ented: Read as '0'<br>0>: SPI2 Error Int | ,<br>errupt Prior | -                |                |                            |       |  |  |  |  |  |

## REGISTER 7-29: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8



| U-0          | U-0                                                         | U-0                | U-0            | U-0               | R/W-1             | R/W-0           | R/W-0 |  |  |  |
|--------------|-------------------------------------------------------------|--------------------|----------------|-------------------|-------------------|-----------------|-------|--|--|--|
| _            | _                                                           | _                  | —              | —                 |                   | IC4IP<2:0>      |       |  |  |  |
| bit 15       |                                                             |                    |                |                   | •                 |                 | bit   |  |  |  |
|              |                                                             |                    |                |                   |                   |                 |       |  |  |  |
| U-0          | R/W-1                                                       | R/W-0              | R/W-0          | U-0               | R/W-1             | R/W-0           | R/W-0 |  |  |  |
|              |                                                             | IC3IP<2:0>         |                | —                 |                   | DMA3IP<2:0>     |       |  |  |  |
| bit 7        |                                                             |                    |                |                   |                   |                 | bit   |  |  |  |
| Legend:      |                                                             |                    |                |                   |                   |                 |       |  |  |  |
| R = Readab   | le bit                                                      | W = Writable       | bit            | U = Unimpler      | mented bit, rea   | d as '0'        |       |  |  |  |
| -n = Value a | It POR                                                      | '1' = Bit is set   |                | '0' = Bit is cle  |                   | x = Bit is unkr | iown  |  |  |  |
|              |                                                             |                    |                |                   |                   |                 |       |  |  |  |
| bit 15-11    | Unimplemen                                                  | ted: Read as '     | 0'             |                   |                   |                 |       |  |  |  |
| bit 10-8     | IC4IP<2:0>:                                                 | Input Capture C    | Channel 4 Inte | errupt Priority b | its               |                 |       |  |  |  |
|              | 111 = Interru                                               | pt is priority 7 ( | highest priori | ty interrupt)     |                   |                 |       |  |  |  |
|              | •                                                           |                    |                |                   |                   |                 |       |  |  |  |
|              | •                                                           |                    |                |                   |                   |                 |       |  |  |  |
|              | 001 = Interru                                               | pt is priority 1   |                |                   |                   |                 |       |  |  |  |
|              |                                                             | pt source is dis   | abled          |                   |                   |                 |       |  |  |  |
| bit 7        | Unimplemen                                                  | ted: Read as '     | 0'             |                   |                   |                 |       |  |  |  |
| bit 6-4      | IC3IP<2:0>: Input Capture Channel 3 Interrupt Priority bits |                    |                |                   |                   |                 |       |  |  |  |
|              | 111 = Interru                                               | pt is priority 7 ( | highest priori | ty interrupt)     |                   |                 |       |  |  |  |
|              | •                                                           |                    |                |                   |                   |                 |       |  |  |  |
|              | •                                                           |                    |                |                   |                   |                 |       |  |  |  |
|              | 001 = Interru                                               | pt is priority 1   |                |                   |                   |                 |       |  |  |  |
|              | 000 = Interru                                               | pt source is dis   | abled          |                   |                   |                 |       |  |  |  |
| bit 3        | Unimplemen                                                  | ted: Read as '     | 0'             |                   |                   |                 |       |  |  |  |
| bit 2-0      | DMA3IP<2:0                                                  | >: DMA Chann       | el 3 Data Tra  | nsfer Complete    | e Interrupt Prior | ity bits        |       |  |  |  |
|              | 111 = Interru                                               | pt is priority 7 ( | highest priori | ty interrupt)     |                   |                 |       |  |  |  |
|              | •                                                           |                    |                |                   |                   |                 |       |  |  |  |
|              | •                                                           |                    |                |                   |                   |                 |       |  |  |  |
|              | 001 = Interru                                               | nt is priority 1   |                |                   |                   |                 |       |  |  |  |
|              |                                                             | pris priority i    |                |                   |                   |                 |       |  |  |  |

## REGISTER 7-30: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9

|                             | U-0                                                                     | U-0                                                       | U-0                                               | U-0              | R/W-1                            | R/W-0        | R/W-0 |  |  |  |
|-----------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------|------------------|----------------------------------|--------------|-------|--|--|--|
| —                           |                                                                         |                                                           | —                                                 |                  |                                  | MI2C2IP<2:0> |       |  |  |  |
| bit 15                      |                                                                         |                                                           |                                                   |                  |                                  |              | bit 8 |  |  |  |
|                             |                                                                         |                                                           |                                                   |                  |                                  |              |       |  |  |  |
| U-0                         | R/W-1                                                                   | R/W-0                                                     | R/W-0                                             | U-0              | U-0                              | U-0          | U-0   |  |  |  |
| —                           | SI2C2IP<2:0> — — —                                                      |                                                           |                                                   |                  |                                  |              |       |  |  |  |
| bit 7                       |                                                                         |                                                           |                                                   |                  |                                  |              | bit ( |  |  |  |
|                             |                                                                         |                                                           |                                                   |                  |                                  |              |       |  |  |  |
| Legend:                     |                                                                         |                                                           |                                                   |                  |                                  |              |       |  |  |  |
| R = Readable bit W = Writab |                                                                         |                                                           | bit                                               | U = Unimplen     | nented bit, rea                  | d as '0'     |       |  |  |  |
| -n = Value at F             | n = Value at POR '1' = Bit                                              |                                                           |                                                   | '0' = Bit is cle | = Bit is cleared x = Bit is unkr |              |       |  |  |  |
|                             |                                                                         |                                                           |                                                   |                  |                                  |              |       |  |  |  |
| bit 15-11                   | Unimplemen                                                              | ted: Read as '0                                           | ,                                                 |                  |                                  |              |       |  |  |  |
| bit 10-8                    | MI2C2IP<2:0>: I2C2 Master Events Interrupt Priority bits                |                                                           |                                                   |                  |                                  |              |       |  |  |  |
|                             | 111 = Interrupt is priority 7 (highest priority interrupt)              |                                                           |                                                   |                  |                                  |              |       |  |  |  |
|                             | •                                                                       |                                                           |                                                   |                  |                                  |              |       |  |  |  |
|                             | •                                                                       |                                                           |                                                   |                  |                                  |              |       |  |  |  |
|                             | 001 = Interrupt is priority 1                                           |                                                           |                                                   |                  |                                  |              |       |  |  |  |
|                             |                                                                         |                                                           | ماما                                              |                  |                                  |              |       |  |  |  |
|                             | 000 = Interru                                                           |                                                           |                                                   |                  |                                  |              |       |  |  |  |
| bit 7                       |                                                                         | pt source is disa<br>ited: Read as '0                     |                                                   |                  |                                  |              |       |  |  |  |
|                             | Unimplemen                                                              |                                                           | ,                                                 | pt Priority bits |                                  |              |       |  |  |  |
|                             | Unimplemen<br>SI2C2IP<2:0                                               | ted: Read as '0                                           | ,<br>vents Interru                                |                  |                                  |              |       |  |  |  |
|                             | Unimplemen<br>SI2C2IP<2:0                                               | i <b>ted:</b> Read as '0<br><b>&gt;:</b> I2C2 Slave E     | ,<br>vents Interru                                |                  |                                  |              |       |  |  |  |
|                             | Unimplemen<br>SI2C2IP<2:0                                               | i <b>ted:</b> Read as '0<br><b>&gt;:</b> I2C2 Slave E     | ,<br>vents Interru                                |                  |                                  |              |       |  |  |  |
|                             | Unimplemen<br>SI2C2IP<2:0<br>111 = Interru<br>•<br>•                    | ted: Read as 'c<br>>: I2C2 Slave E<br>pt is priority 7 (h | ,<br>vents Interru                                |                  |                                  |              |       |  |  |  |
| bit 7<br>bit 6-4            | Unimplement<br>SI2C2IP<2:00<br>111 = Interru<br>•<br>•<br>001 = Interru | ted: Read as 'c<br>>: I2C2 Slave E<br>pt is priority 7 (h | , <sup>,</sup><br>vents Interru<br>ighest priorit |                  |                                  |              |       |  |  |  |

## REGISTER 7-31: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12

| -             |                                                 |                                                                       |                 |                  |                 |                 |       |  |  |  |  |
|---------------|-------------------------------------------------|-----------------------------------------------------------------------|-----------------|------------------|-----------------|-----------------|-------|--|--|--|--|
| U-0           | U-0                                             | U-0                                                                   | U-0             | U-0              | R/W-1           | R/W-0           | R/W-0 |  |  |  |  |
| —             | _                                               | —                                                                     | —               | —                |                 | INT4IP<2:0>     |       |  |  |  |  |
| bit 15        |                                                 |                                                                       |                 |                  |                 |                 | bit 8 |  |  |  |  |
|               |                                                 |                                                                       |                 |                  |                 |                 |       |  |  |  |  |
| U-0           | R/W-1                                           | R/W-0                                                                 | R/W-0           | U-0              | U-0             | U-0             | U-0   |  |  |  |  |
| —             |                                                 | INT3IP<2:0> — — —                                                     |                 |                  |                 |                 |       |  |  |  |  |
| bit 7         |                                                 |                                                                       |                 |                  |                 |                 | bit 0 |  |  |  |  |
|               |                                                 |                                                                       |                 |                  |                 |                 |       |  |  |  |  |
| Legend:       | - 1-14                                          | W = Writable I                                                        | . : 4           | II II.           |                 | (O)             |       |  |  |  |  |
|               |                                                 |                                                                       | JIC             | •                | mented bit, rea |                 |       |  |  |  |  |
| -n = Value at | POR                                             | '1' = Bit is set                                                      |                 | '0' = Bit is cle | eared           | x = Bit is unkn | own   |  |  |  |  |
|               |                                                 |                                                                       |                 |                  |                 |                 |       |  |  |  |  |
| bit 15-11     | -                                               | nted: Read as '(                                                      |                 |                  |                 |                 |       |  |  |  |  |
| bit 10-8      | INT4IP<2:0>: External Interrupt 4 Priority bits |                                                                       |                 |                  |                 |                 |       |  |  |  |  |
|               | 111 = Interru                                   | <pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre> |                 |                  |                 |                 |       |  |  |  |  |
|               | •                                               |                                                                       |                 |                  |                 |                 |       |  |  |  |  |
|               | •                                               |                                                                       |                 |                  |                 |                 |       |  |  |  |  |
|               |                                                 | errupt is priority 1                                                  |                 |                  |                 |                 |       |  |  |  |  |
|               |                                                 | upt source is disa                                                    |                 |                  |                 |                 |       |  |  |  |  |
| bit 7         | Unimpleme                                       | nted: Read as '0                                                      | )'              |                  |                 |                 |       |  |  |  |  |
| bit 6-4       | INT3IP<2:0>                                     | External Interr                                                       | upt 3 Priority  | bits             |                 |                 |       |  |  |  |  |
|               | 111 = Interru                                   | upt is priority 7 (ł                                                  | nighest priorit | y interrupt)     |                 |                 |       |  |  |  |  |
|               | •                                               |                                                                       |                 |                  |                 |                 |       |  |  |  |  |
|               | •                                               |                                                                       |                 |                  |                 |                 |       |  |  |  |  |
|               | 0.01 = Interru                                  | upt is priority 1                                                     |                 |                  |                 |                 |       |  |  |  |  |
|               |                                                 | upt source is disa                                                    | abled           |                  |                 |                 |       |  |  |  |  |
| bit 3-0       | Unimpleme                                       | nted: Read as 'o                                                      | )'              |                  |                 |                 |       |  |  |  |  |
|               |                                                 |                                                                       |                 |                  |                 |                 |       |  |  |  |  |

## REGISTER 7-32: IPC13: INTERRUPT PRIORITY CONTROL REGISTER 13

| REGISTER          |                                                            | 4: INTERRUPT             |                |                      |                 |                  |       |  |  |  |
|-------------------|------------------------------------------------------------|--------------------------|----------------|----------------------|-----------------|------------------|-------|--|--|--|
| U-0               | U-0                                                        | U-0                      | U-0            | U-0                  | R/W-1           | R/W-0            | R/W-0 |  |  |  |
| —                 | —                                                          | —                        | —              | —                    |                 | QEI1IP<2:0>      |       |  |  |  |
| bit 15            |                                                            |                          |                |                      |                 |                  | bit   |  |  |  |
|                   |                                                            |                          |                |                      |                 |                  |       |  |  |  |
| U-0               | R/W-1                                                      | R/W-0                    | R/W-0          | U-0                  | U-0             | U-0              | U-0   |  |  |  |
| —                 |                                                            |                          | —              |                      |                 |                  |       |  |  |  |
| bit 7             |                                                            |                          |                |                      |                 |                  | bit ( |  |  |  |
|                   |                                                            |                          |                |                      |                 |                  |       |  |  |  |
| Legend:           |                                                            |                          |                |                      |                 |                  |       |  |  |  |
| R = Readab        | le bit                                                     | W = Writable I           | bit            | U = Unimpler         | mented bit, rea | ad as '0'        |       |  |  |  |
| -n = Value at POR |                                                            | '1' = Bit is set         |                | '0' = Bit is cleared |                 | x = Bit is unkne | own   |  |  |  |
|                   |                                                            |                          |                |                      |                 |                  |       |  |  |  |
| bit 15-11         | Unimpleme                                                  | nted: Read as '0         | )'             |                      |                 |                  |       |  |  |  |
| bit 10-8          | QEI1IP<2:0>: QEI1 Interrupt Priority bits                  |                          |                |                      |                 |                  |       |  |  |  |
|                   | 111 = Interrupt is priority 7 (highest priority interrupt) |                          |                |                      |                 |                  |       |  |  |  |
|                   | •                                                          |                          |                |                      |                 |                  |       |  |  |  |
|                   | •                                                          |                          |                |                      |                 |                  |       |  |  |  |
|                   | 001 = Interr                                               | upt is priority 1        |                |                      |                 |                  |       |  |  |  |
|                   | 000 = Interr                                               | upt source is disa       | abled          |                      |                 |                  |       |  |  |  |
| bit 7             | Unimpleme                                                  | nted: Read as '0         | )'             |                      |                 |                  |       |  |  |  |
| bit 6-4           | PSEMIP<2:                                                  | <b>0&gt;:</b> PWM Specia | I Event Matc   | h Interrupt Prio     | rity bits       |                  |       |  |  |  |
|                   | 111 = Interr                                               | upt is priority 7 (ł     | nighest priori | ty interrupt)        |                 |                  |       |  |  |  |
|                   | •                                                          |                          |                |                      |                 |                  |       |  |  |  |
|                   | •                                                          |                          |                |                      |                 |                  |       |  |  |  |
|                   | 001 = Interr                                               | upt is priority 1        |                |                      |                 |                  |       |  |  |  |
|                   |                                                            | upt source is disa       | abled          |                      |                 |                  |       |  |  |  |
| bit 3-0           | Unimpleme                                                  | nted: Read as '0         | )'             |                      |                 |                  |       |  |  |  |
|                   |                                                            |                          |                |                      |                 |                  |       |  |  |  |

#### REGISTER 7-33: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14

|                                                             |                                                                                                                            |                     |                                |              | EGISTER 1        | •          |       |  |  |  |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------|--------------|------------------|------------|-------|--|--|--|
| U-0                                                         | U-0                                                                                                                        | U-0                 | U-0                            | U-0          | R/W-1            | R/W-0      | R/W-0 |  |  |  |
|                                                             | —                                                                                                                          | —                   | _                              | —            |                  | U2EIP<2:0> |       |  |  |  |
| bit 15                                                      |                                                                                                                            |                     |                                | · · · · ·    |                  |            | bit   |  |  |  |
|                                                             |                                                                                                                            |                     |                                |              |                  |            |       |  |  |  |
| U-0                                                         | R/W-1                                                                                                                      | R/W-0               | R/W-0                          | U-0          | U-0              | U-0        | U-0   |  |  |  |
| —                                                           |                                                                                                                            | U1EIP<2:0>          |                                |              | —                | —          | _     |  |  |  |
| bit 7                                                       |                                                                                                                            |                     |                                |              |                  |            | bit   |  |  |  |
|                                                             |                                                                                                                            |                     |                                |              |                  |            |       |  |  |  |
| Legend:                                                     |                                                                                                                            |                     |                                |              |                  |            |       |  |  |  |
| R = Readable bit W = Writable bit                           |                                                                                                                            |                     | bit                            | U = Unimplen | nented bit, rea  | id as '0'  |       |  |  |  |
| -n = Value at POR '1' = Bit is set                          |                                                                                                                            |                     | '0' = Bit is cleared x = Bit i |              | x = Bit is unkno | own        |       |  |  |  |
| bit 15-11                                                   | Unimplemen                                                                                                                 | ted: Read as '0     | ,                              |              |                  |            |       |  |  |  |
| bit 15-11                                                   | Unimplemen                                                                                                                 | ted: Read as '0     | ,                              |              |                  |            |       |  |  |  |
| bit 10-8                                                    | <b>U2EIP&lt;2:0&gt;:</b> UART2 Error Interrupt Priority bits<br>111 = Interrupt is priority 7 (highest priority interrupt) |                     |                                |              |                  |            |       |  |  |  |
|                                                             |                                                                                                                            | pt is priority 7 (n | ignest priorit                 | y interrupt) |                  |            |       |  |  |  |
|                                                             | •                                                                                                                          |                     |                                |              |                  |            |       |  |  |  |
|                                                             | •                                                                                                                          |                     |                                |              |                  |            |       |  |  |  |
|                                                             | 001 = Interrupt is priority 1<br>000 = Interrupt source is disabled                                                        |                     |                                |              |                  |            |       |  |  |  |
| bit 7                                                       | Unimplemen                                                                                                                 | ted: Read as '0     | ,                              |              |                  |            |       |  |  |  |
| bit 6-4 <b>U1EIP&lt;2:0&gt;:</b> UART1 Error Interrupt Prio |                                                                                                                            |                     |                                | ity bits     |                  |            |       |  |  |  |
| Dit 0- <del>4</del>                                         | 111 = Interrupt is priority 7 (highest priority interrupt)                                                                 |                     |                                |              |                  |            |       |  |  |  |
|                                                             | 111 = Interru                                                                                                              | pt is priority 7 (h | ighest priorit                 | y interrupt) |                  |            |       |  |  |  |
|                                                             | 111 = Interru<br>∙                                                                                                         | pt is priority 7 (h | ighest priorit                 | y interrupt) |                  |            |       |  |  |  |
| bit 0-4                                                     | 111 = Interru<br>•                                                                                                         | pt is priority 7 (h | ighest priorit                 | y interrupt) |                  |            |       |  |  |  |
| bit 0-4                                                     | •<br>•                                                                                                                     |                     | ighest priorit                 | y interrupt) |                  |            |       |  |  |  |
| bit 0-4                                                     | •<br>•<br>001 = Interru                                                                                                    |                     |                                | y interrupt) |                  |            |       |  |  |  |

#### REGISTER 7-34: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

| U-0           | U-0                            | U-0                                  | U-0             | U-0              | R/W-1                        | R/W-0                      | R/W-0 |
|---------------|--------------------------------|--------------------------------------|-----------------|------------------|------------------------------|----------------------------|-------|
| —             | —                              | —                                    | —               | —                |                              | C1TXIP<2:0> <sup>(1)</sup> |       |
| bit 15        |                                |                                      |                 |                  | •                            |                            | bit 8 |
|               |                                |                                      |                 |                  |                              |                            |       |
| U-0           | U-0                            | U-0                                  | U-0             | U-0              | U-0                          | U-0                        | U-0   |
| —             | —                              | —                                    |                 | _                | —                            | —                          | —     |
| bit 7         |                                |                                      |                 |                  |                              |                            | bit 0 |
|               |                                |                                      |                 |                  |                              |                            |       |
| Legend:       |                                |                                      |                 |                  |                              |                            |       |
| R = Readabl   | e bit                          | W = Writable                         | bit             | U = Unimpler     | mented bit, read             | d as '0'                   |       |
| -n = Value at | POR                            | '1' = Bit is set                     |                 | '0' = Bit is cle | eared                        | x = Bit is unkn            | own   |
|               |                                |                                      |                 |                  |                              |                            |       |
| bit 15-11     | Unimplemen                     | ted: Read as '                       | 0'              |                  |                              |                            |       |
| bit 10-8      | C1TXIP<2:0>                    | ECAN1 Trans                          | smit Data Red   | quest Interrupt  | Priority bits <sup>(1)</sup> |                            |       |
|               | 111 = Interru                  | pt is priority 7 (I                  | highest priorit | y interrupt)     |                              |                            |       |
|               | •                              |                                      |                 |                  |                              |                            |       |
|               | •                              |                                      |                 |                  |                              |                            |       |
|               | •                              |                                      |                 |                  |                              |                            |       |
|               | 001 = Interru<br>000 = Interru | pt is priority 1<br>pt source is dis | abled           |                  |                              |                            |       |
| bit 7-0       | Unimplemen                     | ted: Read as '                       | 0'              |                  |                              |                            |       |
|               |                                |                                      |                 |                  |                              |                            |       |

## REGISTER 7-35: IPC17: INTERRUPT PRIORITY CONTROL REGISTER 17

Note 1: Interrupts disabled on devices without ECAN<sup>™</sup> modules

| U-0                                | R/W-1                                                      | R/W-0                                  | R/W-0          | U-0                 | U-0          | U-0              | U-0 |  |  |  |
|------------------------------------|------------------------------------------------------------|----------------------------------------|----------------|---------------------|--------------|------------------|-----|--|--|--|
|                                    |                                                            | QEI2IP<2:0>                            |                | —                   | —            | —                | —   |  |  |  |
| bit 15                             |                                                            |                                        |                |                     |              |                  | bit |  |  |  |
|                                    |                                                            |                                        |                |                     |              |                  |     |  |  |  |
| U-0                                | R/W-1                                                      | R/W-0                                  | R/W-0          | U-0                 | U-0          | U-0              | U-0 |  |  |  |
| —                                  |                                                            | PSESMIP<2:0>                           |                | <u> </u>            |              | <u> </u>         |     |  |  |  |
| bit 7                              |                                                            |                                        |                |                     |              |                  | bit |  |  |  |
|                                    |                                                            |                                        |                |                     |              |                  |     |  |  |  |
| Legend:                            |                                                            |                                        |                |                     |              |                  |     |  |  |  |
| R = Readab                         |                                                            | W = Writable                           |                | U = Unimplemen      |              |                  |     |  |  |  |
| -n = Value at POR '1' = Bit is set |                                                            |                                        |                | '0' = Bit is cleare | ed           | x = Bit is unkno | own |  |  |  |
|                                    |                                                            |                                        |                |                     |              |                  |     |  |  |  |
| bit 15                             | -                                                          | nted: Read as '                        |                |                     |              |                  |     |  |  |  |
| bit 14-12                          | QEI2IP<2:0>: QEI2 Interrupt Priority bits                  |                                        |                |                     |              |                  |     |  |  |  |
|                                    | 111 = Interrupt is priority 7 (highest priority interrupt) |                                        |                |                     |              |                  |     |  |  |  |
|                                    | •                                                          |                                        |                |                     |              |                  |     |  |  |  |
|                                    | •                                                          |                                        |                |                     |              |                  |     |  |  |  |
|                                    | 001 = Interrupt is priority 1                              |                                        |                |                     |              |                  |     |  |  |  |
|                                    | 000 = Interr                                               | upt source is dis                      | abled          |                     |              |                  |     |  |  |  |
| bit 11-7                           | Unimpleme                                                  | nted: Read as '                        | )'             |                     |              |                  |     |  |  |  |
| bit 6-4                            | PSESMIP<2                                                  | 2:0>: PWM Spec                         | ial Event Sec  | condary Match Inte  | errupt Prior | ity bits         |     |  |  |  |
|                                    | 111 = Interr                                               | upt is priority 7 (I                   | nighest priori | ty interrupt)       |              |                  |     |  |  |  |
|                                    | •                                                          |                                        |                |                     |              |                  |     |  |  |  |
|                                    | •                                                          |                                        |                |                     |              |                  |     |  |  |  |
|                                    | •                                                          |                                        |                |                     |              |                  |     |  |  |  |
|                                    | •<br>001 = Interr                                          | upt is priority 1                      |                |                     |              |                  |     |  |  |  |
|                                    |                                                            | upt is priority 1<br>upt source is dis | abled          |                     |              |                  |     |  |  |  |

#### REGISTER 7-36: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18

| REGISTER      | 7-37: IPC                                                          | 20: INTERRUP1           | PRIORITY      | CONTROL P        | REGISTER 2        | 0               |       |  |  |  |
|---------------|--------------------------------------------------------------------|-------------------------|---------------|------------------|-------------------|-----------------|-------|--|--|--|
| U-0           | R/W-1                                                              | R/W-0                   | R/W-0         | U-0              | R/W-1             | R/W-0           | R/W-0 |  |  |  |
| —             |                                                                    | ADCP10IP<2:0:           | >             |                  |                   | ADCP9IP<2:0>    |       |  |  |  |
| bit 15        |                                                                    |                         |               |                  |                   |                 | bit   |  |  |  |
| U-0           | R/W-1                                                              | R/W-0                   | R/W-0         | U-0              | U-0               | U-0             | U-0   |  |  |  |
| 0-0           | K/VV-1                                                             | ADCP8IP<2:0>            |               | 0-0              | 0-0               | 0-0             | 0-0   |  |  |  |
| <br>bit 7     |                                                                    | ADCFOIF<2.02            |               | _                |                   | _               | bit   |  |  |  |
|               |                                                                    |                         |               |                  |                   |                 |       |  |  |  |
| Legend:       |                                                                    |                         |               |                  |                   |                 |       |  |  |  |
| R = Readabl   | e bit                                                              | W = Writable            | bit           | U = Unimplei     | mented bit, rea   | d as '0'        |       |  |  |  |
| -n = Value at | POR                                                                | '1' = Bit is set        |               | '0' = Bit is cle | eared             | x = Bit is unkn | own   |  |  |  |
|               |                                                                    |                         |               |                  |                   |                 |       |  |  |  |
| bit 15        | Unimplen                                                           | nented: Read as '       | כ'            |                  |                   |                 |       |  |  |  |
| bit 14-12     | ADCP10II                                                           | P<2:0>: ADC Pair        | 10 Conversi   | on Done Interru  | pt 1 Priority bit | s               |       |  |  |  |
|               | 111 = Inte                                                         | errupt is priority 7 (I | highest prior | ity interrupt)   |                   |                 |       |  |  |  |
|               | •                                                                  |                         |               |                  |                   |                 |       |  |  |  |
|               | •                                                                  |                         |               |                  |                   |                 |       |  |  |  |
|               | 001 = Inte                                                         | errupt is priority 1    |               |                  |                   |                 |       |  |  |  |
|               | 000 = Inte                                                         | errupt source is dis    | abled         |                  |                   |                 |       |  |  |  |
| bit 11        | Unimplemented: Read as '0'                                         |                         |               |                  |                   |                 |       |  |  |  |
| bit 10-8      | ADCP9IP<2:0>: ADC Pair 9 Conversion Done Interrupt 1 Priority bits |                         |               |                  |                   |                 |       |  |  |  |
|               | 111 = Inte                                                         | errupt is priority 7 (I | highest prior | ity interrupt)   |                   |                 |       |  |  |  |
|               | •                                                                  |                         |               |                  |                   |                 |       |  |  |  |
|               | •                                                                  |                         |               |                  |                   |                 |       |  |  |  |
|               | 001 = Inte                                                         | errupt is priority 1    |               |                  |                   |                 |       |  |  |  |
|               | 000 = Inte                                                         | errupt source is dis    | abled         |                  |                   |                 |       |  |  |  |
| bit 7         | Unimplen                                                           | nented: Read as '       | כי            |                  |                   |                 |       |  |  |  |
| bit 6-4       | ADCP8IP                                                            | <2:0>: ADC Pair 8       | Conversion    | Done Interrupt   | 1 Priority bits   |                 |       |  |  |  |
|               | 111 = Inte                                                         | errupt is priority 7 (I | highest prior | ity interrupt)   |                   |                 |       |  |  |  |
|               | •                                                                  |                         |               |                  |                   |                 |       |  |  |  |
|               | •                                                                  |                         |               |                  |                   |                 |       |  |  |  |
|               | 001 = Inte                                                         | errupt is priority 1    |               |                  |                   |                 |       |  |  |  |
|               |                                                                    | errupt source is dis    |               |                  |                   |                 |       |  |  |  |
|               |                                                                    | sinupi source is uis    | abled         |                  |                   |                 |       |  |  |  |

#### 100 ~~ ...

| REGISTER     | 7-38: IPC21                                                | : INTERRUP                                                           |                | CONTROL         | REGISTER 21        |                 |        |  |  |  |  |
|--------------|------------------------------------------------------------|----------------------------------------------------------------------|----------------|-----------------|--------------------|-----------------|--------|--|--|--|--|
| U-0          | U-0                                                        | U-0                                                                  | U-0            | U-0             | U-0                | U-0             | U-0    |  |  |  |  |
|              | —                                                          | —                                                                    | —              | —               | —                  | —               | —      |  |  |  |  |
| bit 15       |                                                            |                                                                      |                |                 |                    |                 | bit 8  |  |  |  |  |
| U-0          | R/W-1                                                      | R/W-0                                                                | R/W-0          | U-0             | R/W-1              | R/W-0           | R/W-0  |  |  |  |  |
|              | ADCP12IP<2:0> — ADCP11IP<2:0>                              |                                                                      |                |                 |                    |                 |        |  |  |  |  |
| <br>bit 7    | /                                                          |                                                                      | >              | _               | P                  |                 | >bit ( |  |  |  |  |
|              |                                                            |                                                                      |                |                 |                    |                 |        |  |  |  |  |
| Legend:      |                                                            |                                                                      |                |                 |                    |                 |        |  |  |  |  |
| R = Readab   | le bit                                                     | W = Writable                                                         | bit            | U = Unimple     | mented bit, read   | l as '0'        |        |  |  |  |  |
| -n = Value a | -n = Value at POR '1' = Bit is set                         |                                                                      |                |                 | eared              | x = Bit is unkr | nown   |  |  |  |  |
|              |                                                            |                                                                      |                |                 |                    |                 |        |  |  |  |  |
| bit 15-7     | -                                                          | Unimplemented: Read as '0'                                           |                |                 |                    |                 |        |  |  |  |  |
| bit 6-4      |                                                            | ADCP12IP<2:0>: ADC Pair 12 Conversion Done Interrupt 1 Priority bits |                |                 |                    |                 |        |  |  |  |  |
|              | 111 = Interrupt is priority 7 (highest priority interrupt) |                                                                      |                |                 |                    |                 |        |  |  |  |  |
|              | •                                                          |                                                                      |                |                 |                    |                 |        |  |  |  |  |
|              | •                                                          | •                                                                    |                |                 |                    |                 |        |  |  |  |  |
|              |                                                            | pt is priority 1                                                     |                |                 |                    |                 |        |  |  |  |  |
|              | 000 = Interru                                              | ipt source is dis                                                    | abled          |                 |                    |                 |        |  |  |  |  |
| bit 3        | Unimplemer                                                 | nted: Read as '                                                      | 0'             |                 |                    |                 |        |  |  |  |  |
| bit 2-0      | ADCP11IP<2                                                 | 2:0>: ADC Pair                                                       | 11 Conversio   | on Done Interru | pt 1 Priority bits |                 |        |  |  |  |  |
|              | 111 = Interru                                              | pt is priority 7 (                                                   | highest priori | ty interrupt)   |                    |                 |        |  |  |  |  |
|              | •                                                          |                                                                      |                |                 |                    |                 |        |  |  |  |  |
|              | •                                                          |                                                                      |                |                 |                    |                 |        |  |  |  |  |
|              | •<br>001 - Interry                                         | int is priority 1                                                    |                |                 |                    |                 |        |  |  |  |  |
|              |                                                            | pt is priority 1                                                     |                |                 |                    |                 |        |  |  |  |  |

REGISTER 7-38: IPC21: INTERRUPT PRIORITY CONTROL REGISTER 21

000 = Interrupt source is disabled

© 2010 Microchip Technology Inc.

| REGISTER     | 7-39: IPC2                             | 3: INTERRUPT                                                                                      | PRIORITY       | CONTROL          | REGISTER 2      | 3               |       |
|--------------|----------------------------------------|---------------------------------------------------------------------------------------------------|----------------|------------------|-----------------|-----------------|-------|
| U-0          | R/W-1                                  | R/W-0                                                                                             | R/W-0          | U-0              | R/W-1           | R/W-0           | R/W-0 |
| _            |                                        | PWM2IP<2:0>                                                                                       |                |                  |                 | PWM1IP<2:0>     |       |
| bit 15       |                                        |                                                                                                   |                |                  | ·               |                 | bit   |
|              |                                        |                                                                                                   |                |                  |                 |                 |       |
| U-0          | U-0                                    | U-0                                                                                               | U-0            | U-0              | U-0             | U-0             | U-0   |
| —            |                                        | —                                                                                                 | _              |                  | —               | —               | —     |
| bit 7        |                                        |                                                                                                   |                |                  |                 |                 | bit   |
|              |                                        |                                                                                                   |                |                  |                 |                 |       |
| Legend:      |                                        |                                                                                                   |                |                  |                 |                 |       |
| R = Readab   | le bit                                 | W = Writable                                                                                      | bit            | U = Unimple      | mented bit, rea | ad as '0'       |       |
| -n = Value a | t POR                                  | '1' = Bit is set                                                                                  |                | '0' = Bit is cle | eared           | x = Bit is unkn | own   |
| bit 11       | •<br>•<br>001 = Interr<br>000 = Interr | upt is priority 7 (I<br>upt is priority 1<br>upt source is dis<br>ented: Read as '(               | abled          | ty)              |                 |                 |       |
|              | -                                      |                                                                                                   |                | aite             |                 |                 |       |
| bit 10-8     | 111 = Interr<br>•<br>•<br>001 = Interr | <b>0&gt;:</b> PWM1 Internupt is priority 7 (Function 1)<br>upt is priority 1<br>upt is priority 1 | nighest priori |                  |                 |                 |       |
| bit 7-0      | Unimpleme                              | nted: Read as '                                                                                   | )'             |                  |                 |                 |       |
|              |                                        |                                                                                                   |                |                  |                 |                 |       |

## REGISTER 7-39: IPC23: INTERRUPT PRIORITY CONTROL REGISTER 23

| U-0           | R/W-1            | R/W-0                                       | R/W-0            | U-0              | R/W-1          | R/W-0           | R/W-0   |
|---------------|------------------|---------------------------------------------|------------------|------------------|----------------|-----------------|---------|
|               | 1 \( / \v \v - 1 | PWM6IP<2:0>                                 | 11/00-0          | 0-0              | 10/00-1        | PWM5IP<2:0>     | 10,00-0 |
| oit 15        |                  | 1 1111011 <2.02                             |                  |                  |                | 1 111001 <2.02  | bit     |
| 511 10        |                  |                                             |                  |                  |                |                 | bit     |
| U-0           | R/W-1            | R/W-0                                       | R/W-0            | U-0              | R/W-1          | R/W-0           | R/W-0   |
| _             |                  | PWM4IP<2:0>                                 |                  | _                |                | PWM3IP<2:0>     |         |
| bit 7         |                  |                                             |                  |                  |                |                 | bit     |
|               |                  |                                             |                  |                  |                |                 |         |
| Legend:       |                  |                                             |                  |                  |                |                 |         |
| R = Readabl   | e bit            | W = Writable b                              | bit              | U = Unimple      | mented bit, re | ad as '0'       |         |
| -n = Value at | POR              | '1' = Bit is set                            |                  | '0' = Bit is cle | eared          | x = Bit is unkr | nown    |
|               |                  |                                             |                  |                  |                |                 |         |
| bit 15        | -                | ented: Read as '0                           |                  | .,               |                |                 |         |
| bit 14-12     |                  | 2:0>: PWM6 Interr                           |                  |                  |                |                 |         |
|               |                  | rrupt is priority 7 (h                      | lignest priorit  | у)               |                |                 |         |
|               | •                |                                             |                  |                  |                |                 |         |
|               | •                |                                             |                  |                  |                |                 |         |
|               | 001 = Inter      | rrupt is priority 1                         |                  |                  |                |                 |         |
|               |                  | rupt source is disa                         | abled            |                  |                |                 |         |
| bit 11        | Unimplem         | ented: Read as '0                           | ,                |                  |                |                 |         |
| bit 10-8      | PWM5IP<2         | 2:0>: PWM5 Interr                           | upt Priority b   | its              |                |                 |         |
|               | 111 = Inter      | rrupt is priority 7 (h                      | ighest priorit   | y)               |                |                 |         |
|               | •                |                                             |                  |                  |                |                 |         |
|               | •                |                                             |                  |                  |                |                 |         |
|               | •                |                                             |                  |                  |                |                 |         |
|               |                  | rrupt is priority 1<br>rrupt source is disa |                  |                  |                |                 |         |
| bit 7         |                  | ented: Read as '0                           |                  |                  |                |                 |         |
| bit 6-4       | -                | 2:0>: PWM4 Interr                           |                  | its              |                |                 |         |
|               |                  | rrupt is priority 7 (h                      |                  |                  |                |                 |         |
|               | •                |                                             |                  | ,                |                |                 |         |
|               | •                |                                             |                  |                  |                |                 |         |
|               | •                |                                             |                  |                  |                |                 |         |
|               |                  | rrupt is priority 1<br>rrupt source is disa | abled            |                  |                |                 |         |
| bit 3         | Unimplem         | ented: Read as '0                           | ,                |                  |                |                 |         |
| bit 2-0       | PWM3IP<2         | 2:0>: PWM3 Interr                           | upt Priority b   | its              |                |                 |         |
|               | 111 = Inter      | rrupt is priority 7 (h                      | ighest priorit   | y)               |                |                 |         |
|               | •                |                                             |                  |                  |                |                 |         |
|               | •                |                                             |                  |                  |                |                 |         |
|               | •                |                                             |                  |                  |                |                 |         |
|               |                  | rrupt is priority 1<br>rrupt source is disa | - <b>b</b> 1 - J |                  |                |                 |         |
|               |                  |                                             |                  |                  |                |                 |         |

#### - - - - -

| U-0          | R/W-1                                                               | R/W-0                                                                                                      | R/W-0 | U-0             | R/V        | V-1       | R/W-0           | R/W-0 |  |  |  |
|--------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------|-----------------|------------|-----------|-----------------|-------|--|--|--|
|              |                                                                     | AC2IP<2:0>                                                                                                 |       |                 |            | F         | WM9IP<2:0>      |       |  |  |  |
| bit 15       |                                                                     |                                                                                                            |       |                 |            |           |                 | bit   |  |  |  |
|              |                                                                     |                                                                                                            |       |                 |            |           |                 |       |  |  |  |
| U-0          | R/W-1                                                               | R/W-0                                                                                                      | R/W-0 | U-0             | R/V        | V-1       | R/W-0           | R/W-0 |  |  |  |
| —            |                                                                     | PWM8IP<2:0>                                                                                                |       | —               |            | F         | WM7IP<2:0>      |       |  |  |  |
| bit 7        |                                                                     |                                                                                                            |       |                 |            |           |                 | bit   |  |  |  |
| Legend:      |                                                                     |                                                                                                            |       |                 |            |           |                 |       |  |  |  |
| R = Readab   | le bit                                                              | W = Writable b                                                                                             | it    | U = Unimpl      | lemented b | oit, read | as '0'          |       |  |  |  |
| -n = Value a | t POR                                                               | '1' = Bit is set                                                                                           |       | '0' = Bit is c  | cleared    |           | x = Bit is unkn | own   |  |  |  |
| bit 15       | Unimplen                                                            | nented: Read as '0                                                                                         | ,     |                 |            |           |                 |       |  |  |  |
| bit 14-12    | -                                                                   | 0>: Analog Compar                                                                                          |       | upt Priority bi | its        |           |                 |       |  |  |  |
|              |                                                                     | errupt is priority 7 (h                                                                                    |       |                 |            |           |                 |       |  |  |  |
|              | •                                                                   | •                                                                                                          |       |                 |            |           |                 |       |  |  |  |
|              | •                                                                   | •                                                                                                          |       |                 |            |           |                 |       |  |  |  |
|              | •                                                                   |                                                                                                            |       |                 |            |           |                 |       |  |  |  |
|              |                                                                     | errupt is priority 1<br>errupt source is disa                                                              | bled  |                 |            |           |                 |       |  |  |  |
| bit 11       |                                                                     | nented: Read as '0'                                                                                        |       |                 |            |           |                 |       |  |  |  |
| bit 10-8     | -                                                                   | PWM9IP<2:0>: PWM9 Interrupt Priority bits                                                                  |       |                 |            |           |                 |       |  |  |  |
|              | 111 = Interrupt is priority 7 (highest priority)                    |                                                                                                            |       |                 |            |           |                 |       |  |  |  |
|              | •                                                                   |                                                                                                            |       |                 |            |           |                 |       |  |  |  |
|              | •                                                                   |                                                                                                            |       |                 |            |           |                 |       |  |  |  |
|              | •                                                                   |                                                                                                            |       |                 |            |           |                 |       |  |  |  |
|              | 001 = Interrupt is priority 1<br>000 = Interrupt source is disabled |                                                                                                            |       |                 |            |           |                 |       |  |  |  |
| bit 7        |                                                                     | nented: Read as '0'                                                                                        |       |                 |            |           |                 |       |  |  |  |
| bit 6-4      | -                                                                   |                                                                                                            |       | vite            |            |           |                 |       |  |  |  |
| Dit 0-4      |                                                                     | <b>PWM8IP&lt;2:0&gt;:</b> PWM8 Interrupt Priority bits<br>111 = Interrupt is priority 7 (highest priority) |       |                 |            |           |                 |       |  |  |  |
|              | •                                                                   |                                                                                                            |       |                 |            |           |                 |       |  |  |  |
|              | •                                                                   | •                                                                                                          |       |                 |            |           |                 |       |  |  |  |
|              | •                                                                   | •                                                                                                          |       |                 |            |           |                 |       |  |  |  |
|              |                                                                     | 001 = Interrupt is priority 1<br>000 = Interrupt source is disabled                                        |       |                 |            |           |                 |       |  |  |  |
| bit 3        |                                                                     | nented: Read as '0'                                                                                        |       |                 |            |           |                 |       |  |  |  |
| bit 2-0      | -                                                                   | 2:0>: PWM7 Interru                                                                                         |       | oits            |            |           |                 |       |  |  |  |
|              |                                                                     | errupt is priority 7 (h                                                                                    |       |                 |            |           |                 |       |  |  |  |
|              | •                                                                   |                                                                                                            |       |                 |            |           |                 |       |  |  |  |
|              | •                                                                   |                                                                                                            |       |                 |            |           |                 |       |  |  |  |
|              | •                                                                   |                                                                                                            |       |                 |            |           |                 |       |  |  |  |
|              |                                                                     | errupt is priority 1                                                                                       |       |                 |            |           |                 |       |  |  |  |
|              | 000 = Inte                                                          | errupt source is disa                                                                                      | bled  |                 |            |           |                 |       |  |  |  |

| REGISTER                          | 7-42: IPC20   | D: INTERRUPT                                                        | PRIORITI       | CONTROL          | KEGISTER Z      | 0                               |       |  |  |  |
|-----------------------------------|---------------|---------------------------------------------------------------------|----------------|------------------|-----------------|---------------------------------|-------|--|--|--|
| U-0                               | U-0           | U-0                                                                 | U-0            | U-0              | U-0             | U-0                             | U-0   |  |  |  |
|                                   | —             | —                                                                   | —              | —                | —               | —                               | _     |  |  |  |
| bit 15                            |               |                                                                     |                |                  |                 | U-0<br>—<br>R/W-0<br>AC3IP<2:0> | bit   |  |  |  |
|                                   |               |                                                                     |                |                  |                 |                                 |       |  |  |  |
| U-0                               | R/W-1         | R/W-0                                                               | R/W-0          | U-0              | R/W-1           | R/W-0                           | R/W-0 |  |  |  |
| _                                 |               | AC4IP<2:0>                                                          |                |                  |                 | AC3IP<2:0>                      |       |  |  |  |
| bit 7                             |               |                                                                     |                |                  |                 |                                 | bit ( |  |  |  |
|                                   |               |                                                                     |                |                  |                 |                                 |       |  |  |  |
| Legend:                           |               |                                                                     |                |                  |                 |                                 |       |  |  |  |
| R = Readable bit W = Writable bit |               |                                                                     | bit            | U = Unimpler     | mented bit, rea | ad as '0'                       |       |  |  |  |
| -n = Value at                     | t POR         | '1' = Bit is set                                                    |                | '0' = Bit is cle | eared           | x = Bit is unkr                 | own   |  |  |  |
|                                   |               |                                                                     |                |                  |                 |                                 |       |  |  |  |
| bit 15-7                          | Unimpleme     | nted: Read as 'o                                                    | כ'             |                  |                 |                                 |       |  |  |  |
| bit 6-4                           | AC4IP<2:0>    | AC4IP<2:0>: Analog Comparator 4 Interrupt Priority bits             |                |                  |                 |                                 |       |  |  |  |
|                                   | 111 = Interru | upt is priority 7 (I                                                | highest priori | ty)              |                 |                                 |       |  |  |  |
|                                   | •             |                                                                     |                |                  |                 |                                 |       |  |  |  |
|                                   | •             |                                                                     |                |                  |                 |                                 |       |  |  |  |
|                                   | •             | •                                                                   |                |                  |                 |                                 |       |  |  |  |
|                                   |               | 001 = Interrupt is priority 1<br>000 = Interrupt source is disabled |                |                  |                 |                                 |       |  |  |  |
| bit 3                             | Unimpleme     | nted: Read as '                                                     | כ'             |                  |                 |                                 |       |  |  |  |
| bit 2-0                           | AC3IP<2:0>    | AC3IP<2:0>: Analog Comparator 3 Interrupt Priority bits             |                |                  |                 |                                 |       |  |  |  |
|                                   | 111 = Interru | upt is priority 7 (I                                                | highest priori | ty)              |                 |                                 |       |  |  |  |
|                                   | •             | •                                                                   |                |                  |                 |                                 |       |  |  |  |
|                                   | •             |                                                                     |                |                  |                 |                                 |       |  |  |  |
|                                   | •             |                                                                     |                |                  |                 |                                 |       |  |  |  |
|                                   |               | upt is priority 1                                                   |                |                  |                 |                                 |       |  |  |  |
|                                   | 000 = Interru | upt source is dis                                                   | abled          |                  |                 |                                 |       |  |  |  |

#### REGISTER 7-42: IPC26: INTERRUPT PRIORITY CONTROL REGISTER 26

| REGISTER                            | 7-43: IPC27                                                      | : INTERRUP                                                       |                  | CONTROL         | CEGISTER 2      | ſ            |       |  |  |  |
|-------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------|-----------------|-----------------|--------------|-------|--|--|--|
| U-0                                 | R/W-1                                                            | R/W-0                                                            | R/W-0            | U-0             | R/W-1           | R/W-0        | R/W-0 |  |  |  |
|                                     |                                                                  | ADCP1IP<2:0>                                                     |                  |                 |                 | ADCP0IP<2:0> |       |  |  |  |
| bit 15                              |                                                                  |                                                                  |                  |                 |                 |              | bit   |  |  |  |
| U-0                                 | U-0                                                              | U-0                                                              | U-0              | U-0             | U-0             | U-0          | U-0   |  |  |  |
| 0-0                                 | 0-0                                                              | 0-0                                                              | 0-0              | 0-0             | 0-0             | 0-0          | 0-0   |  |  |  |
| <br>bit 7                           | _                                                                |                                                                  | _                | _               | —               | _            | bit   |  |  |  |
|                                     |                                                                  |                                                                  |                  |                 |                 |              | bit   |  |  |  |
| Legend:                             |                                                                  |                                                                  |                  |                 |                 |              |       |  |  |  |
| R = Readable bit $W = Writable bit$ |                                                                  |                                                                  | U = Unimpler     | nented bit, rea | d as '0'        |              |       |  |  |  |
| -n = Value at POR '1' = Bit is set  |                                                                  |                                                                  | '0' = Bit is cle | ared            | x = Bit is unkn | own          |       |  |  |  |
|                                     |                                                                  |                                                                  |                  |                 |                 |              |       |  |  |  |
| bit 15                              | Unimpleme                                                        | nted: Read as '                                                  | 0'               |                 |                 |              |       |  |  |  |
| bit 14-12                           | ADCP1IP<2:0>: ADC Pair 1 Conversion Done Interrupt Priority bits |                                                                  |                  |                 |                 |              |       |  |  |  |
|                                     | 111 = Interru                                                    | upt is priority 7 (                                              | highest priorit  | ty interrupt)   |                 |              |       |  |  |  |
|                                     |                                                                  |                                                                  |                  |                 |                 |              |       |  |  |  |
|                                     | •                                                                |                                                                  |                  |                 |                 |              |       |  |  |  |
|                                     | 001 = Interru                                                    | 001 = Interrupt is priority 1                                    |                  |                 |                 |              |       |  |  |  |
|                                     | 000 = Interru                                                    | upt source is dis                                                | abled            |                 |                 |              |       |  |  |  |
| bit 11                              | Unimpleme                                                        | nted: Read as '                                                  | 0'               |                 |                 |              |       |  |  |  |
| bit 10-8                            | ADCP0IP<2                                                        | ADCP0IP<2:0>: ADC Pair 0 Conversion Done Interrupt Priority bits |                  |                 |                 |              |       |  |  |  |
|                                     | 111 = Interru                                                    | 111 = Interrupt is priority 7 (highest priority interrupt)       |                  |                 |                 |              |       |  |  |  |
|                                     | •                                                                |                                                                  |                  |                 |                 |              |       |  |  |  |
|                                     | •                                                                |                                                                  |                  |                 |                 |              |       |  |  |  |
|                                     | •                                                                | unt in priority 4                                                |                  |                 |                 |              |       |  |  |  |
|                                     |                                                                  | pt is priority 1                                                 |                  |                 |                 |              |       |  |  |  |

## REGISTER 7-43: IPC27: INTERRUPT PRIORITY CONTROL REGISTER 27

000 = Interrupt source is disabled

Unimplemented: Read as '0'

bit 7-0

| REGISTER         | 7-44: IPC                                                  | 28: INTERRUPT                                                              |                 | CONTROL          | REGISIER       | 20              |       |  |  |  |
|------------------|------------------------------------------------------------|----------------------------------------------------------------------------|-----------------|------------------|----------------|-----------------|-------|--|--|--|
| U-0              | R/W-1                                                      | R/W-0                                                                      | R/W-0           | U-0              | R/W-1          | R/W-0           | R/W-0 |  |  |  |
|                  |                                                            | ADCP5IP<2:0>                                                               |                 |                  |                | ADCP4IP<2:0>    |       |  |  |  |
| bit 15           |                                                            |                                                                            |                 |                  |                |                 | bit 8 |  |  |  |
| U-0              | R/W-1                                                      | R/W-0                                                                      | R/W-0           | U-0              | R/W-1          | R/W-0           | R/W-0 |  |  |  |
| _                |                                                            | ADCP3IP<2:0>                                                               |                 |                  |                | ADCP2IP<2:0>    |       |  |  |  |
| bit 7            |                                                            |                                                                            |                 |                  |                |                 | bit ( |  |  |  |
| Legend:          |                                                            |                                                                            |                 |                  |                |                 |       |  |  |  |
| R = Readabl      | le bit                                                     | W = Writable b                                                             | bit             | U = Unimple      | mented bit, re | ad as '0'       |       |  |  |  |
| -n = Value at    | POR                                                        | '1' = Bit is set                                                           |                 | '0' = Bit is cle | eared          | x = Bit is unkn | own   |  |  |  |
| bit 15           | Unimplem                                                   | nented: Read as '0                                                         | 3               |                  |                |                 |       |  |  |  |
| bit 14-12        | -                                                          | <2:0>: ADC Pair 5                                                          |                 | Done Interrupt   | Priority bits  |                 |       |  |  |  |
|                  |                                                            | rrupt is priority 7 (h                                                     |                 | •                |                |                 |       |  |  |  |
|                  | •                                                          |                                                                            | 0               | · · · ·          |                |                 |       |  |  |  |
|                  | •                                                          |                                                                            |                 |                  |                |                 |       |  |  |  |
|                  | •<br>001 = Inte                                            | rrupt is priority 1                                                        |                 |                  |                |                 |       |  |  |  |
|                  |                                                            | rrupt source is disa                                                       | abled           |                  |                |                 |       |  |  |  |
| bit 11           |                                                            | nented: Read as '0                                                         |                 |                  |                |                 |       |  |  |  |
| bit 10-8         | ADCP4IP                                                    | <2:0>: ADC Pair 4                                                          | Conversion      | Done Interrupt   | Priority bits  |                 |       |  |  |  |
|                  | 111 = Interrupt is priority 7 (highest priority interrupt) |                                                                            |                 |                  |                |                 |       |  |  |  |
|                  | •                                                          |                                                                            |                 |                  |                |                 |       |  |  |  |
|                  | •                                                          |                                                                            |                 |                  |                |                 |       |  |  |  |
|                  | 001 = Interrupt is priority 1                              |                                                                            |                 |                  |                |                 |       |  |  |  |
|                  |                                                            | rrupt source is disa                                                       | abled           |                  |                |                 |       |  |  |  |
| bit 7            | Unimplem                                                   | ented: Read as '0                                                          | 2               |                  |                |                 |       |  |  |  |
| bit 6-4          | ADCP3IP<                                                   | <2:0>: ADC Pair 3                                                          | Conversion      | Done Interrupt   | Priority bits  |                 |       |  |  |  |
|                  | 111 = Interrupt is priority 7 (highest priority interrupt) |                                                                            |                 |                  |                |                 |       |  |  |  |
|                  | •                                                          |                                                                            |                 |                  |                |                 |       |  |  |  |
|                  | •                                                          |                                                                            |                 |                  |                |                 |       |  |  |  |
|                  | •                                                          |                                                                            |                 |                  |                |                 |       |  |  |  |
|                  | •<br>001 = Inte                                            | rrupt is priority 1                                                        |                 |                  |                |                 |       |  |  |  |
|                  |                                                            | rrupt is priority 1<br>rrupt source is disa                                | abled           |                  |                |                 |       |  |  |  |
| bit 3            | 000 = Inte                                                 |                                                                            |                 |                  |                |                 |       |  |  |  |
| bit 3<br>bit 2-0 | 000 = Inte<br>Unimplem                                     | rrupt source is disa                                                       | ,               | Done Interrupt   | Priority bits  |                 |       |  |  |  |
|                  | 000 = Inte<br>Unimplem<br>ADCP2IP<                         | rrupt source is disa<br>nented: Read as '0                                 | ,<br>Conversion |                  | Priority bits  |                 |       |  |  |  |
|                  | 000 = Inte<br>Unimplem<br>ADCP2IP<                         | rrupt source is disa<br>nented: Read as '0<br>< <b>2:0&gt;:</b> ADC Pair 2 | ,<br>Conversion |                  | Priority bits  |                 |       |  |  |  |
|                  | 000 = Inte<br>Unimplem<br>ADCP2IP<                         | rrupt source is disa<br>nented: Read as '0<br>< <b>2:0&gt;:</b> ADC Pair 2 | ,<br>Conversion |                  | Priority bits  |                 |       |  |  |  |
|                  | 000 = Inte<br>Unimplem<br>ADCP2IP<<br>111 = Inte<br>•      | rrupt source is disa<br>nented: Read as '0<br>< <b>2:0&gt;:</b> ADC Pair 2 | ,<br>Conversion |                  | Priority bits  |                 |       |  |  |  |

## REGISTER 7-44: IPC28: INTERRUPT PRIORITY CONTROL REGISTER 28

| REGISTER                           | (7-45: IPC29                                                       | INTERRUP                      | I PRIORITY      | CONTROLI         | REGISTER 29      |                 |       |  |  |  |
|------------------------------------|--------------------------------------------------------------------|-------------------------------|-----------------|------------------|------------------|-----------------|-------|--|--|--|
| U-0                                | U-0                                                                | U-0                           | U-0             | U-0              | U-0              | U-0             | U-0   |  |  |  |
| —                                  | —                                                                  | —                             | —               | —                | —                |                 | _     |  |  |  |
| bit 15                             |                                                                    |                               |                 |                  |                  |                 | bit   |  |  |  |
| U-0                                | R/W-1                                                              | R/W-0                         | R/W-0           | U-0              | R/W-1            | R/W-0           | R/W-0 |  |  |  |
|                                    | – ADCP7IP<2:0> –                                                   |                               |                 |                  |                  | ADCP6IP<2:0>    |       |  |  |  |
| bit 7                              |                                                                    |                               |                 |                  | ,                |                 | bit ( |  |  |  |
|                                    |                                                                    |                               |                 |                  |                  |                 |       |  |  |  |
| Legend:                            |                                                                    |                               |                 |                  |                  |                 |       |  |  |  |
| R = Readab                         | ole bit                                                            | W = Writable                  | bit             | U = Unimple      | mented bit, read | l as '0'        |       |  |  |  |
| -n = Value at POR '1' = Bit is set |                                                                    |                               |                 | '0' = Bit is cle | eared            | x = Bit is unkr | nown  |  |  |  |
|                                    |                                                                    |                               |                 |                  |                  |                 |       |  |  |  |
| bit 15-7                           | Unimplemer                                                         | nted: Read as '               | 0'              |                  |                  |                 |       |  |  |  |
| bit 6-4                            | ADCP7IP<2:0>: ADC Pair 7 Conversion Done Interrupt 1 Priority bits |                               |                 |                  |                  |                 |       |  |  |  |
|                                    | 111 = Interru                                                      | ıpt is priority 7 (           | highest priorit | y interrupt)     |                  |                 |       |  |  |  |
|                                    | •                                                                  |                               |                 |                  |                  |                 |       |  |  |  |
|                                    | •                                                                  | •                             |                 |                  |                  |                 |       |  |  |  |
|                                    | 001 = Interru                                                      | 001 = Interrupt is priority 1 |                 |                  |                  |                 |       |  |  |  |
|                                    | 000 = Interru                                                      | ipt source is dis             | sabled          |                  |                  |                 |       |  |  |  |
| bit 3                              | Unimplemer                                                         | nted: Read as '               | 0'              |                  |                  |                 |       |  |  |  |
| bit 2-0                            | ADCP6IP<2:                                                         | • <b>0&gt;:</b> ADC Pair 6    | 6 Conversion I  | Done Interrupt   | 1 Priority bits  |                 |       |  |  |  |
|                                    | 111 = Interru                                                      | pt is priority 7 (            | highest priorit | y interrupt)     |                  |                 |       |  |  |  |
|                                    | •                                                                  |                               |                 |                  |                  |                 |       |  |  |  |
|                                    | •                                                                  |                               |                 |                  |                  |                 |       |  |  |  |
|                                    | •<br>001 - Intorru                                                 | pt is priority 1              |                 |                  |                  |                 |       |  |  |  |
|                                    |                                                                    | ipt is priority i             | ablad           |                  |                  |                 |       |  |  |  |

#### REGISTER 7-45: IPC29: INTERRUPT PRIORITY CONTROL REGISTER 29

000 = Interrupt source is disabled

| U-0                               | U-0                                                                                              | U-0                                                  | U-0           | R-0                                | R-0             | R-0      | R-0      |  |  |  |
|-----------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------|------------------------------------|-----------------|----------|----------|--|--|--|
| _                                 | _                                                                                                | —                                                    |               |                                    | ILR             | <3:0>    |          |  |  |  |
| bit 15                            | ·                                                                                                |                                                      |               |                                    |                 |          | bit 8    |  |  |  |
|                                   | <b>.</b>                                                                                         |                                                      |               | <b>D</b> 0                         | <b>.</b>        |          | <b>.</b> |  |  |  |
| U-0                               | R-0                                                                                              | R-0                                                  | R-0           | R-0                                | R-0             | R-0      | R-0      |  |  |  |
|                                   |                                                                                                  |                                                      |               | VECNUM<6:0:                        | >               |          |          |  |  |  |
| bit 7                             |                                                                                                  |                                                      |               |                                    |                 |          | bit 0    |  |  |  |
| Legend:                           |                                                                                                  |                                                      |               |                                    |                 |          |          |  |  |  |
| R = Readable bit W = Writable bit |                                                                                                  |                                                      | oit           | U = Unimplem                       | nented bit, rea | d as '0' |          |  |  |  |
| -n = Value at POR                 |                                                                                                  | '1' = Bit is set                                     |               | '0' = Bit is cleared x = Bit is un |                 |          | nown     |  |  |  |
|                                   |                                                                                                  |                                                      |               |                                    |                 |          |          |  |  |  |
| bit 15-12                         | Unimplemen                                                                                       | ted: Read as '0                                      | )'            |                                    |                 |          |          |  |  |  |
| bit 11-8                          | ILR<3:0>: New CPU Interrupt Priority Level bits                                                  |                                                      |               |                                    |                 |          |          |  |  |  |
|                                   | 1111 = CPU Interrupt Priority Level is 15                                                        |                                                      |               |                                    |                 |          |          |  |  |  |
|                                   | •                                                                                                |                                                      |               |                                    |                 |          |          |  |  |  |
|                                   | •                                                                                                |                                                      |               |                                    |                 |          |          |  |  |  |
|                                   | 0001 = CPU Interrupt Priority Level is 1<br>0000 = CPU Interrupt Priority Level is 0             |                                                      |               |                                    |                 |          |          |  |  |  |
| bit 7                             | Unimplemen                                                                                       | ted: Read as '0                                      | )'            |                                    |                 |          |          |  |  |  |
| bit 6-0                           | VECNUM<6:                                                                                        | VECNUM<6:0>: Vector Number of Pending Interrupt bits |               |                                    |                 |          |          |  |  |  |
|                                   | 0111111 = lr                                                                                     | nterrupt vector p                                    | ending is nur | nber 135                           |                 |          |          |  |  |  |
|                                   | •                                                                                                |                                                      | -             |                                    |                 |          |          |  |  |  |
|                                   | •                                                                                                |                                                      |               |                                    |                 |          |          |  |  |  |
|                                   | •<br>000001 – Ir                                                                                 | nterrunt vector r                                    | endina is nur | mher 9                             |                 |          |          |  |  |  |
|                                   | 0000001 = Interrupt vector pending is number 9<br>0000000 = Interrupt vector pending is number 8 |                                                      |               |                                    |                 |          |          |  |  |  |

#### REGISTER 7-46: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

#### 7.4 Interrupt Setup Procedures

#### 7.4.1 INITIALIZATION

Complete the following steps to configure an interrupt source at initialization:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources can be programmed to the same non-zero value.

| Note: | At a device Reset, the IPCx registers are |
|-------|-------------------------------------------|
|       | initialized such that all user interrupt  |
|       | sources are assigned to priority level 4. |

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

#### 7.4.2 INTERRUPT SERVICE ROUTINE

The method used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (C or assembler) and the language development toolsuite used to develop the application.

In general, the user application must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, program will re-enter the ISR immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

#### 7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

#### 7.4.4 INTERRUPT DISABLE

The following steps outline the procedure to disable all user interrupts:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value EOh with SRL.

To enable user interrupts, the POP instruction can be used to restore the previous SR value.

| Note: | Only user interrupts with a priority level of |
|-------|-----------------------------------------------|
|       | 7 or lower can be disabled. Trap sources      |
|       | (level 8-level 15) cannot be disabled.        |

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

## 8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 22. "Direct Memory Access (DMA)" (DS70182) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Direct Memory Access (DMA) is a very efficient mechanism of copying data between peripheral SFRs (e.g., the UART Receive register and Input Capture 1 buffer) and buffers or variables stored in RAM, with minimal CPU intervention. The DMA controller can automatically copy entire blocks of data without requiring the user software to read or write the peripheral Special Function Registers (SFRs) every time a peripheral interrupt occurs. The DMA controller uses a dedicated bus for data transfers and, therefore, does not steal cycles from the code execution flow of the CPU. To exploit the DMA capability, the corresponding user buffers or variables must be located in DMA RAM.

Note: The DMA module is not available on dsIPC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406 devices.

The peripherals that can utilize DMA are listed in Table 8-1 along with their associated Interrupt Request (IRQ) numbers.

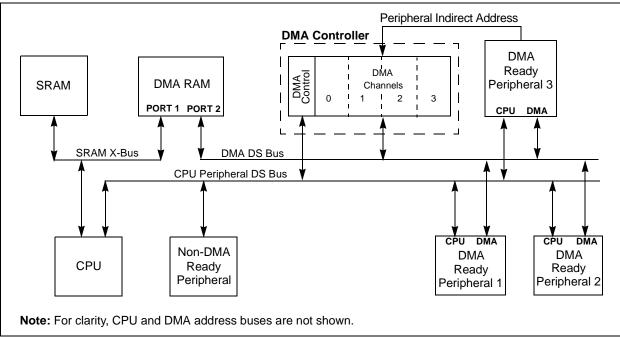
| Peripheral to DMA Association         | DMAxREQ Register<br>IRQSEL<6:0> Bits | DMAxPAD Register<br>Values to Read From<br>Peripheral | DMAxPAD Register<br>Values to Write to<br>Peripheral |
|---------------------------------------|--------------------------------------|-------------------------------------------------------|------------------------------------------------------|
| INT0 – External Interrupt 0           | 000000                               | —                                                     | —                                                    |
| IC1 – Input Capture 1                 | 0000001                              | 0x0140 (IC1BUF)                                       | —                                                    |
| IC2 – Input Capture 2                 | 0000101                              | 0x0144 (IC2BUF)                                       | —                                                    |
| IC3 – Input Capture 3                 | 0100101                              | 0x0148 (IC3BUF)                                       | _                                                    |
| IC4 – Input Capture 4                 | 0100110                              | 0x0148C (IC4BUF)                                      | —                                                    |
| OC1 – Output Compare 1 Data           | 0000010                              | —                                                     | 0x0182 (OC1R)                                        |
| OC1 – Output Compare 1 Secondary Data | 0000010                              | —                                                     | 0x0180 (OC1RS)                                       |
| OC2 – Output Compare 2 Data           | 0000110                              | —                                                     | 0x0188 (OC2R)                                        |
| OC2 – Output Compare 2 Secondary Data | 0000110                              | —                                                     | 0x0186 (OC2RS)                                       |
| OC3 – Output Compare 3 Data           | 0011001                              | —                                                     | 0x018E (OC3R)                                        |
| OC3 – Output Compare 3 Secondary Data | 0011001                              | —                                                     | 0x018C (OC3RS)                                       |
| OC4 – Output Compare 4 Data           | 0011010                              | —                                                     | 0x0194 (OC4R)                                        |
| OC4 – Output Compare 4 Secondary Data | 0011010                              | —                                                     | 0x0192 (OC4RS)                                       |
| TMR2 – Timer2                         | 0000111                              | —                                                     | —                                                    |
| TMR3 – Timer3                         | 0001000                              | —                                                     | —                                                    |
| TMR4 – Timer4                         | 0011011                              | —                                                     | —                                                    |
| TMR5 – Timer5                         | 0011100                              | —                                                     | —                                                    |
| SPI1 – Transfer Done                  | 0001010                              | 0x0248 (SPI1BUF)                                      | 0x0248 (SPI1BUF)                                     |
| SPI2 – Transfer Done                  | 0100001                              | 0x0268 (SPI2BUF)                                      | 0x0268 (SPI2BUF)                                     |
| UART1RX – UART1 Receiver              | 0001011                              | 0x0226 (U1RXREG)                                      | —                                                    |
| UART1TX – UART1 Transmitter           | 0001100                              | —                                                     | 0x0224 (U1TXREG)                                     |
| UART2RX – UART2 Receiver              | 0011110                              | 0x0236 (U2RXREG)                                      | —                                                    |
| UART2TX – UART2 Transmitter           | 0011111                              | —                                                     | 0x0234 (U2TXREG)                                     |
| ECAN1 – RX Data Ready                 | 0100010                              | 0x0440 (C1RXD)                                        | —                                                    |
| ECAN1 – TX Data Request               | 1000110                              | —                                                     | 0x0442 (C1TXD)                                       |

#### TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

The DMA controller features four identical data transfer channels. Each channel has its own set of control and STATUS registers. Each DMA channel can be configured to copy data either from buffers stored in dual port DMA RAM to peripheral SFRs or from peripheral SFRs to buffers in DMA RAM.

The DMA controller supports the following features:

- Word or byte sized data transfers.
- Transfers from peripheral to DMA RAM or DMA RAM to peripheral.
- Indirect Addressing of DMA RAM locations with or without automatic post-increment.
- Peripheral Indirect Addressing In some peripherals, the DMA RAM read/write addresses may be partially derived from the peripheral.
- One-Shot Block Transfers Terminating DMA transfer after one block transfer.
- Continuous Block Transfers Reloading DMA RAM buffer start address after every block transfer is complete.
- Ping-Pong Mode Switching between two DMA RAM start addresses between successive block transfers, thereby filling two buffers alternately.
- Automatic or manual initiation of block transfers.


For each DMA channel, a DMA interrupt request is generated when a block transfer is complete. Alternatively, an interrupt can be generated when half of the block has been filled.

#### 8.1 DMAC Registers

Each DMAC Channel x (x = 0, 1, 2, or 3) contains the following registers:

- A 16-bit DMA Channel Control register (DMAxCON)
- A 16-bit DMA Channel IRQ Select register (DMAxREQ)
- A 16-bit DMA RAM Primary Start Address Offset register (DMAxSTA)
- A 16-bit DMA RAM Secondary Start Address Offset register (DMAxSTB)
- A 16-bit DMA Peripheral Address register (DMAxPAD)
- A 10-bit DMA Transfer Count register (DMAxCNT)

An additional pair of STATUS registers, DMACS0 and DMACS1, are common to all DMAC channels.



#### FIGURE 8-1: TOP LEVEL SYSTEM ARCHITECTURE USING A DEDICATED TRANSACTION BUS

| R/W-0        | R/W-0                                                                                                                                                                                               | R/W-0                               | R/W-0          | R/W-0            | U-0              | U-0             | U-0     |  |  |  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------|------------------|------------------|-----------------|---------|--|--|--|
| CHEN         | SIZE                                                                                                                                                                                                | DIR                                 | HALF           | NULLW            |                  |                 |         |  |  |  |
| bit 15       | 0.22                                                                                                                                                                                                | Biit                                | 10/121         |                  |                  |                 | bit 8   |  |  |  |
|              |                                                                                                                                                                                                     |                                     |                |                  |                  |                 |         |  |  |  |
| U-0          | U-0                                                                                                                                                                                                 | R/W-0                               | R/W-0          | U-0              | U-0              | R/W-0           | R/W-0   |  |  |  |
| _            | —                                                                                                                                                                                                   | AMOD                                | E<1:0>         | —                |                  | MODE            |         |  |  |  |
| bit 7        |                                                                                                                                                                                                     |                                     |                |                  |                  |                 | bit (   |  |  |  |
| Legend:      |                                                                                                                                                                                                     |                                     |                |                  |                  |                 |         |  |  |  |
| R = Readab   | ole bit                                                                                                                                                                                             | W = Writable                        | bit            | U = Unimpler     | nented bit, read | d as '0'        |         |  |  |  |
| -n = Value a | at POR                                                                                                                                                                                              | '1' = Bit is set                    |                | '0' = Bit is cle |                  | x = Bit is unkn | own     |  |  |  |
|              |                                                                                                                                                                                                     |                                     |                |                  |                  |                 |         |  |  |  |
| bit 15       | CHEN: Chanr                                                                                                                                                                                         | nel Enable bit                      |                |                  |                  |                 |         |  |  |  |
|              | 1 = Channel enabled                                                                                                                                                                                 |                                     |                |                  |                  |                 |         |  |  |  |
|              | 0 = Channel c                                                                                                                                                                                       |                                     |                |                  |                  |                 |         |  |  |  |
| bit 14       |                                                                                                                                                                                                     | SIZE: Data Transfer Size bit        |                |                  |                  |                 |         |  |  |  |
|              | 1 = Byte<br>0 = Word                                                                                                                                                                                |                                     |                |                  |                  |                 |         |  |  |  |
| bit 13       |                                                                                                                                                                                                     | Direction bit (s                    | ource/destina  | ation bus select | t)               |                 |         |  |  |  |
|              | 1 = Read from DMA RAM address; write to peripheral address                                                                                                                                          |                                     |                |                  |                  |                 |         |  |  |  |
|              | 0 = Read fron                                                                                                                                                                                       | n peripheral ad                     | dress; write t | o DMA RAM ac     | ldress           |                 |         |  |  |  |
| bit 12       | HALF: Early Block Transfer Complete Interrupt Select bit                                                                                                                                            |                                     |                |                  |                  |                 |         |  |  |  |
|              | <ul> <li>1 = Initiate block transfer complete interrupt when half of the data has been moved</li> <li>0 = Initiate block transfer complete interrupt when all of the data has been moved</li> </ul> |                                     |                |                  |                  |                 |         |  |  |  |
|              |                                                                                                                                                                                                     |                                     | -              | -                | he data has be   | en moved        |         |  |  |  |
| bit 11       | NULLW: Null Data Peripheral Write Mode Select bit                                                                                                                                                   |                                     |                |                  |                  |                 |         |  |  |  |
|              | <ul> <li>1 = Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear)</li> <li>0 = Normal operation</li> </ul>                                                       |                                     |                |                  |                  |                 |         |  |  |  |
| bit 10-6     | -                                                                                                                                                                                                   | ted: Read as '                      | 0'             |                  |                  |                 |         |  |  |  |
| bit 5-4      | -                                                                                                                                                                                                   |                                     |                | Mode Select bit  | S                |                 |         |  |  |  |
|              | AMODE<1:0>: DMA Channel Operating Mode Select bits<br>11 = Reserved                                                                                                                                 |                                     |                |                  |                  |                 |         |  |  |  |
|              | 10 = Peripheral Indirect Addressing mode                                                                                                                                                            |                                     |                |                  |                  |                 |         |  |  |  |
|              |                                                                                                                                                                                                     | Indirect without<br>Indirect with F |                |                  |                  |                 |         |  |  |  |
| bit 3-2      | -                                                                                                                                                                                                   | ted: Read as '                      |                |                  |                  |                 |         |  |  |  |
| bit 1-0      | -                                                                                                                                                                                                   |                                     |                | ode Select bits  |                  |                 |         |  |  |  |
|              |                                                                                                                                                                                                     |                                     |                |                  | ansfer from/to e | each DMA RAM    | buffer) |  |  |  |
|              |                                                                                                                                                                                                     | ous, Ping-Pong                      |                |                  |                  |                 |         |  |  |  |
|              |                                                                                                                                                                                                     | ot, Ping-Pong r                     |                |                  |                  |                 |         |  |  |  |
|              | 00 = Continuo                                                                                                                                                                                       | ous, Ping-Pong                      | modes disat    | bled             |                  |                 |         |  |  |  |

## REGISTER 8-1: DMAxCON: DMA CHANNEL x CONTROL REGISTER

| R/W-0                | U-0                                                                                                                                                                                 | U-0              | U-0   | U-0                                | U-0   | U-0                | U-0   |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|------------------------------------|-------|--------------------|-------|
| FORCE <sup>(1)</sup> |                                                                                                                                                                                     | —                | —     | _                                  | —     | —                  | —     |
| bit 15               |                                                                                                                                                                                     |                  |       |                                    |       |                    | bit 8 |
|                      |                                                                                                                                                                                     |                  |       |                                    |       |                    |       |
| U-0                  | R/W-1                                                                                                                                                                               | R/W-1            | R/W-1 | R/W-1                              | R/W-1 | R/W-1              | R/W-1 |
| —                    | IRQSEL<6:0> <sup>(2)</sup>                                                                                                                                                          |                  |       |                                    |       |                    |       |
| bit 7                |                                                                                                                                                                                     |                  |       |                                    |       |                    | bit 0 |
|                      |                                                                                                                                                                                     |                  |       |                                    |       |                    |       |
| Legend:              |                                                                                                                                                                                     |                  |       |                                    |       |                    |       |
| R = Readable bit     |                                                                                                                                                                                     | W = Writable bit |       | U = Unimplemented bit, read as '0' |       |                    |       |
| -n = Value at POR    |                                                                                                                                                                                     | '1' = Bit is set |       | '0' = Bit is cleared               |       | x = Bit is unknown |       |
| bit 15<br>bit 14-7   | FORCE: Force DMA Transfer bit <sup>(1)</sup><br>1 = Force a single DMA transfer (Manual mode)<br>0 = Automatic DMA transfer initiation by DMA request<br>Unimplemented: Read as '0' |                  |       |                                    |       |                    |       |
| bit 6-0              | IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits <sup>(2)</sup><br>0000000-1111111 = DMAIRQ0-DMAIRQ127 selected to be Channel DMAREQ                                              |                  |       |                                    |       |                    |       |

#### REGISTER 8-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER

- **Note 1:** The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete.
  - 2: See Table 8-1 for a complete listing of IRQ numbers for all interrupt sources.

| R/W-0                                                        | R/W-0          | R/W-0            | R/W-0           | R/W-0                                   | R/W-0          | R/W-0          | R/W-0          |
|--------------------------------------------------------------|----------------|------------------|-----------------|-----------------------------------------|----------------|----------------|----------------|
|                                                              |                |                  | STA             | <15:8>                                  |                |                |                |
| bit 15                                                       |                |                  |                 |                                         |                |                | bit 8          |
| DAMA                                                         | <b>D</b> 444 A | <b>D</b> 444 o   | <b>D M</b> ( a) | <b>D</b> 444 o                          | <b>D</b> 444 o | <b>D</b> 444 o | <b>D</b> AA4 o |
| R/W-0                                                        | R/W-0          | R/W-0            | R/W-0           | R/W-0                                   | R/W-0          | R/W-0          | R/W-0          |
|                                                              |                |                  | STA             | <7:0>                                   |                |                |                |
| bit 7                                                        |                |                  |                 |                                         |                |                | bit 0          |
|                                                              |                |                  |                 |                                         |                |                |                |
| Legend:                                                      |                |                  |                 |                                         |                |                |                |
| R = Readable bit W = Writable bit U = Unimplemented bit, rea |                |                  |                 | ıd as '0'                               |                |                |                |
| -n = Value at P                                              | POR            | '1' = Bit is set |                 | '0' = Bit is cleared x = Bit is unknown |                |                | nown           |

#### REGISTER 8-3: DMAXSTA: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER A

bit 15-0 STA<15:0>: Primary DMA RAM Start Address bits (source or destination)

#### REGISTER 8-4: DMAxSTB: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER B

| R/W-0                              | R/W-0          | R/W-0                              | R/W-0                                    | R/W-0          | R/W-0   | R/W-0          | R/W-0          |
|------------------------------------|----------------|------------------------------------|------------------------------------------|----------------|---------|----------------|----------------|
|                                    |                |                                    |                                          | <15:8>         |         |                |                |
| bit 15                             |                |                                    |                                          |                |         |                | bit 8          |
|                                    | <b>D</b> 444 0 | 54440                              | <b>D</b> 444 a                           | <b>D</b> 444 o | D AAL O | <b>D</b> 444 o | <b>D</b> 444 a |
| R/W-0                              | R/W-0          | R/W-0                              | R/W-0                                    | R/W-0          | R/W-0   | R/W-0          | R/W-0          |
|                                    |                |                                    | STE                                      | 3<7:0>         |         |                |                |
| bit 7                              |                |                                    |                                          |                |         |                | bit (          |
| Legend:                            |                |                                    |                                          |                |         |                |                |
| R = Readable bit W = Writable bit  |                | U = Unimplemented bit, read as '0' |                                          |                |         |                |                |
| -n = Value at POR '1' = Bit is set |                |                                    | 0' = Bit is cleared $x = Bit is unknown$ |                |         |                |                |

bit 15-0 STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)

| R/W-0           | R/W-0 | R/W-0            | R/W-0 | R/W-0            | R/W-0                             | R/W-0    | R/W-0 |
|-----------------|-------|------------------|-------|------------------|-----------------------------------|----------|-------|
|                 |       |                  | PAD   | <15:8>           |                                   |          |       |
| bit 15          |       |                  |       |                  |                                   |          | bit 8 |
|                 |       |                  |       |                  |                                   |          |       |
| R/W-0           | R/W-0 | R/W-0            | R/W-0 | R/W-0            | R/W-0                             | R/W-0    | R/W-0 |
|                 |       |                  | PAE   | 0<7:0>           |                                   |          |       |
| bit 7           |       |                  |       |                  |                                   |          | bit 0 |
| Legend:         |       |                  |       |                  |                                   |          |       |
| -               |       |                  |       |                  |                                   |          |       |
| R = Readable    | bit   | W = Writable     | bit   | U = Unimpler     | mented bit, rea                   | d as '0' |       |
| -n = Value at P | POR   | '1' = Bit is set |       | '0' = Bit is cle | Bit is cleared x = Bit is unknown |          |       |

#### REGISTER 8-5: DMAXPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER<sup>(1)</sup>

bit 15-0 PAD<15:0>: Peripheral Address Register bits

- **Note 1:** If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.
  - 2: See Table 8-1 for a complete list of peripheral addresses.

#### **REGISTER 8-6:** DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER<sup>(1)</sup>

| U-0         U-0         U-0         U-0         U-0         R/W-0           —         —         —         —         —         CNT<9:8           bit 15 |                                   |       |       |       |                                    |       |       |                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------|-------|-------|------------------------------------|-------|-------|-----------------|--|
| bit 15<br>R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0<br>CNT<7:0><br>bit 7<br>Legend:                                                                          | U-0                               | U-0   | U-0   | U-0   | U-0                                | U-0   | R/W-0 | R/W-0           |  |
| R/W-0         R/W-0         R/W-0         R/W-0         R/W-0           CNT<7:0>                                                                       | —                                 | _     | —     | —     | _                                  | —     | CNT<  | 9:8> <b>(2)</b> |  |
| CNT<7:0><br>bit 7                                                                                                                                      | bit 15                            |       |       |       |                                    |       |       | bit 8           |  |
| CNT<7:0><br>bit 7                                                                                                                                      |                                   |       |       |       |                                    |       |       |                 |  |
| bit 7 Legend:                                                                                                                                          | R/W-0                             | R/W-0 | R/W-0 | R/W-0 | R/W-0                              | R/W-0 | R/W-0 | R/W-0           |  |
| Legend:                                                                                                                                                |                                   |       |       | CNT   | <7:0>                              |       |       |                 |  |
|                                                                                                                                                        | bit 7                             |       |       |       |                                    |       |       | bit 0           |  |
| -                                                                                                                                                      |                                   |       |       |       |                                    |       |       |                 |  |
| R = Readable bit $W$ = Writable bit $U$ = Unimplemented bit, read as '0'                                                                               | Legend:                           |       |       |       |                                    |       |       |                 |  |
|                                                                                                                                                        | R = Readable bit W = Writable bit |       |       | oit   | U = Unimplemented bit, read as '0' |       |       |                 |  |

bit 15-10 **Unimplemented:** Read as '0'

bit 9-0 CNT<9:0>: DMA Transfer Count Register bits<sup>(2)</sup>

'1' = Bit is set

**Note 1:** If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

0' = Bit is cleared

**2:** Number of DMA transfers = CNT<9:0> + 1.

-n = Value at POR

x = Bit is unknown

| U-0           | U-0                                                                                          | U-0                                 | U-0          | R/C-0             | R/C-0            | R/C-0           | R/C-0  |  |  |  |  |  |
|---------------|----------------------------------------------------------------------------------------------|-------------------------------------|--------------|-------------------|------------------|-----------------|--------|--|--|--|--|--|
|               | _                                                                                            | _                                   | _            | PWCOL3            | PWCOL2           | PWCOL1          | PWCOL0 |  |  |  |  |  |
| bit 15        |                                                                                              |                                     |              | - I               |                  | 1               | bit 8  |  |  |  |  |  |
| U-0           | U-0                                                                                          | U-0                                 | U-0          | R/C-0             | R/C-0            | R/C-0           | R/C-0  |  |  |  |  |  |
| _             |                                                                                              |                                     |              | XWCOL3            | XWCOL2           | XWCOL1          | XWCOL0 |  |  |  |  |  |
| bit 7         |                                                                                              |                                     |              |                   |                  |                 | bit (  |  |  |  |  |  |
| Legend:       |                                                                                              |                                     |              |                   |                  |                 |        |  |  |  |  |  |
| R = Readabl   | e bit                                                                                        | W = Writable                        | bit          | U = Unimplem      | nented bit, read | d as '0'        |        |  |  |  |  |  |
| -n = Value at | POR                                                                                          | '1' = Bit is set                    |              | '0' = Bit is clea |                  | x = Bit is unkr | nown   |  |  |  |  |  |
|               |                                                                                              |                                     |              |                   |                  |                 |        |  |  |  |  |  |
| bit 15-12     | Unimpleme                                                                                    | nted: Read as '                     | 0'           |                   |                  |                 |        |  |  |  |  |  |
| bit 11        | =                                                                                            |                                     |              | ollision Flag bit |                  |                 |        |  |  |  |  |  |
|               | <b>PWCOL3:</b> Channel 3 Peripheral Write Collision Flag bit<br>1 = Write collision detected |                                     |              |                   |                  |                 |        |  |  |  |  |  |
|               |                                                                                              | collision detect                    | ed           |                   |                  |                 |        |  |  |  |  |  |
| oit 10        | PWCOL2: Channel 2 Peripheral Write Collision Flag bit                                        |                                     |              |                   |                  |                 |        |  |  |  |  |  |
|               | 1 = Write col                                                                                | 1 = Write collision detected        |              |                   |                  |                 |        |  |  |  |  |  |
|               | 0 = No write                                                                                 | 0 = No write collision detected     |              |                   |                  |                 |        |  |  |  |  |  |
| bit 9         | PWCOL1: Channel 1 Peripheral Write Collision Flag bit                                        |                                     |              |                   |                  |                 |        |  |  |  |  |  |
|               | 1 = Write collision detected                                                                 |                                     |              |                   |                  |                 |        |  |  |  |  |  |
|               | 0 = No write collision detected                                                              |                                     |              |                   |                  |                 |        |  |  |  |  |  |
| bit 8         | PWCOL0: Channel 0 Peripheral Write Collision Flag bit                                        |                                     |              |                   |                  |                 |        |  |  |  |  |  |
|               | 1 = Write collision detected                                                                 |                                     |              |                   |                  |                 |        |  |  |  |  |  |
|               | 0 = No write collision detected                                                              |                                     |              |                   |                  |                 |        |  |  |  |  |  |
| bit 7-4       | Unimpleme                                                                                    | nted: Read as '                     | 0'           |                   |                  |                 |        |  |  |  |  |  |
| bit 3         | XWCOL3: C                                                                                    | hannel 3 DMA I                      | RAM Write C  | ollision Flag bit |                  |                 |        |  |  |  |  |  |
|               | 1 = Write collision detected                                                                 |                                     |              |                   |                  |                 |        |  |  |  |  |  |
|               | 0 = No write collision detected                                                              |                                     |              |                   |                  |                 |        |  |  |  |  |  |
| bit 2         |                                                                                              | hannel 2 DMA I                      | RAM Write C  | ollision Flag bit |                  |                 |        |  |  |  |  |  |
|               |                                                                                              | llision detected                    | 1            |                   |                  |                 |        |  |  |  |  |  |
|               |                                                                                              | collision detect                    |              |                   |                  |                 |        |  |  |  |  |  |
| bit 1         |                                                                                              | hannel 1 DMA I                      | RAM Write C  | ollision Flag bit |                  |                 |        |  |  |  |  |  |
|               |                                                                                              | llision detected collision detected | be           |                   |                  |                 |        |  |  |  |  |  |
|               |                                                                                              |                                     |              | allision Flog hit |                  |                 |        |  |  |  |  |  |
|               | AWCOLU: C                                                                                    | hannel 0 DMA l                      | AIVI WHILE C | onision riag bit  |                  |                 |        |  |  |  |  |  |
| bit 0         | 1 = Write collision detected<br>0 = No write collision detected                              |                                     |              |                   |                  |                 |        |  |  |  |  |  |

#### REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0

| U-0               | U-0                                                                                                                                                                                             | U-0                                                               | U-0                                       | R-1                  | R-1              | R-1              | R-1   |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------|----------------------|------------------|------------------|-------|--|--|--|
| —                 | —                                                                                                                                                                                               | —                                                                 | —                                         | LSTCH<3:0>           |                  |                  |       |  |  |  |
| bit 15            |                                                                                                                                                                                                 |                                                                   |                                           |                      |                  |                  | bit   |  |  |  |
| U-0               | U-0                                                                                                                                                                                             | U-0                                                               | U-0                                       | R-0                  | R-0              | R-0              | R-0   |  |  |  |
| —                 | _                                                                                                                                                                                               | _                                                                 | _                                         | PPST3                | PPST2            | PPST1            | PPST0 |  |  |  |
| bit 7             | ·                                                                                                                                                                                               |                                                                   |                                           | •                    |                  |                  | bit   |  |  |  |
| Legend:           |                                                                                                                                                                                                 |                                                                   |                                           |                      |                  |                  |       |  |  |  |
| R = Readabl       | le bit                                                                                                                                                                                          | W = Writable                                                      | bit                                       | U = Unimplen         | nented bit, read | l as '0'         |       |  |  |  |
| -n = Value at POR |                                                                                                                                                                                                 | '1' = Bit is se                                                   | t                                         | '0' = Bit is clea    | ared             | x = Bit is unkno |       |  |  |  |
|                   | 1111 = NO DI<br>1110-0100 =<br>0011 = Last o<br>0010 = Last o<br>0001 = Last o<br>0000 = Last o                                                                                                 | Reserved<br>lata transfer w<br>lata transfer w<br>lata transfer w | as by DMA C<br>as by DMA C<br>as by DMA C | hannel 2<br>hannel 1 | ei               |                  |       |  |  |  |
| bit 7-4           | Unimplemen                                                                                                                                                                                      | ted: Read as                                                      | 0'                                        |                      |                  |                  |       |  |  |  |
| bit 3             | <b>PPST3:</b> Chan<br>1 = DMA3STE<br>0 = DMA3STA                                                                                                                                                | B register sele                                                   | cted                                      | us Flag bit          |                  |                  |       |  |  |  |
| bit 2             | <b>PPST2:</b> Chan<br>1 = DMA2STE<br>0 = DMA2STA                                                                                                                                                | B register sele                                                   | cted                                      | us Flag bit          |                  |                  |       |  |  |  |
| bit 1             | <b>PPST1:</b> Chan<br>1 = DMA1STE                                                                                                                                                               | inel 1 Ping-Po<br>3 register sele                                 | ng Mode Statu<br>cted                     | us Flag bit          |                  |                  |       |  |  |  |
| bit 0             | <ul> <li>0 = DMA1STA register selected</li> <li><b>PPST0:</b> Channel 0 Ping-Pong Mode Status Flag bit</li> <li>1 = DMA0STB register selected</li> <li>0 = DMA0STA register selected</li> </ul> |                                                                   |                                           |                      |                  |                  |       |  |  |  |

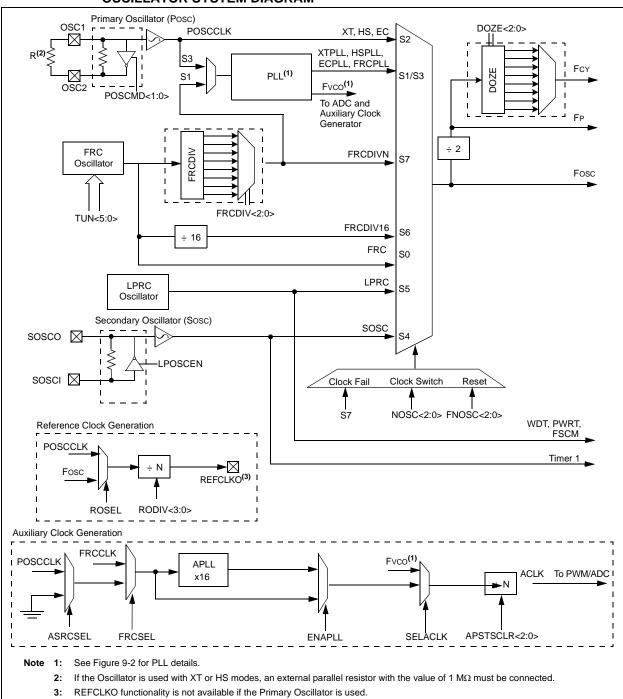
#### REGISTER 8-8: DMACS1: DMA CONTROLLER STATUS REGISTER 1

| R-0                                                                      | R-0 | R-0  | R-0  | R-0             | R-0  | R-0 | R-0   |
|--------------------------------------------------------------------------|-----|------|------|-----------------|------|-----|-------|
|                                                                          |     |      | DSAD | R<15:8>         |      |     |       |
| bit 15                                                                   |     |      |      |                 |      |     | bit 8 |
| R-0                                                                      | R-0 | R-0  | R-0  | R-0             | R-0  | R-0 | R-0   |
|                                                                          |     | it o | -    | 0R<7:0>         | 10   | 10  | i t u |
| bit 7                                                                    |     |      |      |                 |      |     | bit 0 |
| Legend:                                                                  |     |      |      |                 |      |     |       |
| R = Readable bit $W = Writable bit$ $U = Unimplemented bit, read as '0'$ |     |      |      |                 |      |     |       |
| -n = Value at POR '1' = Bit is set '0' = Bit is cle                      |     |      |      | x = Bit is unkr | nown |     |       |

#### REGISTER 8-9: DSADR: MOST RECENT DMA RAM ADDRESS

bit 15-0 DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits

NOTES:


### 9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 42. "Oscillator (Part IV)" (DS70307) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 oscillator system provides:

- External and internal oscillator options as clock sources
- An on-chip Phase-Locked Loop (PLL) to scale the internal operating frequency to the required system clock frequency
- An internal FRC oscillator that can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- A Clock Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection.
- Auxiliary PLL for ADC and PWM

A simplified diagram of the oscillator system is shown in Figure 9-1.





#### 9.1 CPU Clocking System

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices provide six system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with PLL
- Primary (XT, HS, or EC) Oscillator
- Primary Oscillator with PLL
- · Low-Power RC (LPRC) Oscillator
- FRC Oscillator with Postscaler
- Secondary (LP) Oscillator

#### 9.1.1 SYSTEM CLOCK SOURCES

The Fast RC (FRC) internal oscillator runs at a nominal frequency of 7.37 MHz. User software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

The primary oscillator can use one of the following as its clock source:

- XT (Crystal): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- HS (High-Speed Crystal): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- EC (External Clock): The external clock signal is directly applied to the OSC1 pin.

The secondary (LP) oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator. The LP oscillator uses the SOSCI and SOSCO pins.

The LPRC internal oscIllator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip Phase-Locked Loop (PLL) to provide a wide range of output frequencies for device operation. PLL configuration is described in **Section 9.1.3** "PLL **Configuration**".

The FRC frequency depends on the FRC accuracy (see Table 27-20) and the value of the FRC Oscillator Tuning register (see Register 9-4).

#### 9.1.2 SYSTEM CLOCK SELECTION

The oscillator source used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to Section 24.1 "Configuration Bits" for further details.) The Initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits, POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose among 12 different clock modes, shown in Table 9-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected), FOSC, is divided by 2 to generate the device instruction clock (FCY) and the peripheral clock time base (FP). FCY defines the operating speed of the device and speeds up to 40 MHz are supported by the dsPIC33FJ32GS406/606/ 608/610 and dsPIC33FJ64GS406/606/608/610 architecture.

Instruction execution speed or device operating frequency, FCY, is given by Equation 9-1.

# EQUATION 9-1: DEVICE OPERATING FREQUENCY

FCY = FOSC/2

| Oscillator Mode                                 | <b>Oscillator Source</b> | POSCMD<1:0> | FNOSC<2:0> | Note |
|-------------------------------------------------|--------------------------|-------------|------------|------|
| Fast RC Oscillator with Divide-by-N (FRCDIVN)   | Internal                 | xx          | 111        | 1, 2 |
| Fast RC Oscillator with Divide-by-16 (FRCDIV16) | Internal                 | xx          | 110        | 1    |
| Low-Power RC Oscillator (LPRC)                  | Internal                 | xx          | 101        | 1    |
| Secondary Oscillator (SOSC)                     | Secondary                | xx          | 100        | _    |
| Primary Oscillator (HS) with PLL (HSPLL)        | Primary                  | 10          | 011        | _    |
| Primary Oscillator (XT) with PLL (XTPLL)        | Primary                  | 01          | 011        | _    |
| Primary Oscillator (EC) with PLL (ECPLL)        | Primary                  | 00          | 011        | 1    |
| Primary Oscillator (HS)                         | Primary                  | 10          | 010        | _    |
| Primary Oscillator (XT)                         | Primary                  | 01          | 010        | _    |
| Primary Oscillator (EC)                         | Primary                  | 00          | 010        | 1    |
| Fast RC Oscillator with PLL (FRCPLL)            | Internal                 | xx          | 001        | 1    |
| Fast RC Oscillator (FRC)                        | Internal                 | xx          | 000        | 1    |

#### TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

#### 9.1.3 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides significant flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 9-2.

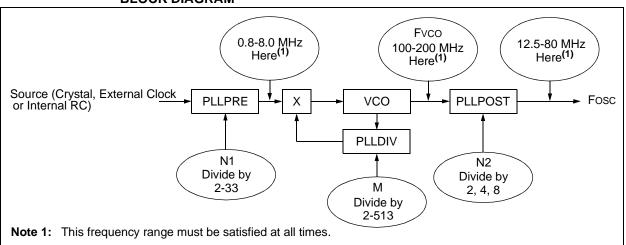
The output of the primary oscillator or FRC, denoted as 'FIN', is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCO must be selected in the range of 0.8 MHz to 8 MHz. The prescale factor 'N1' is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>).

The PLL Feedback Divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor, 'M', by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz.

The VCO output is further divided by a postscale factor, 'N2'. This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be either 2, 4 or 8, and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS. For a primary oscillator or FRC oscillator, output 'FIN', the PLL output 'FOSC' is given by Equation 9-2.

#### EQUATION 9-2: Fosc CALCULATION

Fosc = Fin \* 
$$\left(\frac{M}{N1*N2}\right)$$


For example, suppose a 10 MHz crystal is being used with the selected oscillator mode of XT with PLL (see Equation 9-3).

- If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz.
- If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 x 32 = 160 MHz, which is within the 100-200 MHz ranged needed.
- If PLLPOST<1:0> = 0, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS.

| EQUATION 9-3: | XT WITH PLL MODE |
|---------------|------------------|
|               | EXAMPLE          |

FCY = 
$$\frac{\text{Fosc}}{2} = \frac{1}{2} \left( \frac{10000000 * 32}{2 * 2} \right) = 40 \text{ MIPS}$$

# FIGURE 9-2: dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 PLL BLOCK DIAGRAM



#### 9.2 Auxiliary Clock Generation

The auxiliary clock generation is used for a peripherals that need to operate at a frequency unrelated to the system clock such as a PWM or ADC.

Note: To achieve 1.04 ns PWM resolution, the auxiliary clock must be set up for 120 MHz.

The primary oscillator and internal FRC oscillator sources can be used with an auxiliary PLL to obtain the auxiliary clock. The auxiliary PLL has a fixed 16x multiplication factor.

| Note: | If the primary PLL is used as a source for |
|-------|--------------------------------------------|
|       | the auxiliary clock, then the primary PLL  |
|       | should be configured up to a maximum       |
|       | operation of 30 MIPS or less.              |

#### 9.3 Reference Clock Generation

The reference clock output logic provides the user with the ability to output a clock signal based on the system clock or the crystal oscillator on a device pin. The user application can specify a wide range of clock scaling prior to outputting the reference clock.

| U-0                   | R-y                                                                                                                                                                                | R-y                                     | R-y          | U-0              | R/W-y           | R/W-y                                    | R/W-y |  |  |  |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|------------------|-----------------|------------------------------------------|-------|--|--|--|--|--|
| —                     |                                                                                                                                                                                    | COSC<2:0>                               |              | —                |                 | NOSC<2:0> <sup>(2)</sup>                 |       |  |  |  |  |  |
| bit 15                |                                                                                                                                                                                    |                                         |              |                  |                 |                                          | bit 8 |  |  |  |  |  |
|                       |                                                                                                                                                                                    |                                         |              |                  |                 |                                          |       |  |  |  |  |  |
| R/W-0                 | U-0                                                                                                                                                                                | R-0                                     | U-0          | R/C-0            | U-0             | U-0                                      | R/W-0 |  |  |  |  |  |
| CLKLOC                | <                                                                                                                                                                                  | LOCK                                    |              | CF               |                 | —                                        | OSWEN |  |  |  |  |  |
| bit 7                 |                                                                                                                                                                                    |                                         |              |                  |                 |                                          | bit   |  |  |  |  |  |
| Legend:               |                                                                                                                                                                                    | v = Value set                           | from Confiau | ration bits on P | OR              |                                          |       |  |  |  |  |  |
| R = Readal            | ole bit                                                                                                                                                                            | W = Writable                            | •            |                  | nented bit, rea | ad as '0'                                |       |  |  |  |  |  |
| n = Value a           | at POR                                                                                                                                                                             | '1' = Bit is set                        |              | '0' = Bit is cle |                 | x = Bit is unkn                          | own   |  |  |  |  |  |
|                       |                                                                                                                                                                                    | anta da Danadara (                      | <u>.</u>     |                  |                 |                                          |       |  |  |  |  |  |
| bit 15<br>bit 14-12   | -                                                                                                                                                                                  | ented: Read as '<br>>: Current Oscilla  |              | bits (read-only  | )               |                                          |       |  |  |  |  |  |
| л. 1 <del>4</del> -12 |                                                                                                                                                                                    | RC oscillator (FF                       |              |                  | )               |                                          |       |  |  |  |  |  |
|                       |                                                                                                                                                                                    | RC oscillator (FF                       |              |                  |                 |                                          |       |  |  |  |  |  |
|                       |                                                                                                                                                                                    | ary oscillator (XT                      |              |                  |                 |                                          |       |  |  |  |  |  |
|                       |                                                                                                                                                                                    | ary oscillator (XT                      |              | h PLL            |                 |                                          |       |  |  |  |  |  |
|                       |                                                                                                                                                                                    | 100 = Secondary oscillator (SOSC)       |              |                  |                 |                                          |       |  |  |  |  |  |
|                       | 101 = Low-Power RC oscillator (LPRC)<br>110 = Fast RC oscillator (FRC) with divide-by-16                                                                                           |                                         |              |                  |                 |                                          |       |  |  |  |  |  |
|                       |                                                                                                                                                                                    | RC oscillator (FF                       |              |                  |                 |                                          |       |  |  |  |  |  |
| pit 11                |                                                                                                                                                                                    | ented: Read as '                        | -            |                  |                 |                                          |       |  |  |  |  |  |
| bit 10-8              | -                                                                                                                                                                                  | New Oscillator                          |              | ts(2)            |                 |                                          |       |  |  |  |  |  |
|                       |                                                                                                                                                                                    | RC oscillator (FF                       |              |                  |                 |                                          |       |  |  |  |  |  |
|                       |                                                                                                                                                                                    | RC oscillator (FF                       | ,            |                  |                 |                                          |       |  |  |  |  |  |
|                       | 010 = Primary oscillator (XT, HS, EC)                                                                                                                                              |                                         |              |                  |                 |                                          |       |  |  |  |  |  |
|                       | 011 = Primary oscillator (XT, HS, EC) with PLL                                                                                                                                     |                                         |              |                  |                 |                                          |       |  |  |  |  |  |
|                       | 100 = Secondary oscillator (SOSC)<br>101 = Low-Power RC oscillator (LPRC)                                                                                                          |                                         |              |                  |                 |                                          |       |  |  |  |  |  |
|                       |                                                                                                                                                                                    | RC oscillator (FF                       |              | le-bv-16         |                 |                                          |       |  |  |  |  |  |
|                       |                                                                                                                                                                                    | RC oscillator (FF                       |              | -                |                 |                                          |       |  |  |  |  |  |
| bit 7                 | CLKLOCK:                                                                                                                                                                           | Clock Lock Ena                          | ble bit      | -                |                 |                                          |       |  |  |  |  |  |
|                       | If clock switching is enabled and FSCM is disabled, (FOSC <fcksm> = 0b01):</fcksm>                                                                                                 |                                         |              |                  |                 |                                          |       |  |  |  |  |  |
|                       | <ul> <li>1 = Clock switching is disabled, system clock source is locked</li> <li>0 = Clock switching is enabled, system clock source can be modified by clock switching</li> </ul> |                                         |              |                  |                 |                                          |       |  |  |  |  |  |
|                       |                                                                                                                                                                                    | 0                                       |              | clock source car | h be modified   | by clock switching                       | 9     |  |  |  |  |  |
| bit 6                 | •                                                                                                                                                                                  | ented: Read as '                        |              |                  |                 |                                          |       |  |  |  |  |  |
| bit 5                 |                                                                                                                                                                                    | Lock Status bit                         |              |                  |                 |                                          |       |  |  |  |  |  |
|                       |                                                                                                                                                                                    | s that PLL is in less that PLL is out   |              |                  |                 | l is disabled                            |       |  |  |  |  |  |
| bit 4                 |                                                                                                                                                                                    | ented: Read as '                        |              |                  |                 |                                          |       |  |  |  |  |  |
| bit 3                 | -                                                                                                                                                                                  | ail Detect bit (real                    |              | nnlication)      |                 |                                          |       |  |  |  |  |  |
|                       |                                                                                                                                                                                    | has detected clo                        |              | pplication       |                 |                                          |       |  |  |  |  |  |
|                       |                                                                                                                                                                                    | has not detected                        |              |                  |                 |                                          |       |  |  |  |  |  |
| bit 2-1               | Unimpleme                                                                                                                                                                          | ented: Read as '                        | 0'           |                  |                 |                                          |       |  |  |  |  |  |
| bit 0                 | -                                                                                                                                                                                  | scillator Switch E                      |              |                  |                 |                                          |       |  |  |  |  |  |
|                       | -                                                                                                                                                                                  | st oscillator switc<br>or switch is com |              | n specified by N | OSC<2:0> bit    | S                                        |       |  |  |  |  |  |
| Note 1:               |                                                                                                                                                                                    |                                         |              |                  |                 | scillator (Part IV<br>web site) for deta |       |  |  |  |  |  |
| 2:                    | Direct clock swit                                                                                                                                                                  | -                                       |              |                  | -               | -                                        |       |  |  |  |  |  |

as a transition clock source between the two PLL modes.

| R/W-0         | R/W-0                                      | R/W-1                                  | R/W-1              | R/W-0                              | R/W-0         | R/W-0               | R/W-0      |  |  |  |
|---------------|--------------------------------------------|----------------------------------------|--------------------|------------------------------------|---------------|---------------------|------------|--|--|--|
| ROI           |                                            | DOZE<2:0>                              |                    | DOZEN <sup>(1)</sup>               |               | FRCDIV<2:0>         |            |  |  |  |
| bit 15        | •                                          |                                        |                    |                                    |               |                     | bit        |  |  |  |
| R/W-0         | R/W-1                                      | U-0                                    | R/W-0              | R/W-0                              | R/W-0         | R/W-0               | R/W-0      |  |  |  |
|               | OST<1:0>                                   | 0-0                                    | R/W-U              |                                    | PLLPRE<4:     |                     | R/W-U      |  |  |  |
| bit 7         | 001<1.02                                   |                                        |                    |                                    |               |                     | bit        |  |  |  |
|               |                                            |                                        |                    |                                    |               |                     | Dit        |  |  |  |
| Legend:       |                                            |                                        |                    |                                    |               |                     |            |  |  |  |
| R = Readabl   | le bit                                     | W = Writable                           | bit                | U = Unimpleme                      | ented bit, re | ad as '0'           |            |  |  |  |
| -n = Value at | POR                                        | '1' = Bit is set                       |                    | 0' = Bit is cleared $x = Bit is u$ |               | x = Bit is unkno    | own        |  |  |  |
| bit 15        |                                            | r on Interrupt bi                      |                    | d the processor                    | clock/porint  | eral clock ratio is | sot to 1:1 |  |  |  |
|               |                                            | s have no effec                        |                    |                                    | ciock/peripi  |                     | 56110 1.1  |  |  |  |
| bit 14-12     | •                                          | Processor Cloo                         |                    |                                    |               |                     |            |  |  |  |
|               | 000 = FCY/1                                |                                        |                    |                                    |               |                     |            |  |  |  |
|               | 001 = FCY/2                                |                                        |                    |                                    |               |                     |            |  |  |  |
|               | 010 = FCY/4                                | (-1-611)                               |                    |                                    |               |                     |            |  |  |  |
|               | 011 = FCY/8<br>100 = FCY/16                |                                        |                    |                                    |               |                     |            |  |  |  |
|               | 100 = FCY/32                               |                                        |                    |                                    |               |                     |            |  |  |  |
|               | 110 = FCY/64                               |                                        |                    |                                    |               |                     |            |  |  |  |
|               | 111 = FCY/12                               | 28                                     |                    |                                    |               |                     |            |  |  |  |
| bit 11        | DOZEN: Doz                                 | e Mode Enable                          | bit <sup>(1)</sup> |                                    |               |                     |            |  |  |  |
|               |                                            | 2:0> field specifi<br>or clock/periphe |                    |                                    | heral clocks  | and the processo    | or clocks  |  |  |  |
| bit 10-8      | FRCDIV<2:0                                 | >: Internal Fast                       | RC Oscillato       | or Postscaler bits                 |               |                     |            |  |  |  |
|               | 000 = FRC divide by 1 (default)            |                                        |                    |                                    |               |                     |            |  |  |  |
|               | 001 = FRC divide by 2                      |                                        |                    |                                    |               |                     |            |  |  |  |
|               | 010 = FRC d<br>011 = FRC d                 |                                        |                    |                                    |               |                     |            |  |  |  |
|               | 100 = FRC d                                | •                                      |                    |                                    |               |                     |            |  |  |  |
|               | 101 = FRC d                                |                                        |                    |                                    |               |                     |            |  |  |  |
|               | 110 <b>= FRC d</b>                         |                                        |                    |                                    |               |                     |            |  |  |  |
|               | 111 <b>= FRC d</b>                         | ivide by 256                           |                    |                                    |               |                     |            |  |  |  |
| bit 7-6       | PLLPOST<1                                  | :0>: PLL VCO                           | Output Divide      | er Select bits (als                | o denoted a   | s 'N2', PLL postsc  | aler)      |  |  |  |
|               | 00 = Output/2                              |                                        |                    |                                    |               |                     |            |  |  |  |
|               |                                            | 01 = Output/4 (default)                |                    |                                    |               |                     |            |  |  |  |
|               | 10 = Reserve<br>11 = Output/8              |                                        |                    |                                    |               |                     |            |  |  |  |
|               |                                            |                                        | <u>.</u> ,         |                                    |               |                     |            |  |  |  |
| bit 5         | -                                          | nted: Read as '                        |                    |                                    | a dan st      |                     | - (        |  |  |  |
| bit 4-0       | PLLPRE<4:0<br>00000 = Inpu<br>00001 = Inpu | ut/2 (default)                         | Detector Inpl      | וע טועוטפר dits (als               | o denoted a   | is 'N1', PLL presca | aier)      |  |  |  |
|               | •                                          | U/ 0                                   |                    |                                    |               |                     |            |  |  |  |
|               | -                                          |                                        |                    |                                    |               |                     |            |  |  |  |
|               | -                                          |                                        |                    |                                    |               |                     |            |  |  |  |
|               | •<br>11111 l                               | +/22                                   |                    |                                    |               |                     |            |  |  |  |
|               | 11111 <b>= I</b> npu                       | 00 00                                  |                    |                                    |               |                     |            |  |  |  |
|               |                                            |                                        |                    |                                    |               |                     |            |  |  |  |

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

| U-0                            | U-0                                                                       | U-0                                                 | U-0   | U-0                                | U-0                     | U-0            | R/W-0        |  |  |
|--------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------|-------|------------------------------------|-------------------------|----------------|--------------|--|--|
| _                              | —                                                                         | _                                                   |       | _                                  | _                       | _              | PLLDIV<8>    |  |  |
| bit 15                         |                                                                           |                                                     |       |                                    |                         |                | bit 8        |  |  |
|                                |                                                                           |                                                     |       |                                    |                         |                |              |  |  |
| R/W-0                          | R/W-0                                                                     | R/W-1                                               | R/W-1 | R/W-0                              | R/W-0                   | R/W-0          | R/W-0        |  |  |
|                                |                                                                           |                                                     | PLLD  | IV<7:0>                            |                         |                |              |  |  |
| bit 7                          |                                                                           |                                                     |       |                                    |                         |                | bit (        |  |  |
|                                |                                                                           |                                                     |       |                                    |                         |                |              |  |  |
| Legend:                        |                                                                           |                                                     |       |                                    |                         |                |              |  |  |
| R = Readab                     | ole bit                                                                   | W = Writable                                        | bit   | U = Unimplemented bit, read as '0' |                         |                |              |  |  |
| -n = Value at POR '1' = Bit is |                                                                           |                                                     |       |                                    |                         |                |              |  |  |
| -n = Value a                   | t POR                                                                     | '1' = Bit is se                                     | t     | '0' = Bit is cle                   | eared                   | x = Bit is unk | known        |  |  |
| -n = Value a                   | at POR                                                                    | '1' = Bit is se                                     | t     | '0' = Bit is cle                   | eared                   | x = Bit is unk | known        |  |  |
| -n = Value a                   |                                                                           | '1' = Bit is se                                     | -     | ʻ0' = Bit is cle                   | eared                   | x = Bit is unk | known        |  |  |
|                                | Unimplemen                                                                | ited: Read as                                       | '0'   |                                    |                         |                | KNOWN        |  |  |
| bit 15-9                       | Unimplemen                                                                | nted: Read as<br>>: PLL Feedba                      | '0'   |                                    | eared<br>as 'M', PLL mu |                | known        |  |  |
| bit 15-9                       | Unimplemer<br>PLLDIV<8:0                                                  | nted: Read as<br>>: PLL Feedba<br>= 2               | '0'   |                                    |                         |                | known        |  |  |
| bit 15-9                       | Unimplemer<br>PLLDIV<8:0:<br>000000000                                    | nted: Read as<br>>: PLL Feedba<br>= 2<br>= 3        | '0'   |                                    |                         |                | known        |  |  |
| bit 15-9                       | Unimplemer<br>PLLDIV<8:0<br>000000000<br>000000001                        | nted: Read as<br>>: PLL Feedba<br>= 2<br>= 3        | '0'   |                                    |                         |                | <u>known</u> |  |  |
| bit 15-9                       | Unimplemer<br>PLLDIV<8:0<br>000000000<br>000000001                        | nted: Read as<br>>: PLL Feedba<br>= 2<br>= 3        | '0'   |                                    |                         |                | known        |  |  |
| bit 15-9                       | Unimplemer<br>PLLDIV<8:0<br>000000000<br>000000001                        | nted: Read as<br>>: PLL Feedba<br>= 2<br>= 3        | '0'   |                                    |                         |                | <u>known</u> |  |  |
| bit 15-9                       | Unimplemer<br>PLLDIV<8:0<br>000000000<br>000000001<br>000000010<br>•<br>• | nted: Read as<br>>: PLL Feedba<br>= 2<br>= 3        | '0'   |                                    |                         |                | <u>known</u> |  |  |
| bit 15-9                       | Unimplemer<br>PLLDIV<8:0<br>000000000<br>000000001<br>000000010<br>•<br>• | nted: Read as<br>>: PLL Feedba<br>= 2<br>= 3<br>= 4 | '0'   |                                    |                         |                | <u>known</u> |  |  |

111111111 = 513

•

| U-0           | U-0                                                                                             | U-0                                  | U-0   | U-0               | U-0                  | 11.0            | U-0   |  |  |  |
|---------------|-------------------------------------------------------------------------------------------------|--------------------------------------|-------|-------------------|----------------------|-----------------|-------|--|--|--|
| 0-0           | 0-0                                                                                             | 0-0                                  | 0-0   | 0-0               | 0-0                  | 0-0             | 0-0   |  |  |  |
|               |                                                                                                 |                                      |       |                   |                      | _               |       |  |  |  |
| bit 15        |                                                                                                 |                                      |       |                   |                      |                 | bit   |  |  |  |
| U-0           | U-0                                                                                             | R/W-0                                | R/W-0 | R/W-0             | R/W-0                | R/W-0           | R/W-0 |  |  |  |
| —             |                                                                                                 |                                      |       | TUN<              | :5:0> <sup>(1)</sup> |                 |       |  |  |  |
| bit 7         |                                                                                                 |                                      |       |                   |                      |                 | bit   |  |  |  |
|               |                                                                                                 |                                      |       |                   |                      |                 |       |  |  |  |
| Legend:       |                                                                                                 |                                      |       |                   |                      |                 |       |  |  |  |
| R = Readable  | e bit                                                                                           | W = Writable I                       | oit   | U = Unimplen      | nented bit, rea      | d as '0'        |       |  |  |  |
| -n = Value at | POR                                                                                             | '1' = Bit is set                     |       | '0' = Bit is clea | ared                 | x = Bit is unkr | iown  |  |  |  |
|               |                                                                                                 |                                      |       |                   |                      |                 |       |  |  |  |
| bit 15-6      | -                                                                                               | ented: Read as '0                    |       |                   |                      |                 |       |  |  |  |
| bit 5-0       | TUN<5:0>: FRC Oscillator Tuning bits <sup>(1)</sup>                                             |                                      |       |                   |                      |                 |       |  |  |  |
|               | 011111 = Center frequency + 11.625% (8.23 MHz)<br>011110 = Center frequency + 11.25% (8.20 MHz) |                                      |       |                   |                      |                 |       |  |  |  |
|               | •                                                                                               |                                      |       |                   |                      |                 |       |  |  |  |
|               | •                                                                                               |                                      |       |                   |                      |                 |       |  |  |  |
|               | •                                                                                               |                                      |       |                   |                      |                 |       |  |  |  |
|               | 000001 = Center frequency + 0.375% (7.40 MHz)                                                   |                                      |       |                   |                      |                 |       |  |  |  |
|               | 000000 = Center frequency (7.37 MHz nominal)                                                    |                                      |       |                   |                      |                 |       |  |  |  |
|               | 111111 = Center frequency -0.375% (7.345 MHz)                                                   |                                      |       |                   |                      |                 |       |  |  |  |
|               | •                                                                                               |                                      |       |                   |                      |                 |       |  |  |  |
|               |                                                                                                 |                                      |       |                   |                      |                 |       |  |  |  |
|               |                                                                                                 | Center frequency<br>Center frequency |       | ,                 |                      |                 |       |  |  |  |

#### REGISTER 9-4: OSCTUN: OSCILLATOR TUNING REGISTER

**Note 1:** OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither characterized nor tested.

| R/W-0           | R-0                                                                             | R/W-1                                    | U-0          | U-0               | R/W-1             | R/W-1           | R/W-1 |  |  |  |
|-----------------|---------------------------------------------------------------------------------|------------------------------------------|--------------|-------------------|-------------------|-----------------|-------|--|--|--|
| ENAPLL          | APLLCK                                                                          | SELACLK                                  |              | _                 | A                 | PSTSCLR<2:0>    | >     |  |  |  |
| bit 15          |                                                                                 |                                          |              |                   |                   |                 | bit 0 |  |  |  |
| DAMA            |                                                                                 |                                          |              |                   |                   |                 |       |  |  |  |
| R/W-0           | R/W-0                                                                           | U-0                                      | U-0          | U-0               | U-0               | U-0             | U-0   |  |  |  |
| ASRCSEL         | FRCSEL                                                                          | —                                        | —            | —                 | —                 | —               |       |  |  |  |
|                 |                                                                                 |                                          |              |                   |                   |                 |       |  |  |  |
| Legend:         |                                                                                 |                                          |              |                   |                   |                 |       |  |  |  |
| R = Readable    |                                                                                 | W = Writable I                           | oit          | -                 | mented bit, read  |                 |       |  |  |  |
| -n = Value at I | POR                                                                             | '1' = Bit is set                         |              | '0' = Bit is cle  | ared              | x = Bit is unkn | own   |  |  |  |
| hit 15          |                                                                                 | william (DLL Engl                        | ala hit      |                   |                   |                 |       |  |  |  |
| bit 15          |                                                                                 | ixiliary PLL Enal                        |              |                   |                   |                 |       |  |  |  |
|                 | 1 = APLL is enabled<br>0 = APLL is disabled                                     |                                          |              |                   |                   |                 |       |  |  |  |
| bit 14          | APLLCK: APLL Locked Status bit (read-only)                                      |                                          |              |                   |                   |                 |       |  |  |  |
|                 | 1 = Indicates that auxiliary PLL is in lock                                     |                                          |              |                   |                   |                 |       |  |  |  |
|                 | 0 = Indicates that auxiliary PLL is not in lock                                 |                                          |              |                   |                   |                 |       |  |  |  |
| bit 13          | SELACLK: Select Auxiliary Clock Source for Auxiliary Clock Divider bit          |                                          |              |                   |                   |                 |       |  |  |  |
|                 | 1 = Auxiliary Oscillators provides the source clock for auxiliary clock divider |                                          |              |                   |                   |                 |       |  |  |  |
|                 | -                                                                               | PLL (Fvco) prov                          |              | rce clock for au  | xiliary clock div | ider            |       |  |  |  |
| bit 12-11       | Unimplemented: Read as '0'                                                      |                                          |              |                   |                   |                 |       |  |  |  |
| bit 10-8        | APSTSCLR<2:0>: Auxiliary Clock Output Divider bits                              |                                          |              |                   |                   |                 |       |  |  |  |
|                 | 111 = Divided by 1                                                              |                                          |              |                   |                   |                 |       |  |  |  |
|                 | 110 = Divided by 2<br>101 = Divided by 4                                        |                                          |              |                   |                   |                 |       |  |  |  |
|                 | 100 = Divided by 4                                                              |                                          |              |                   |                   |                 |       |  |  |  |
|                 | 011 = Divided by 16                                                             |                                          |              |                   |                   |                 |       |  |  |  |
|                 | 010 = Divided by  32                                                            |                                          |              |                   |                   |                 |       |  |  |  |
|                 | 001 = Divided by 64                                                             |                                          |              |                   |                   |                 |       |  |  |  |
|                 | 000 = Divided by 256                                                            |                                          |              |                   |                   |                 |       |  |  |  |
| bit 7           | ASRCSEL: Select Reference Clock Source for Auxiliary Clock bit                  |                                          |              |                   |                   |                 |       |  |  |  |
|                 | •                                                                               | oscillator is the o<br>input is selected |              |                   |                   |                 |       |  |  |  |
| bit 6           | FRCSEL: Se                                                                      | lect Reference                           | Clock Source | e for Auxiliary P | LL bit            |                 |       |  |  |  |
|                 | 1 = Select FF                                                                   | RC clock for aux                         | iliary PLL   |                   |                   |                 |       |  |  |  |
|                 |                                                                                 |                                          |              |                   |                   |                 |       |  |  |  |
|                 | 0 = Input cloc                                                                  | ck source is dete                        | ermined by A | SRCSEL bit se     | etting            |                 |       |  |  |  |

|                 | 9-6: REFO                                                                                                                                   | CON: REFER       |           |                 | ONTROL REG       | ISTER                |       |  |  |  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|-----------------|------------------|----------------------|-------|--|--|--|
| R/W-0           | U-0                                                                                                                                         | R/W-0            | R/W-0     | R/W-0           | R/W-0            | R/W-0                | R/W-0 |  |  |  |
| ROON            |                                                                                                                                             | ROSSLP           | ROSEL     |                 | RODIV            | <3:0> <sup>(1)</sup> |       |  |  |  |
| bit 15          |                                                                                                                                             |                  |           |                 |                  |                      | bit 8 |  |  |  |
|                 |                                                                                                                                             |                  |           |                 |                  |                      |       |  |  |  |
| U-0             | U-0                                                                                                                                         | U-0              | U-0       | U-0             | U-0              | U-0                  | U-0   |  |  |  |
|                 | —                                                                                                                                           | —                | —         | —               | —                | —                    | —     |  |  |  |
| bit 7           |                                                                                                                                             |                  |           |                 |                  |                      | bit 0 |  |  |  |
| Legend:         |                                                                                                                                             |                  |           |                 |                  |                      |       |  |  |  |
| R = Readable    | bit                                                                                                                                         | W = Writable     | bit       | U = Unimple     | mented bit, read | d as '0'             |       |  |  |  |
| -n = Value at I | POR                                                                                                                                         | '1' = Bit is set |           | '0' = Bit is cl | eared            | x = Bit is unkr      | nown  |  |  |  |
|                 |                                                                                                                                             |                  |           |                 |                  |                      |       |  |  |  |
| bit 15          |                                                                                                                                             | rence Oscillato  | •         |                 |                  |                      |       |  |  |  |
|                 | 1 = Reference oscillator output enabled on REFCLK0 pin                                                                                      |                  |           |                 |                  |                      |       |  |  |  |
|                 |                                                                                                                                             | e oscillator out |           |                 |                  |                      |       |  |  |  |
| bit 14          | -                                                                                                                                           | nted: Read as '  |           |                 |                  |                      |       |  |  |  |
| bit 13          | ROSSLP: Reference Oscillator Run in Sleep bit                                                                                               |                  |           |                 |                  |                      |       |  |  |  |
|                 | <ul> <li>1 = Reference oscillator output continues to run in Sleep</li> <li>0 = Reference oscillator output is disabled in Sleep</li> </ul> |                  |           |                 |                  |                      |       |  |  |  |
| h:: 40          |                                                                                                                                             |                  |           | •               |                  |                      |       |  |  |  |
| bit 12          | ROSEL: Reference Oscillator Source Select bit                                                                                               |                  |           |                 |                  |                      |       |  |  |  |
|                 | <ul> <li>1 = Oscillator crystal used as the reference clock</li> <li>0 = System clock used as the reference clock</li> </ul>                |                  |           |                 |                  |                      |       |  |  |  |
| bit 11-8        | •                                                                                                                                           | Reference Os     |           |                 |                  |                      |       |  |  |  |
| bit II 0        |                                                                                                                                             |                  |           |                 |                  |                      |       |  |  |  |
|                 | 1111 = Reference clock divided by 32,768 1110 = Reference clock divided by 16,384                                                           |                  |           |                 |                  |                      |       |  |  |  |
|                 | 1101 = Reference clock divided by 8,192                                                                                                     |                  |           |                 |                  |                      |       |  |  |  |
|                 | 1100 = Reference clock divided by 4,096                                                                                                     |                  |           |                 |                  |                      |       |  |  |  |
|                 | 1011 = Reference clock divided by 2,048<br>1010 = Reference clock divided by 1,024                                                          |                  |           |                 |                  |                      |       |  |  |  |
|                 | 1010 = Reference clock divided by 1,024<br>1001 = Reference clock divided by 512                                                            |                  |           |                 |                  |                      |       |  |  |  |
|                 | 1000 = Reference clock divided by 256                                                                                                       |                  |           |                 |                  |                      |       |  |  |  |
|                 | 0111 = Reference clock divided by 128                                                                                                       |                  |           |                 |                  |                      |       |  |  |  |
|                 | 0110 = Reference clock divided by 64                                                                                                        |                  |           |                 |                  |                      |       |  |  |  |
|                 | 0101 = Reference clock divided by 32<br>0100 = Reference clock divided by 16                                                                |                  |           |                 |                  |                      |       |  |  |  |
|                 | 0011 = Reference clock divided by 8                                                                                                         |                  |           |                 |                  |                      |       |  |  |  |
|                 |                                                                                                                                             | rence clock div  | -         |                 |                  |                      |       |  |  |  |
|                 |                                                                                                                                             | rence clock div  | ided by 2 |                 |                  |                      |       |  |  |  |
|                 | 0000 = Refe                                                                                                                                 |                  |           |                 |                  |                      |       |  |  |  |
| bit 7-0         | Unimplemer                                                                                                                                  | nted: Read as '  | 0'        |                 |                  |                      |       |  |  |  |
|                 |                                                                                                                                             |                  |           |                 |                  |                      |       |  |  |  |

**Note 1:** The reference oscillator output must be disabled (ROON = 0) before writing to these bits.

#### 9.4 Clock Switching Operation

Applications are free to switch among any of the four clock sources (primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects of this flexibility, dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices have a safeguard lock built into the switch process.

Note: Primary oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from primary oscillator mode in software, it cannot switch among the different primary submodes without reprogramming the device.

#### 9.4.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 24.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

#### 9.4.2 OSCILLATOR SWITCHING SEQUENCE

To perform a clock switch, the following basic sequence is required:

- 1. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit (OSCCON<0>) to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

1. The clock switching hardware compares the COSC Status bits with the new value of the NOSC control bits. If they are the same, the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically

and the clock switch is aborted.

- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) Status bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC Status bits.
- The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).
  - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.
    - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
    - 3: Refer to Section 42. "Oscillator (Part IV)" (DS70307) in the "dsPIC33F Family Reference Manual" for details.

#### 9.5 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then, the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

#### **10.0 POWER-SAVING FEATURES**

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/606/608/610 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices can manage power consumption in four different ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software-Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

#### 10.1 Clock Frequency and Clock Switching

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/608/610 devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0** "**Oscillator Configuration**".

#### 10.2 Instruction-Based Power-Saving Modes

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/606/608/610 devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP\_MODE and IDLE\_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to wake-up.

#### 10.2.1 SLEEP MODE

The following occur in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate. This includes the items such as the input change notification on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device will wake-up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

#### EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP\_MODE ; Put the device into SLEEP mode
PWRSAV #IDLE\_MODE ; Put the device into IDLE mode

#### 10.2.2 IDLE MODE

The following occur in Idle mode:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.5 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device will wake-up from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

#### 10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

#### 10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this may not be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

#### **10.4 PWM Power-Saving Features**

Typically, many applications need either a high resolution duty cycle or phase offset (for fixed frequency operation) or a high resolution PWM period for variable frequency modes of operation (such as Resonant mode). Very few applications require both high resolution modes simultaneously.

The HRPDIS and the HRDDIS bits in the AUXCONx registers permit the user to disable the circuitry associated with the high resolution duty cycle and PWM period to reduce the operating current of the device.

If the HRDDIS bit is set, the circuitry associated with the high resolution duty cycle, phase offset, and dead time for the respective PWM generator is disabled. If the HRPDIS bit is set, the circuitry associated with the high resolution PWM period for the respective PWM generator is disabled.

When the HRPDIS bit is set, the smallest unit of measure for the PWM period is 8.32 ns.

If the HRDDIS bit is set, the smallest unit of measure for the PWM duty cycle, phase offset and dead time is 8.32 ns.

#### **10.5** Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and STATUS registers associated with the peripheral are also disabled, so writes to those registers will have no effect and read values will be invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC<sup>®</sup> DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

| REGISTER<br>R/W-0 | R/W-0                           | 1: PERIPHER<br>R/W-0                    | R/W-0    | R/W-0             | R/W-0           | R/W-0                | U-0   |  |  |
|-------------------|---------------------------------|-----------------------------------------|----------|-------------------|-----------------|----------------------|-------|--|--|
| T5MD              | T4MD                            | T3MD                                    | T2MD     | T1MD              | QEI1MD          | PWMMD <sup>(1)</sup> | 0-0   |  |  |
| -                 | T 4IMD                          | I SIVID                                 | I ZIVID  | TIMD              | QEITMD          | PVIVIIVID            |       |  |  |
| bit 15            |                                 |                                         |          |                   |                 |                      | bit   |  |  |
| R/W-0             | R/W-0                           | R/W-0                                   | R/W-0    | R/W-0             | U-0             | R/W-0                | R/W-0 |  |  |
| I2C1MD            | U2MD                            |                                         | SPI2MD   |                   | 0-0             |                      |       |  |  |
| bit 7             | 02IVID                          | U1MD                                    | SPIZIVID | SPI1MD            |                 | C1MD                 | ADCMD |  |  |
|                   |                                 |                                         |          |                   |                 |                      | bit   |  |  |
| Legend:           |                                 |                                         |          |                   |                 |                      |       |  |  |
| R = Readabl       | e bit                           | W = Writable                            | bit      | U = Unimplen      | nented bit, rea | d as '0'             |       |  |  |
| -n = Value at     | POR                             | '1' = Bit is set                        |          | '0' = Bit is clea |                 | x = Bit is unkno     | own   |  |  |
|                   | -                               |                                         |          |                   |                 |                      | -     |  |  |
| bit 15            | T5MD: Timer                     | 5 Module Disat                          | ole bit  |                   |                 |                      |       |  |  |
|                   | 1 = Timer5 m                    | nodule is disable                       | ed       |                   |                 |                      |       |  |  |
|                   | 0 = Timer5 m                    | nodule is enable                        | ed       |                   |                 |                      |       |  |  |
| bit 14            | T4MD: Timer                     | 4 Module Disat                          | ole bit  |                   |                 |                      |       |  |  |
|                   |                                 | nodule is disable                       |          |                   |                 |                      |       |  |  |
|                   | 0 = Timer4 m                    | nodule is enable                        | ed       |                   |                 |                      |       |  |  |
| bit 13            | T3MD: Timer3 Module Disable bit |                                         |          |                   |                 |                      |       |  |  |
|                   |                                 | nodule is disable<br>nodule is enable   |          |                   |                 |                      |       |  |  |
| bit 12            |                                 | 2 Module Disat                          |          |                   |                 |                      |       |  |  |
| DILIZ             |                                 | 2 Module Disad                          |          |                   |                 |                      |       |  |  |
|                   |                                 | odule is enable                         |          |                   |                 |                      |       |  |  |
| bit 11            | T1MD: Timer                     | <b>T1MD</b> : Timer1 Module Disable bit |          |                   |                 |                      |       |  |  |
|                   | 1 = Timer1 m                    | nodule is disable                       | ed       |                   |                 |                      |       |  |  |
|                   | 0 = Timer1 m                    | nodule is enable                        | ed       |                   |                 |                      |       |  |  |
| bit 10            | QEI1MD: QE                      | I1 Module Disa                          | ble bit  |                   |                 |                      |       |  |  |
|                   |                                 | dule is disabled                        |          |                   |                 |                      |       |  |  |
|                   |                                 | dule is enabled                         |          |                   |                 |                      |       |  |  |
| bit 9             |                                 | VM Module Dis                           |          |                   |                 |                      |       |  |  |
|                   |                                 | odule is disableo<br>odule is enableo   |          |                   |                 |                      |       |  |  |
| bit 8             |                                 | nted: Read as '                         |          |                   |                 |                      |       |  |  |
| bit 7             | -                               | 1 Module Disat                          |          |                   |                 |                      |       |  |  |
|                   |                                 | dule is disabled                        |          |                   |                 |                      |       |  |  |
|                   |                                 | dule is enabled                         |          |                   |                 |                      |       |  |  |
| bit 6             | U2MD: UART2 Module Disable bit  |                                         |          |                   |                 |                      |       |  |  |
|                   | 1 = UART2 n                     | nodule is disabl                        | ed       |                   |                 |                      |       |  |  |
|                   | 0 = UART2 n                     | nodule is enable                        | ed       |                   |                 |                      |       |  |  |
| bit 5             | U1MD: UAR                       | T1 Module Disa                          | ble bit  |                   |                 |                      |       |  |  |
|                   | -                               | nodule is disabl                        |          |                   |                 |                      |       |  |  |
|                   |                                 | nodule is enable                        |          |                   |                 |                      |       |  |  |
| bit 4             | SPI2MD: SPI                     | I2 Module Disal                         | ole bit  |                   |                 |                      |       |  |  |
|                   |                                 | dule is disabled                        |          |                   |                 |                      |       |  |  |

Note 1: Once the PWM module is re-enabled (PWMMD is set to '1' and then set to '0'), all PWM registers must be reinitialized.

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

- bit 3 SPI1MD: SPI1 Module Disable bit
  - 1 = SPI1 module is disabled
  - 0 = SPI1 module is enabled
- bit 2 Unimplemented: Read as '0'
- bit 1 C1MD: ECAN1 Module Disable bit
  - 1 = ECAN1 module is disabled
  - 0 = ECAN1 module is enabled
- bit 0 ADCMD: ADC Module Disable bit 1 = ADC module is disabled
  - 0 = ADC module is enabled
  - Note 1: Once the PWM module is re-enabled (PWMMD is set to '1' and then set to '0'), all PWM registers must be reinitialized.

| U-0          | U-0                                                                                                         | U-0                                                                                 | U-0                                 | R/W-0             | R/W-0            | R/W-0           | R/W-0 |  |  |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------|-------------------|------------------|-----------------|-------|--|--|--|--|
| _            |                                                                                                             | _                                                                                   | —                                   | IC4MD             | IC3MD            | IC2MD           | IC1MD |  |  |  |  |
| bit 15       |                                                                                                             |                                                                                     |                                     |                   |                  | •               | bit   |  |  |  |  |
| U-0          | U-0                                                                                                         | U-0                                                                                 | U-0                                 | R/W-0             | R/W-0            | R/W-0           | R/W-0 |  |  |  |  |
|              |                                                                                                             | _                                                                                   |                                     | OC4MD             | OC3MD            | OC2MD           | OC1MD |  |  |  |  |
| bit 7        |                                                                                                             |                                                                                     |                                     | 0011112           | CCCIIID          | COLIND          | bit   |  |  |  |  |
| Legend:      |                                                                                                             |                                                                                     |                                     |                   |                  |                 |       |  |  |  |  |
| R = Readab   | ole bit                                                                                                     | W = Writable                                                                        | e bit                               | U = Unimplem      | nented bit, read | l as '0'        |       |  |  |  |  |
| -n = Value a |                                                                                                             | '1' = Bit is se                                                                     |                                     | '0' = Bit is clea |                  | x = Bit is unkr | nown  |  |  |  |  |
|              |                                                                                                             |                                                                                     | -                                   |                   |                  |                 |       |  |  |  |  |
| bit 15-12    | Unimplemen                                                                                                  | ted: Read as                                                                        | '0'                                 |                   |                  |                 |       |  |  |  |  |
| bit 11       | IC4MD: Input                                                                                                | Capture 4 Mo                                                                        | dule Disable bi                     | it                |                  |                 |       |  |  |  |  |
|              | 1 = Input Cap                                                                                               | IC4MD: Input Capture 4 Module Disable bit<br>1 = Input Capture 4 module is disabled |                                     |                   |                  |                 |       |  |  |  |  |
|              | 0 = Input Cap                                                                                               | ture 4 module                                                                       | is enabled                          |                   |                  |                 |       |  |  |  |  |
| bit 19       | IC3MD: Input Capture 3 Module Disable bit                                                                   |                                                                                     |                                     |                   |                  |                 |       |  |  |  |  |
|              | 1 = Input Capture 3 module is disabled                                                                      |                                                                                     |                                     |                   |                  |                 |       |  |  |  |  |
| L:1.0        | 0 = Input Capture 3 module is enabled                                                                       |                                                                                     |                                     |                   |                  |                 |       |  |  |  |  |
| bit 9        | IC2MD: Input Capture 2 Module Disable bit                                                                   |                                                                                     |                                     |                   |                  |                 |       |  |  |  |  |
|              | <ol> <li>I = Input Capture 2 module is disabled</li> <li>Input Capture 2 module is enabled</li> </ol>       |                                                                                     |                                     |                   |                  |                 |       |  |  |  |  |
| bit 8        | • •                                                                                                         | IC1MD: Input Capture 1 Module Disable bit                                           |                                     |                   |                  |                 |       |  |  |  |  |
|              | 1 = Input Capture 1 module is disabled                                                                      |                                                                                     |                                     |                   |                  |                 |       |  |  |  |  |
|              | 0 = Input Capture 1 module is enabled                                                                       |                                                                                     |                                     |                   |                  |                 |       |  |  |  |  |
| bit 7-4      | Unimplemen                                                                                                  | ted: Read as                                                                        | '0'                                 |                   |                  |                 |       |  |  |  |  |
| bit 3        | OC4MD: Outp                                                                                                 | OC4MD: Output Compare 4 Module Disable bit                                          |                                     |                   |                  |                 |       |  |  |  |  |
|              |                                                                                                             |                                                                                     | lule is disabled<br>lule is enabled |                   |                  |                 |       |  |  |  |  |
| bit 2        | <ul><li>0 = Output Compare 4 module is enabled</li><li>OC3MD: Output Compare 3 Module Disable bit</li></ul> |                                                                                     |                                     |                   |                  |                 |       |  |  |  |  |
| ~            | 1 = Output Compare 3 module is disabled                                                                     |                                                                                     |                                     |                   |                  |                 |       |  |  |  |  |
|              | 0 = Output Compare 3 module is enabled                                                                      |                                                                                     |                                     |                   |                  |                 |       |  |  |  |  |
| bit 1        | OC2MD: Output Compare 2 Module Disable bit                                                                  |                                                                                     |                                     |                   |                  |                 |       |  |  |  |  |
|              | 1 = Output Compare 2 module is disabled                                                                     |                                                                                     |                                     |                   |                  |                 |       |  |  |  |  |
|              | -                                                                                                           | -                                                                                   | lule is enabled                     |                   |                  |                 |       |  |  |  |  |
| bit 0        | •                                                                                                           | -                                                                                   | 1 Module Disab                      | le bit            |                  |                 |       |  |  |  |  |
|              | 1 = Output Compare 1 module is disabled                                                                     |                                                                                     |                                     |                   |                  |                 |       |  |  |  |  |
|              |                                                                                                             |                                                                                     | lule is enabled                     |                   |                  |                 |       |  |  |  |  |

|               |       |                  |     |                                    | ••••• |                 |       |  |
|---------------|-------|------------------|-----|------------------------------------|-------|-----------------|-------|--|
| U-0           | U-0   | U-0              | U-0 | U-0                                | R/W-0 | U-0             | U-0   |  |
| _             | _     | —                |     | —                                  | CMPMD | —               | _     |  |
| bit 15        | •     | •                |     | •                                  | •     | • • •           | bit 8 |  |
|               |       |                  |     |                                    |       |                 |       |  |
| U-0           | U-0   | R/W-0            | U-0 | U-0                                | U-0   | R/W-0           | U-0   |  |
| _             | —     | QEI2MD           |     | —                                  |       | I2C2MD          | _     |  |
| bit 7         |       |                  |     |                                    | •     | · · ·           | bit C |  |
|               |       |                  |     |                                    |       |                 |       |  |
| Legend:       |       |                  |     |                                    |       |                 |       |  |
| R = Readable  | e bit | W = Writable     | bit | U = Unimplemented bit, read as '0' |       |                 |       |  |
| -n = Value at | POR   | '1' = Bit is set |     | '0' = Bit is clea                  | ared  | x = Bit is unkn | own   |  |

#### REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3

| bit 15-11 | Unimplemented: Read as '0'                                                                                 |
|-----------|------------------------------------------------------------------------------------------------------------|
| bit 10    | CMPMD: Analog Comparator Module Disable bit                                                                |
|           | <ul><li>1 = Analog Comparator module is disabled</li><li>0 = Analog Comparator module is enabled</li></ul> |
| bit 9-6   | Unimplemented: Read as '0'                                                                                 |
| bit 5     | QEI2MD: QEI2 Module Disable bit                                                                            |
|           | <ul><li>1 = QEI2 module is disabled</li><li>0 = QEI2 module is enabled</li></ul>                           |
| bit 4-2   | Unimplemented: Read as '0'                                                                                 |
| bit 1     | I2C2MD: I2C2 Module Disable bit                                                                            |
|           | 1 = I2C2 module is disabled<br>0 = I2C2 module is enabled                                                  |
| bit 0     | Unimplemented: Read as '0'                                                                                 |

#### REGISTER 10-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

| U-0                               | U-0 | U-0 | U-0 | U-0                                | U-0     | U-0 | U-0   |  |
|-----------------------------------|-----|-----|-----|------------------------------------|---------|-----|-------|--|
| —                                 | —   | —   | —   | —                                  | —       | —   | —     |  |
| bit 15                            |     |     |     |                                    |         |     | bit 8 |  |
|                                   |     |     |     |                                    |         |     |       |  |
| U-0                               | U-0 | U-0 | U-0 | R/W-0                              | U-0     | U-0 | U-0   |  |
| _                                 | —   | —   | —   | REFOMD                             | —       | —   | —     |  |
| bit 7                             | •   |     |     | ·                                  |         | •   | bit 0 |  |
|                                   |     |     |     |                                    |         |     |       |  |
| Legend:                           |     |     |     |                                    |         |     |       |  |
| R = Readable bit W = Writable bit |     |     | bit | U = Unimplemented bit, read as '0' |         |     |       |  |
|                                   |     |     |     |                                    | a na al |     |       |  |

|                   |                  | •                    |                    |
|-------------------|------------------|----------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

| bit 15-4 | Unimplemented: Read as '0' |
|----------|----------------------------|
|----------|----------------------------|

bit 3 **REFOMD**: Reference Clock Generator Module Disable bit

- 1 = Reference clock generator module is disabled
- 0 = Reference clock generator module is enabled

bit 2-0 Unimplemented: Read as '0'

| REGISTER      | 10-5: PMD6                                                                                                | 6: PERIPHER                                      |                | E DISABLE C       | ONTROL RE        | GISTER 6        |        |  |  |  |
|---------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------|-------------------|------------------|-----------------|--------|--|--|--|
| R/W-0         | R/W-0                                                                                                     | R/W-0                                            | R/W-0          | R/W-0             | R/W-0            | R/W-0           | R/W-0  |  |  |  |
| PWM8MD        | PWM7MD                                                                                                    | PWM6MD                                           | PWM5MD         | PWM4MD            | PWM3MD           | PWM2MD          | PWM1MD |  |  |  |
| bit 15        | •                                                                                                         | •                                                | ·              | •                 | •                |                 | bit    |  |  |  |
| U-0           | U-0                                                                                                       | U-0                                              | U-0            | U-0               | U-0              | U-0             | U-0    |  |  |  |
|               |                                                                                                           |                                                  | 0-0            |                   |                  | 0-0             | 0-0    |  |  |  |
| <br>bit 7     | _                                                                                                         | _                                                | _              | _                 | _                |                 | bit (  |  |  |  |
|               |                                                                                                           |                                                  |                |                   |                  |                 |        |  |  |  |
| Legend:       |                                                                                                           |                                                  |                |                   |                  |                 |        |  |  |  |
| R = Readable  | e bit                                                                                                     | W = Writable                                     | bit            | U = Unimplen      | nented bit, read | d as '0'        |        |  |  |  |
| -n = Value at | POR                                                                                                       | '1' = Bit is set                                 |                | '0' = Bit is clea | ared             | x = Bit is unkr | nown   |  |  |  |
|               |                                                                                                           |                                                  |                |                   |                  |                 |        |  |  |  |
| bit 15        | 1 = PWM Ge                                                                                                | WM Generator<br>nerator 8 modu<br>nerator 8 modu | le is disabled | ble bit           |                  |                 |        |  |  |  |
| bit 14        | PWM7MD: PWM Generator 7 Module Disable bit                                                                |                                                  |                |                   |                  |                 |        |  |  |  |
|               | 1 = PWM Generator 7 module is disabled<br>0 = PWM Generator 7 module is enabled                           |                                                  |                |                   |                  |                 |        |  |  |  |
| 1 1 4 0       |                                                                                                           |                                                  |                |                   |                  |                 |        |  |  |  |
| bit 13        | PWM6MD: PWM Generator 6 Module Disable bit                                                                |                                                  |                |                   |                  |                 |        |  |  |  |
|               | <ul> <li>1 = PWM Generator 6 module is disabled</li> <li>0 = PWM Generator 6 module is enabled</li> </ul> |                                                  |                |                   |                  |                 |        |  |  |  |
| bit 12        | <b>PWM5MD</b> : PWM Generator 5 Module Disable bit                                                        |                                                  |                |                   |                  |                 |        |  |  |  |
|               |                                                                                                           | nerator 5 modu<br>nerator 5 modu                 |                |                   |                  |                 |        |  |  |  |
| bit 11        | PWM4MD: PWM Generator 4 Module Disable bit                                                                |                                                  |                |                   |                  |                 |        |  |  |  |
|               | 1 = PWM Generator 4 module is disabled                                                                    |                                                  |                |                   |                  |                 |        |  |  |  |
|               | 0 = PWM Generator 4 module is enabled                                                                     |                                                  |                |                   |                  |                 |        |  |  |  |
| bit 10        | PWM3MD: PWM Generator 3 Module Disable bit                                                                |                                                  |                |                   |                  |                 |        |  |  |  |
|               |                                                                                                           | nerator 3 modu<br>nerator 3 modu                 |                |                   |                  |                 |        |  |  |  |
| bit 9         | <b>PWM2MD</b> : PWM Generator 2 Module Disable bit                                                        |                                                  |                |                   |                  |                 |        |  |  |  |
|               | 1 = PWM Generator 2 module is disabled                                                                    |                                                  |                |                   |                  |                 |        |  |  |  |
|               | 0 = PWM Ge                                                                                                | nerator 2 modu                                   | le is enabled  |                   |                  |                 |        |  |  |  |
| bit 8         | PWM1MD: P                                                                                                 | WM Generator                                     | 1 Module Disa  | ble bit           |                  |                 |        |  |  |  |
|               |                                                                                                           | nerator 1 modu<br>nerator 1 modu                 |                |                   |                  |                 |        |  |  |  |
| bit 7-0       |                                                                                                           | ted: Read as '                                   |                |                   |                  |                 |        |  |  |  |
|               | •                                                                                                         |                                                  |                |                   |                  |                 |        |  |  |  |

| REGISTER 10-6: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7 |                                                                                                                   |                                      |               |                   |                  |                    |        |  |  |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------|-------------------|------------------|--------------------|--------|--|--|
| U-0                                                               | U-0                                                                                                               | U-0                                  | U-0           | R/W-0             | R/W-0            | R/W-0              | R/W-0  |  |  |
| _                                                                 | —                                                                                                                 | —                                    |               | CMP4MD            | CMP3MD           | CMP2MD             | CMP1MD |  |  |
| bit 15                                                            |                                                                                                                   |                                      |               |                   |                  |                    | bit 8  |  |  |
|                                                                   |                                                                                                                   |                                      |               |                   |                  |                    |        |  |  |
| U-0                                                               | U-0                                                                                                               | U-0                                  | U-0           | U-0               | U-0              | U-0                | R/W-0  |  |  |
| —                                                                 | —                                                                                                                 | —                                    |               | —                 | —                | —                  | PWM9MD |  |  |
| bit 7                                                             |                                                                                                                   |                                      |               |                   |                  |                    | bit (  |  |  |
|                                                                   |                                                                                                                   |                                      |               |                   |                  |                    |        |  |  |
| Legend:                                                           |                                                                                                                   |                                      |               |                   |                  |                    |        |  |  |
| R = Readab                                                        |                                                                                                                   | W = Writable b                       | it            | •                 | nented bit, read |                    |        |  |  |
| -n = Value a                                                      | t POR                                                                                                             | '1' = Bit is set                     |               | '0' = Bit is clea | ared             | x = Bit is unknown |        |  |  |
|                                                                   |                                                                                                                   |                                      |               |                   |                  |                    |        |  |  |
| bit 15-12                                                         | Unimplemen                                                                                                        | ted: Read as '0'                     | 9             |                   |                  |                    |        |  |  |
| bit 11                                                            | CMP4MD: Analog Comparator 4 Module Disable bit                                                                    |                                      |               |                   |                  |                    |        |  |  |
|                                                                   | 1 = Analog Comparator 4 module is disabled                                                                        |                                      |               |                   |                  |                    |        |  |  |
|                                                                   | 0 = Analog Comparator 4 module is enabled                                                                         |                                      |               |                   |                  |                    |        |  |  |
| bit 10                                                            | CMP3MD: Analog Comparator 3 Module Disable bit                                                                    |                                      |               |                   |                  |                    |        |  |  |
|                                                                   | <ol> <li>1 = Analog Comparator 3 module is disabled</li> <li>0 = Analog Comparator 3 module is enabled</li> </ol> |                                      |               |                   |                  |                    |        |  |  |
| bit 9                                                             | •                                                                                                                 | •                                    |               |                   |                  |                    |        |  |  |
|                                                                   | <b>CMP2MD</b> : Analog Comparator 2 Module Disable bit<br>1 = Analog Comparator 2 module is disabled              |                                      |               |                   |                  |                    |        |  |  |
|                                                                   |                                                                                                                   | omparator 2 mo                       |               |                   |                  |                    |        |  |  |
| bit 8                                                             | CMP1MD: Analog Comparator 1 Module Disable bit                                                                    |                                      |               |                   |                  |                    |        |  |  |
|                                                                   | 1 = Analog Comparator 1 module is disabled                                                                        |                                      |               |                   |                  |                    |        |  |  |
|                                                                   | 0 = Analog C                                                                                                      | omparator 1 mo                       | dule is enabl | ed                |                  |                    |        |  |  |
| bit 7-1                                                           | Unimplemen                                                                                                        | ted: Read as '0'                     | ,             |                   |                  |                    |        |  |  |
| bit 0                                                             | PWM9MD: PWM Generator 9 Module Disable bit                                                                        |                                      |               |                   |                  |                    |        |  |  |
|                                                                   |                                                                                                                   | nerator 9 module<br>nerator 9 module |               |                   |                  |                    |        |  |  |

#### DIGADI E CONTROL DECISTED 7 **DC**

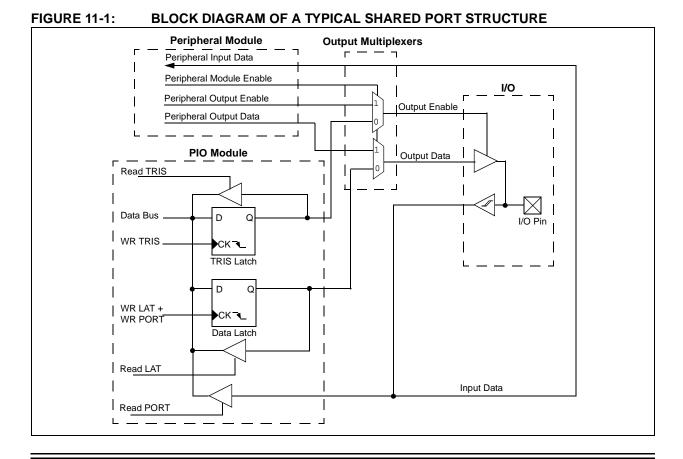
NOTES:

### 11.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "I/O Ports" (DS70193) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

#### 11.1 Parallel I/O (PIO) Ports


Generally a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.



#### 11.2 Open-Drain Configuration

In addition to the PORT, LAT and TRIS registers for data control, some digital-only port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (for example, 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

Refer to "**Pin Diagrams**" for the available pins and their functionality.

#### 11.3 Configuring Analog Port Pins

The ADPCFG and TRIS registers control the operation of the Analog-to-Digital (A/D) port pins. The port pins that are to function as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The ADPCFG and ADPCFG2 registers have a default value of 0x000; therefore, all pins that share ANx functions are analog (not digital) by default.

When the PORT register is read, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

#### 11.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP. An example is shown in Example 11-1.

#### 11.5 Input Change Notification

The input change notification function of the I/O ports allows the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices to generate interrupt requests to the processor in response to a Change-Of-State (COS) on selected input pins. This feature can detect input Change-Of-States even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 30 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a Change-Of-State.

Four control registers are associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin, and eliminate the need for external resistors when the push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled when the port pin is configured as a digital output.

#### EQUATION 11-1: PORT WRITE/READ EXAMPLE

| MOV  | 0xFF00, W0 | ; Configure PORTB<15:8> as inputs |
|------|------------|-----------------------------------|
| MOV  | W0, TRISBB | ; and PORTB<7:0> as outputs       |
| NOP  |            | ; Delay 1 cycle                   |
| BTSS | PORTB, #13 | ; Next Instruction                |
|      |            |                                   |

#### 12.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70205) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer, which can serve as a time counter for the Real-Time Clock (RTC), or operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be operated from the low-power 32.767 kHz crystal oscillator available on the device
- Can be operated in Asynchronous Counter mode from an external clock source.
- The external clock input (T1CK) can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler.

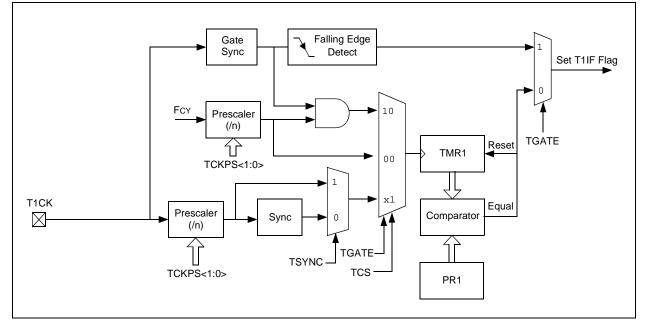
The unique features of Timer1 allow it to be used for Real-Time Clock (RTC) applications. A block diagram of Timer1 is shown in Figure 12-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode
- Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:


- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

The timer control bit settings for different operating modes are given in the Table 12-1.

| TABLE 12-1: | TIMER MODE SETTINGS |
|-------------|---------------------|
|-------------|---------------------|

| Mode                    | TCS | TGATE | TSYNC |
|-------------------------|-----|-------|-------|
| Timer                   | 0   | 0     | x     |
| Gated Timer             | 0   | 1     | х     |
| Synchronous<br>Counter  | 1   | x     | 1     |
| Asynchronous<br>Counter | 1   | x     | 0     |

#### FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM



| REGISTER 1    | 12-1: T1CO                                                                                           | N: TIMER1 C                    | ONTROL R   | EGISTER          |                  |                  |     |  |  |  |
|---------------|------------------------------------------------------------------------------------------------------|--------------------------------|------------|------------------|------------------|------------------|-----|--|--|--|
| R/W-0         | U-0                                                                                                  | R/W-0                          | U-0        | U-0              | U-0              | U-0              | U-0 |  |  |  |
| TON           |                                                                                                      | TSIDL                          | —          | —                | —                | —                | _   |  |  |  |
| bit 15        |                                                                                                      |                                |            |                  |                  |                  | bit |  |  |  |
| U-0           | R/W-0                                                                                                | R/W-0                          | R/W-0      | U-0              | R/W-0            | R/W-0            | U-0 |  |  |  |
|               | TGATE                                                                                                | TCKPS                          |            |                  | TSYNC            | TCS              |     |  |  |  |
| bit 7         | TOATE                                                                                                |                                | 521.02     |                  | 101110           | 100              | bit |  |  |  |
|               |                                                                                                      |                                |            |                  |                  |                  |     |  |  |  |
| Legend:       |                                                                                                      |                                |            |                  |                  | (0)              |     |  |  |  |
| R = Readable  |                                                                                                      | W = Writable bit               |            | -                | mented bit, read |                  |     |  |  |  |
| -n = Value at | POR                                                                                                  | '1' = Bit is set               |            | '0' = Bit is cle | ared             | x = Bit is unkno | own |  |  |  |
| bit 15        | TON: Timer1                                                                                          | On hit                         |            |                  |                  |                  |     |  |  |  |
|               |                                                                                                      |                                |            |                  |                  |                  |     |  |  |  |
|               | 1 = Starts 16-bit Timer1<br>0 = Stops 16-bit Timer1                                                  |                                |            |                  |                  |                  |     |  |  |  |
| bit 14        |                                                                                                      | ted: Read as '                 | n'         |                  |                  |                  |     |  |  |  |
| bit 13        | -                                                                                                    |                                |            |                  |                  |                  |     |  |  |  |
|               | <b>TSIDL:</b> Stop in Idle Mode bit<br>1 = Discontinue module operation when device enters Idle mode |                                |            |                  |                  |                  |     |  |  |  |
|               |                                                                                                      | module operat                  |            |                  |                  |                  |     |  |  |  |
| bit 12-7      | Unimplemen                                                                                           | ted: Read as '                 | 0'         |                  |                  |                  |     |  |  |  |
| bit 6         | TGATE: Timer1 Gated Time Accumulation Enable bit                                                     |                                |            |                  |                  |                  |     |  |  |  |
|               | When T1CS = 1:                                                                                       |                                |            |                  |                  |                  |     |  |  |  |
|               | This bit is igno<br>When T1CS =                                                                      |                                |            |                  |                  |                  |     |  |  |  |
|               |                                                                                                      | <u>= 0.</u><br>le accumulatior | nenabled   |                  |                  |                  |     |  |  |  |
|               |                                                                                                      | e accumulation                 |            |                  |                  |                  |     |  |  |  |
| bit 5-4       | TCKPS<1:0> Timer1 Input Clock Prescale Select bits                                                   |                                |            |                  |                  |                  |     |  |  |  |
|               | 11 = 1:256                                                                                           |                                |            |                  |                  |                  |     |  |  |  |
|               | 10 = 1:64                                                                                            |                                |            |                  |                  |                  |     |  |  |  |
|               | 01 = 1:8<br>00 = 1:1                                                                                 |                                |            |                  |                  |                  |     |  |  |  |
| bit 3         |                                                                                                      | ted: Read as '                 | 0'         |                  |                  |                  |     |  |  |  |
| bit 2         | Unimplemented: Read as '0'<br>TSYNC: Timer1 External Clock Input Synchronization Select bit          |                                |            |                  |                  |                  |     |  |  |  |
| SR 2          | When TCS = 1:                                                                                        |                                |            |                  |                  |                  |     |  |  |  |
|               | 1 = Synchronize external clock input                                                                 |                                |            |                  |                  |                  |     |  |  |  |
|               | 0 = Do not synchronize external clock input                                                          |                                |            |                  |                  |                  |     |  |  |  |
|               | <u>When TCS = 0:</u><br>This bit is ignored.                                                         |                                |            |                  |                  |                  |     |  |  |  |
| bit 1         | -                                                                                                    | Clock Source S                 | Select hit |                  |                  |                  |     |  |  |  |
|               |                                                                                                      |                                |            | rising edge)     |                  |                  |     |  |  |  |
|               | 1 = External clock from T1CK pin (on the rising edge)<br>0 = Internal clock (Fcy)                    |                                |            |                  |                  |                  |     |  |  |  |
|               |                                                                                                      |                                |            |                  |                  |                  |     |  |  |  |

#### REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

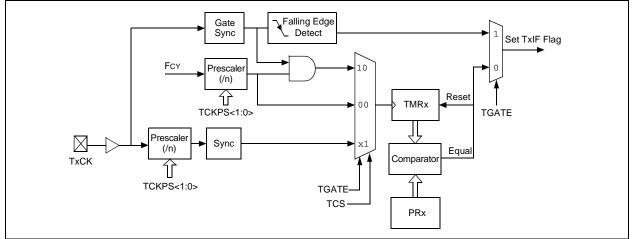
### 13.0 TIMER2/3/4/5 FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70205) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.

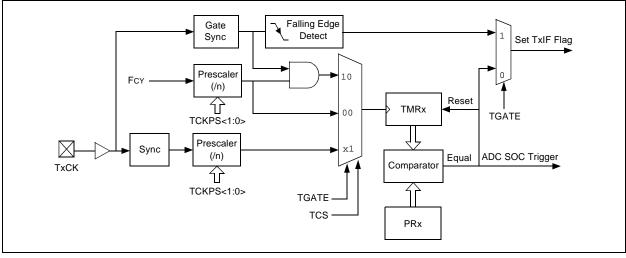
Timer2 and Timer4 are Type B timers that offer the following major features:

- A Type B timer can be concatenated with a Type C timer to form a 32-bit timer
- External clock input (TxCK) is always synchronized to the internal device clock and the clock synchronization is performed after the prescaler.

Figure 13-1 shows a block diagram of the Type B timer.


Timer3 and Timer5 are Type C timers that offer the following major features:

- A Type C timer can be concatenated with a Type B timer to form a 32-bit timer
- At least one Type C timer has the ability to trigger an A/D conversion.
- The external clock input (TxCK) is always synchronized to the internal device clock and the clock synchronization is performed before the prescaler


A block diagram of the Type C timer is shown in Figure 13-2.

**Note:** Timer3 is not available on all devices.

#### FIGURE 13-1: TYPE B TIMER BLOCK DIAGRAM (x = 2, 4)







The Timer2/3/4/5 modules can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- Synchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous Counter mode, the input clock is derived from the external clock input at the TxCK pin.

The timer modes are determined by the following bits:

- TCS (TxCON<1>): Timer Clock Source Control bit
- TGATE (TxCON<6>): Timer Gate Control bit

Timer control bit settings for different operating modes are given in the Table 13-1.

TABLE 13-1: TIMER MODE SETTINGS

| Mode                | TCS | TGATE |
|---------------------|-----|-------|
| Timer               | 0   | 0     |
| Gated Timer         | 0   | 1     |
| Synchronous Counter | 1   | x     |

#### 13.1 16-Bit Operation

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

#### 13.2 32-Bit Operation

A 32-bit timer module can be formed by combining a Type B and a Type C 16-bit timer module. For 32-bit timer operation, the T32 control bit in the Type B Timer Control (TxCON<3>) register must be set. The Type C timer holds the most significant word (msw) and the Type B timer holds the least significant word (lsw) for 32-bit operation.

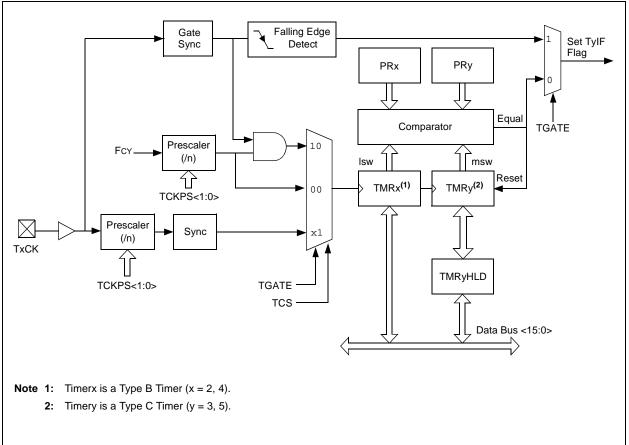
When configured for 32-bit operation, only the Type B Timer Control (TxCON) register bits are required for setup and control while the Type C Timer Control register bits are ignored (except the TSIDL bit).

For interrupt control, the combined 32-bit timer uses the interrupt enable, interrupt flag and interrupt priority control bits of the Type C timer. The interrupt control and status bits for the Type B timer are ignored during 32-bit timer operation.

The timers that can be combined to form a 32-bit timer are listed in Table 13-2.

#### TABLE 13-2: 32-BIT TIMER

| Type B Timer (Isw) | Type C Timer (msw) |
|--------------------|--------------------|
| Timer2             | Timer3             |
| TImer4             | Timer5             |


A block diagram representation of the 32-bit timer module is shown in Figure 13-3. The 32-timer module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode

To configure the timer features for 32-bit operation:

- 1. Set the T32 control bit.
- 2. Select the prescaler ratio for Timer2 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3 contains the most significant word of the value, while PR2 contains the least significant word.
- 5. If interrupts are required, set the interrupt enable bit, T3IE. Use the priority bits, T3IP<2:0>, to set the interrupt priority. While Timer2 controls the timer, the interrupt appears as a Timer3 interrupt.
- 6. Set the corresponding TON bit.





| R/W-0<br>TON | U-0                                                             | R/W-0                           | U-0        | U-0                |                |                  |       |  |  |  |  |
|--------------|-----------------------------------------------------------------|---------------------------------|------------|--------------------|----------------|------------------|-------|--|--|--|--|
| TON          |                                                                 |                                 | 00         | 0-0                | U-0            | U-0              | U-0   |  |  |  |  |
|              | —                                                               | TSIDL                           | _          | —                  |                | —                |       |  |  |  |  |
| bit 15       |                                                                 |                                 |            |                    |                |                  | bit 8 |  |  |  |  |
|              | DAVO                                                            | DAMO                            | DANIO      | DAMA               |                | DAMA             |       |  |  |  |  |
| U-0          | R/W-0                                                           | R/W-0                           | R/W-0      | R/W-0              | U-0            | R/W-0            | U-0   |  |  |  |  |
|              | TGATE                                                           | TCKP                            | S<1:0>     | T32                | _              | TCS              |       |  |  |  |  |
| oit 7        |                                                                 |                                 |            |                    |                |                  | bit ( |  |  |  |  |
| _egend:      |                                                                 |                                 |            |                    |                |                  |       |  |  |  |  |
| R = Readable | e bit                                                           | W = Writable                    | bit        | U = Unimplem       | ented bit, rea | id as '0'        |       |  |  |  |  |
| n = Value at | POR                                                             | '1' = Bit is set                | t          | '0' = Bit is clea  | ared           | x = Bit is unkno | own   |  |  |  |  |
|              |                                                                 |                                 |            |                    |                |                  |       |  |  |  |  |
| oit 15       | TON: Timerx                                                     |                                 |            |                    |                |                  |       |  |  |  |  |
|              |                                                                 | 1 (in 32-Bit Tim                |            |                    |                |                  |       |  |  |  |  |
|              |                                                                 | ·bit TMRx:TMR<br>·bit TMRx:TMR  |            |                    |                |                  |       |  |  |  |  |
|              | •                                                               |                                 | •          |                    |                |                  |       |  |  |  |  |
|              | When T32 = 0 (in 16-Bit Timer mode):<br>1 = Starts 16-bit timer |                                 |            |                    |                |                  |       |  |  |  |  |
|              | 0 = Stops 16-                                                   | bit timer                       |            |                    |                |                  |       |  |  |  |  |
| oit 14       | Unimplemen                                                      | ted: Read as '                  | 0'         |                    |                |                  |       |  |  |  |  |
| bit 13       | TSIDL: Stop in Idle Mode bit                                    |                                 |            |                    |                |                  |       |  |  |  |  |
|              |                                                                 |                                 |            | vice enters Idle n | node           |                  |       |  |  |  |  |
|              |                                                                 | timer operation                 |            | )                  |                |                  |       |  |  |  |  |
| bit 12-7     | Unimplemented: Read as '0'                                      |                                 |            |                    |                |                  |       |  |  |  |  |
| bit 6        | TGATE: Timerx Gated Time Accumulation Enable bit                |                                 |            |                    |                |                  |       |  |  |  |  |
|              | <u>When TCS = 1:</u><br>This bit is ignored.                    |                                 |            |                    |                |                  |       |  |  |  |  |
|              | When TCS = $0$ :                                                |                                 |            |                    |                |                  |       |  |  |  |  |
|              | 1 = Gated time accumulation enabled                             |                                 |            |                    |                |                  |       |  |  |  |  |
|              |                                                                 | ne accumulatio                  |            |                    |                |                  |       |  |  |  |  |
| oit 5-4      | TCKPS<1:0>: Timerx Input Clock Prescale Select bits             |                                 |            |                    |                |                  |       |  |  |  |  |
|              | 11 = 1:256 prescale value<br>10 = 1:64 prescale value           |                                 |            |                    |                |                  |       |  |  |  |  |
|              | 01 = 1.8 prescale value                                         |                                 |            |                    |                |                  |       |  |  |  |  |
|              | 00 = 1:1 prescale value                                         |                                 |            |                    |                |                  |       |  |  |  |  |
| oit 3        | T32: 32-Bit Timerx Mode Select bit                              |                                 |            |                    |                |                  |       |  |  |  |  |
|              |                                                                 | d TMRy form a<br>d TMRy form s  |            | t timer            |                |                  |       |  |  |  |  |
| oit 2        | Unimplemen                                                      | ted: Read as '                  | 0'         |                    |                |                  |       |  |  |  |  |
| pit 1        | TCS: Timerx                                                     | Clock Source                    | Select bit |                    |                |                  |       |  |  |  |  |
|              |                                                                 | clock from TxC<br>lock (Fosc/2) | K pin      |                    |                |                  |       |  |  |  |  |
|              |                                                                 |                                 | 0'         |                    |                |                  |       |  |  |  |  |

### **REGISTER 13-1: TxCON: TIMER CONTROL REGISTER (x = 2, 4)**

# dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

| R/W-0              | U-0                                                                    | R/W-0                            | U-0                       | U-0                            | U-0             | U-0                | U-0   |  |  |  |
|--------------------|------------------------------------------------------------------------|----------------------------------|---------------------------|--------------------------------|-----------------|--------------------|-------|--|--|--|
| TON <sup>(2)</sup> |                                                                        | TSIDL <sup>(1)</sup>             | —                         | —                              | —               | —                  | _     |  |  |  |
| bit 15             |                                                                        |                                  |                           |                                |                 |                    | bit 8 |  |  |  |
|                    |                                                                        |                                  |                           |                                |                 |                    |       |  |  |  |
| U-0                | R/W-0                                                                  | R/W-0                            | R/W-0                     | U-0                            | U-0             | R/W-0              | U-0   |  |  |  |
|                    | TGATE <sup>(2)</sup>                                                   | TCKPS                            | <1:0> <sup>(2)</sup>      | —                              | —               | TCS <sup>(2)</sup> | _     |  |  |  |
| bit 7              |                                                                        |                                  |                           |                                |                 |                    | bit ( |  |  |  |
| Legend:            |                                                                        |                                  |                           |                                |                 |                    |       |  |  |  |
| R = Readabl        | e hit                                                                  | W = Writable I                   | hit                       | LI = Unimpler                  | mented bit, rea | d as '0'           |       |  |  |  |
| -n = Value at      |                                                                        | '1' = Bit is set                 | on                        | '0' = Bit is cle               |                 | x = Bit is unkn    | own   |  |  |  |
|                    |                                                                        |                                  |                           |                                |                 |                    | 00011 |  |  |  |
| bit 15             | TON: Timery                                                            | On bit <sup>(2)</sup>            |                           |                                |                 |                    |       |  |  |  |
|                    | 1 = Starts 16-                                                         |                                  |                           |                                |                 |                    |       |  |  |  |
|                    | 0 = Stops 16-                                                          | bit Timery                       |                           |                                |                 |                    |       |  |  |  |
| bit 14             | Unimplemen                                                             | ted: Read as 'd                  | )'                        |                                |                 |                    |       |  |  |  |
| bit 13             | TSIDL: Stop i                                                          | in Idle Mode bit                 | (1)                       |                                |                 |                    |       |  |  |  |
|                    |                                                                        |                                  |                           | vice enters Idle               | mode            |                    |       |  |  |  |
|                    |                                                                        | timer operation                  |                           | 9                              |                 |                    |       |  |  |  |
| bit 12-7           | •                                                                      | ted: Read as '0                  |                           | (2)                            |                 |                    |       |  |  |  |
| bit 6              | <b>TGATE:</b> Timery Gated Time Accumulation Enable bit <sup>(2)</sup> |                                  |                           |                                |                 |                    |       |  |  |  |
|                    | When TCS =<br>This bit is igne                                         |                                  |                           |                                |                 |                    |       |  |  |  |
|                    | When TCS =                                                             |                                  |                           |                                |                 |                    |       |  |  |  |
|                    |                                                                        | e accumulatior                   |                           |                                |                 |                    |       |  |  |  |
| bit 5-4            |                                                                        |                                  |                           | ale Select bits <sup>(2)</sup> |                 |                    |       |  |  |  |
| DII 3-4            |                                                                        |                                  |                           |                                |                 |                    |       |  |  |  |
|                    | 11 = 1:256 prescale value<br>10 = 1:64 prescale value                  |                                  |                           |                                |                 |                    |       |  |  |  |
|                    | 01 = 1.8 prescale value                                                |                                  |                           |                                |                 |                    |       |  |  |  |
|                    | 00 = 1:1 pres                                                          | cale value                       |                           |                                |                 |                    |       |  |  |  |
| bit 3-2            | -                                                                      | ted: Read as '                   |                           |                                |                 |                    |       |  |  |  |
| bit 1              | TCS: Timery                                                            | Clock Source S                   | Select bit <sup>(2)</sup> |                                |                 |                    |       |  |  |  |
|                    | 1 = External c<br>0 = Internal cl                                      | clock from TxCł<br>lock (Fosc/2) | K pin                     |                                |                 |                    |       |  |  |  |
|                    |                                                                        | ( )                              |                           |                                |                 |                    |       |  |  |  |

### **REGISTER 13-2:** TyCON: TIMER CONTROL REGISTER (y = 3, 5)

**Note 1:** When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

2: When the 32-bit timer operation is enabled (T32 = 1) in the Timer Control (TxCON<3>) register, these bits have no effect.

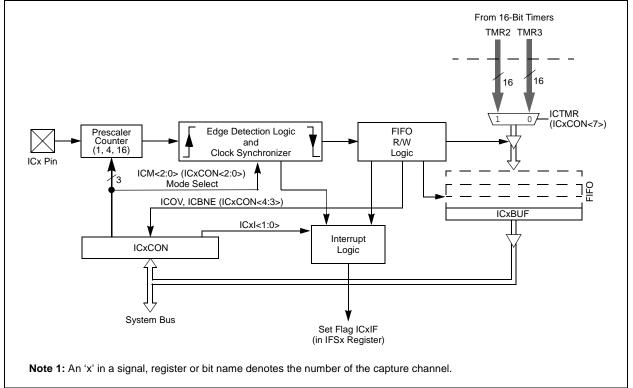
NOTES:

# 14.0 INPUT CAPTURE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "Input Capture" (DS70198) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices support up to two input capture channels.

The input capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:


- Simple Capture Event modes:
  - Capture timer value on every falling edge of input at ICx pin
  - Capture timer value on every rising edge of input at ICx pin
- Capture timer value on every edge (rising and falling)
- Prescaler Capture Event modes:
  - Capture timer value on every 4th rising edge of input at ICx pin
  - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select one of the two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- Interrupt on input capture event
- 4-word FIFO buffer for capture values
  - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- Use of input capture to provide additional sources of external interrupts





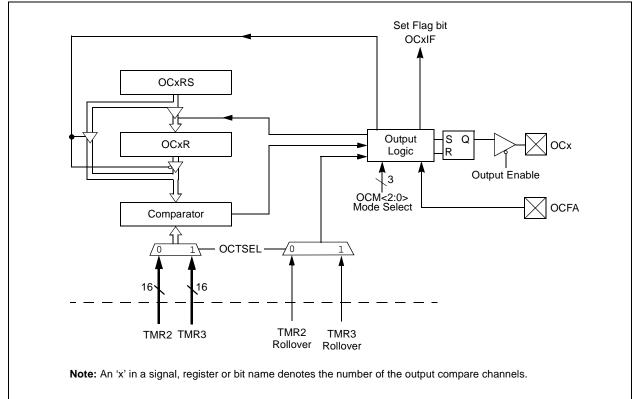
# 14.1 Input Capture Registers

## **REGISTER 14-1:** ICxCON: INPUT CAPTURE x CONTROL REGISTER (x = 1, 2)

| U-0          | U-0                                                                                                             | R/W-0                                                                                                                                                            | U-0             | U-0              | U-0            | U-0               | U-0           |  |  |  |  |  |
|--------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|----------------|-------------------|---------------|--|--|--|--|--|
| _            | _                                                                                                               | ICSIDL                                                                                                                                                           | —               | _                | _              | _                 | _             |  |  |  |  |  |
| bit 15       |                                                                                                                 |                                                                                                                                                                  | •               | ·                |                |                   | bit 8         |  |  |  |  |  |
| R/W-0        | R/W-0                                                                                                           | R/W-0                                                                                                                                                            | R-0, HC         | R-0, HC          | R/W-0          | R/W-0             | R/W-0         |  |  |  |  |  |
| ICTMR        | IC                                                                                                              | l<1:0>                                                                                                                                                           | ICOV            | ICBNE            |                | ICM<2:0>          |               |  |  |  |  |  |
| bit 7        |                                                                                                                 |                                                                                                                                                                  |                 |                  |                |                   | bit (         |  |  |  |  |  |
| Legend:      |                                                                                                                 | HC = Hardwar                                                                                                                                                     | e Clearable bit | t                |                |                   |               |  |  |  |  |  |
| R = Readab   | le bit                                                                                                          | W = Writable b                                                                                                                                                   | it              | U = Unimple      | mented bit, re | ad as '0'         |               |  |  |  |  |  |
| -n = Value a | t POR                                                                                                           | '1' = Bit is set                                                                                                                                                 |                 | '0' = Bit is cle | eared          | x = Bit is unkr   | nown          |  |  |  |  |  |
| bit 15-14    | Unimpleme                                                                                                       | nted: Read as '0                                                                                                                                                 | ,               |                  |                |                   |               |  |  |  |  |  |
| bit 13       | -                                                                                                               |                                                                                                                                                                  |                 | Control bit      |                |                   |               |  |  |  |  |  |
|              |                                                                                                                 | ICSIDL: Input Capture Module Stop in Idle Control bit<br>1 = Input capture module halts in CPU Idle mode                                                         |                 |                  |                |                   |               |  |  |  |  |  |
|              |                                                                                                                 | 0 = Input capture module continues to operate in CPU Idle mode                                                                                                   |                 |                  |                |                   |               |  |  |  |  |  |
| bit 12-8     | Unimplemented: Read as '0'                                                                                      |                                                                                                                                                                  |                 |                  |                |                   |               |  |  |  |  |  |
| bit 7        | ICTMR: Inpu                                                                                                     | ICTMR: Input Capture Timer Select bits                                                                                                                           |                 |                  |                |                   |               |  |  |  |  |  |
|              |                                                                                                                 | ontents are captu<br>ontents are captu                                                                                                                           |                 |                  |                |                   |               |  |  |  |  |  |
| bit 6-5      | ICI<1:0>: Select Number of Captures per Interrupt bits                                                          |                                                                                                                                                                  |                 |                  |                |                   |               |  |  |  |  |  |
|              | 11 = Interrupt on every fourth capture event                                                                    |                                                                                                                                                                  |                 |                  |                |                   |               |  |  |  |  |  |
|              | 10 = Interrupt on every third capture event                                                                     |                                                                                                                                                                  |                 |                  |                |                   |               |  |  |  |  |  |
|              | <ul> <li>01 = Interrupt on every second capture event</li> <li>00 = Interrupt on every capture event</li> </ul> |                                                                                                                                                                  |                 |                  |                |                   |               |  |  |  |  |  |
| bit 4        | •                                                                                                               | Capture Overflov                                                                                                                                                 |                 | oit (read-only)  |                |                   |               |  |  |  |  |  |
| bit 4        | •                                                                                                               |                                                                                                                                                                  | 0               | (read only)      |                |                   |               |  |  |  |  |  |
|              | <ul> <li>1 = Input capture overflow occurred</li> <li>0 = No input capture overflow occurred</li> </ul>         |                                                                                                                                                                  |                 |                  |                |                   |               |  |  |  |  |  |
| bit 3        | ICBNE: Inpu                                                                                                     | ICBNE: Input Capture Buffer Empty Status bit (read-only)                                                                                                         |                 |                  |                |                   |               |  |  |  |  |  |
|              | 1 = Input capture buffer is not empty, at least one more capture value can be read                              |                                                                                                                                                                  |                 |                  |                |                   |               |  |  |  |  |  |
|              | 0 = Input ca                                                                                                    | pture buffer is em                                                                                                                                               | pty             |                  |                |                   |               |  |  |  |  |  |
| bit 2-0      | ICM<2:0>: Input Capture Mode Select bits                                                                        |                                                                                                                                                                  |                 |                  |                |                   |               |  |  |  |  |  |
|              |                                                                                                                 | 111 = Input capture functions as interrupt pin only when device is in Sleep or Idle mode. Rising edge<br>detect-only, all other control bits are not applicable. |                 |                  |                |                   |               |  |  |  |  |  |
|              |                                                                                                                 | 110 = Unused (module disabled)                                                                                                                                   |                 |                  |                |                   |               |  |  |  |  |  |
|              |                                                                                                                 | ire mode, every 1                                                                                                                                                |                 |                  |                |                   |               |  |  |  |  |  |
|              |                                                                                                                 | ire mode, every 4                                                                                                                                                | •••             |                  |                |                   |               |  |  |  |  |  |
|              |                                                                                                                 | ire mode, every r<br>ire mode, every fa                                                                                                                          |                 |                  |                |                   |               |  |  |  |  |  |
|              |                                                                                                                 | ire mode, every i                                                                                                                                                |                 | d falling) ICI-1 | ·0> hits do no | at control interr | int conoratio |  |  |  |  |  |

- 001 = Capture mode, every edge (rising and falling). ICI<1:0> bits do not control interrupt generation for this mode.
- 000 = Input capture module turned off

# 15.0 OUTPUT COMPARE


- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Output Compare" (DS70209) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.

The output compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two Compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the Compare register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events.

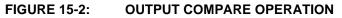
The output compare module has multiple operating modes:

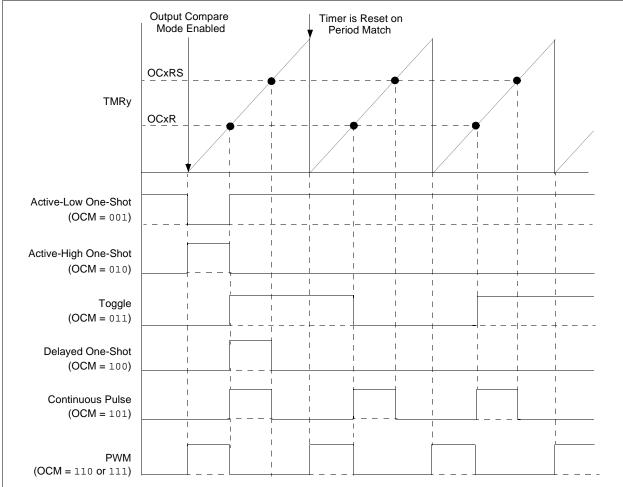
- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without Fault Protection
- PWM mode with Fault Protection

## FIGURE 15-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM



## 15.1 Output Compare Modes


Configure the Output Compare modes by setting the appropriate Output Compare Mode (OCM<2:0>) bits in the Output Compare Control (OCxCON<2:0>) register. Table 15-1 lists the different bit settings for the Output Compare modes. Figure 15-2 illustrates the output compare operation for various modes. The user


TABLE 15-1: OUTPUT COMPARE MODES

application must disable the associated timer when writing to the Output Compare Control registers to avoid malfunctions.

Note: See Section 13. "Output Compare" in the "dsPIC33F/PIC24H Family Reference Manual" (DS7029) for OCxR and OCxRS register restrictions.

| OCM<2:0> | Mode                         | OCx Pin Initial State                            | OCx Interrupt Generation         |
|----------|------------------------------|--------------------------------------------------|----------------------------------|
| 000      | Module Disabled              | Controlled by GPIO register                      | _                                |
| 001      | Active-Low One-Shot          | 0                                                | OCx rising edge                  |
| 010      | Active-High One-Shot         | 1                                                | OCx falling edge                 |
| 011      | Toggle                       | Current output is maintained                     | OCx rising and falling edge      |
| 100      | Delayed One-Shot             | 0                                                | OCx falling edge                 |
| 101      | Continuous Pulse             | 0                                                | OCx falling edge                 |
| 110      | PWM without Fault Protection | ʻ0', if OCxR is zero<br>ʻ1', if OCxR is non-zero | No interrupt                     |
| 111      | PWM with Fault Protection    | ʻ0', if OCxR is zero<br>ʻ1', if OCxR is non-zero | OCFA falling edge for OC1 to OC4 |





# dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

| U-0                               | U-0                                      | R/W-0                                                                                                                   | U-0              | U-0                                   | U-0            | U-0            | U-0   |  |  |  |  |
|-----------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------|----------------|----------------|-------|--|--|--|--|
| _                                 | —                                        | OCSIDL                                                                                                                  |                  | —                                     |                | —              | _     |  |  |  |  |
| oit 15                            |                                          |                                                                                                                         |                  |                                       |                |                | bit 8 |  |  |  |  |
|                                   |                                          |                                                                                                                         |                  |                                       |                |                |       |  |  |  |  |
| U-0                               | U-0                                      | U-0                                                                                                                     | R-0, HC          | R/W-0                                 | R/W-0          | R/W-0          | R/W-0 |  |  |  |  |
| —                                 | —                                        | —                                                                                                                       | OCFLT            | OCTSEL                                |                | OCM<2:0>       |       |  |  |  |  |
| bit 7                             |                                          |                                                                                                                         |                  |                                       |                |                | bit ( |  |  |  |  |
| Legend:                           |                                          | HC = Hardware                                                                                                           | Clearable bit    |                                       |                |                |       |  |  |  |  |
| R = Readable bit W = Writable bit |                                          |                                                                                                                         |                  | U = Unimplei                          | mented bit, re | ead as '0'     |       |  |  |  |  |
| -n = Value a                      | at POR                                   | '1' = Bit is set                                                                                                        |                  | '0' = Bit is cleared                  |                | x = Bit is unk | nown  |  |  |  |  |
| bit 12-5                          | 0 = Output 0                             | Compare x halts ir<br>Compare x continu<br>Inted: Read as '0'                                                           | ues to operate i |                                       | de             |                |       |  |  |  |  |
| hit 12-5                          | •                                        | •                                                                                                                       | •                |                                       |                |                |       |  |  |  |  |
| bit 4                             | OCFLT: PWM Fault Condition Status bit    |                                                                                                                         |                  |                                       |                |                |       |  |  |  |  |
|                                   |                                          | ault condition has<br>/I Fault condition h                                                                              |                  |                                       |                | M<2:0> = 111)  | )     |  |  |  |  |
| bit 3                             | OCTSEL: O                                | OCTSEL: Output Compare Timer Select bit                                                                                 |                  |                                       |                |                |       |  |  |  |  |
|                                   |                                          | s the clock source<br>s the clock source                                                                                |                  |                                       |                |                |       |  |  |  |  |
| bit 2-0                           | OCM<2:0>:                                | OCM<2:0>: Output Compare Mode Select bits                                                                               |                  |                                       |                |                |       |  |  |  |  |
|                                   | 111 = PWM mode on OCx, Fault pin enabled |                                                                                                                         |                  |                                       |                |                |       |  |  |  |  |
|                                   |                                          | 110 = PWM mode on OCx, Fault pin disabled<br>101 = Initialize OCx pin low, generate continuous output pulses on OCx pin |                  |                                       |                |                |       |  |  |  |  |
|                                   |                                          | ize OCx pin low, g<br>ize OCx pin low, g                                                                                |                  |                                       |                | pin            |       |  |  |  |  |
|                                   |                                          | pare event toggles                                                                                                      |                  |                                       |                |                |       |  |  |  |  |
|                                   | 010 = Initial                            | ize OCx pin high,                                                                                                       | compare event    |                                       |                |                |       |  |  |  |  |
|                                   | 0.01 1.111                               |                                                                                                                         |                  | · · · · · · · · · · · · · · · · · · · | In the In      |                |       |  |  |  |  |

001 = Initialize OCx pin low, compare event forces OCx pin high

000 = Output compare channel is disabled

### **REGISTER 15-1:** OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2)

NOTES:

# 16.0 HIGH-SPEED PWM

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 50. "High-Speed PWM" (DS70579) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.

The High-Speed PWM module on the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices supports a wide variety of PWM modes and output formats. This PWM module is ideal for power conversion applications, such as:

- AC/DC Converters
- DC/DC Converters
- Power Factor Correction
- Uninterruptible Power Supply (UPS)
- Inverters
- Battery Chargers
- Digital Lighting

## 16.1 Features Overview

The High-Speed PWM module incorporates the following features:

- Two master time base modules
- Up to nine PWM generators with up to 18 outputs
- Two PWM outputs per PWM generator
- Individual time base and duty cycle for each PWM output
- Duty cycle, dead time, phase shift, and frequency resolution of 1.04 ns at 40 MIPS
- Independent fault and current-limit inputs for eight PWM Outputs
- Redundant output
- True Independent output
- Center-Aligned PWM mode
- Output override control
- Chop mode (also known as Gated mode)
- Special Event Trigger
- Prescaler for input clock
- Dual trigger from PWM to Analog-to-Digital Converter (ADC) per PWM period
- PWMxL and PWMxH output pin swapping

- Independent PWM frequency, duty cycle, and phase shift changes
- Current compensation
- Enhanced Leading-Edge Blanking (LEB) functionality
- PWM Capture functionality
- Note: Duty cycle, dead-time, phase shift and frequency resolution is 8.32 ns in Center-Aligned PWM mode.

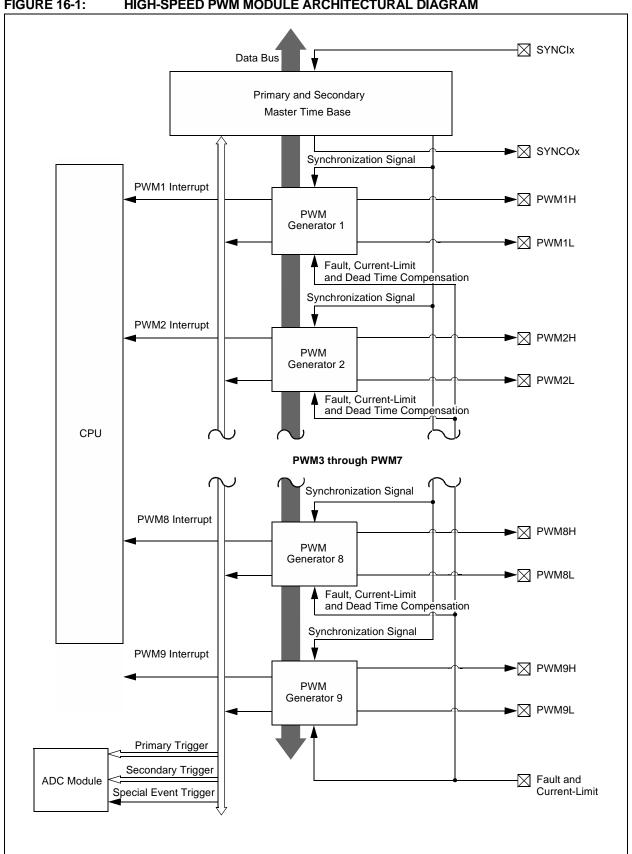
Figure 16-1 conceptualizes the PWM module in a simplified block diagram. Figure 16-2 illustrates how the module hardware is partitioned for each PWM output pair for the Complementary PWM mode.

The PWM module contains nine PWM generators. The module has up to 18 PWM output pins: PWM1H, PWM1L, PWM2H, PWM2L, PWM3H, PWM3L, PWM4H, PWM4L, PWM5H, PWM5L, PWM6H, PWM6L, PWM7H, PWM7L, PWM8H, PWM8L, PWM9H, and PWM9L. For complementary outputs, these 18 I/O pins are grouped into H/L pairs.

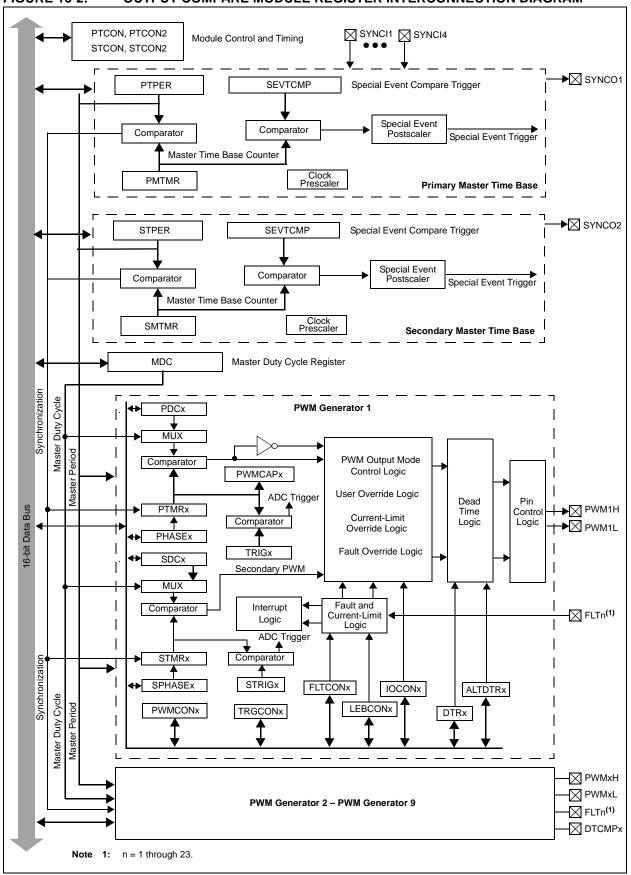
## 16.2 Feature Description

The PWM module is designed for applications that require:

- High-resolution at high PWM frequencies
- The ability to drive Standard, Edge-Aligned, Center-Aligned Complementary mode, and Push-Pull mode outputs
- · The ability to create multiphase PWM outputs


For Center-Aligned mode, the duty cycle, period phase and dead-time resolutions will be 8.32 ns.

Two common, medium power converter topologies are push-pull and half-bridge. These designs require the PWM output signal to be switched between alternate pins, as provided by the Push-Pull PWM mode.


Phase-shifted PWM describes the situation where each PWM generator provides outputs, but the phase relationship between the generator outputs is specifiable and changeable.

Multiphase PWM is often used to improve DC/DC converter load transient response, and reduce the size of output filter capacitors and inductors. Multiple DC/DC converters are often operated in parallel, but phase-shifted in time. A single PWM output operating at 250 kHz has a period of 4  $\mu$ s, but an array of four PWM channels, staggered by 1  $\mu$ s each, yields an effective switching frequency of 1 MHz. Multiphase PWM applications typically use a fixed-phase relationship.

Variable phase PWM is useful in Zero Voltage Transition (ZVT) power converters. Here, the PWM duty cycle is always 50%, and the power flow is controlled by varying the relative phase shift between the two PWM generators.







### FIGURE 16-2: OUTPUT COMPARE MODULE REGISTER INTERCONNECTION DIAGRAM

## 16.3 Control Registers

The following registers control the operation of the High-Speed PWM module.

- PTCON: PWM Time Base Control Register
- PTCON2: PWM Clock Divider Select Register
- PTPER: Primary Master Time Base Period Register(1,2)
- SEVTCMP: PWM Special Event Compare Register(1)
- STCON: PWM Secondary Master Time Base Control Register
- STCON2: PWM Secondary Clock Divider Select Register
- STPER: Secondary Master Time Base Period Register
- SSEVTCMP: PWM Secondary Special Event Compare Register
- CHOP: PWM Chop Clock Generator Register
- MDC: PWM Master Duty Cycle Register
- PWMCONx: PWM Control Register
- PDCx: PWM Generator Duty Cycle Register
- PHASEx: PWM Primary Phase Shift Register
- DTRx: PWM Dead Time Register
- ALTDTRx: PWM Alternate Dead Time Register
- SDCx: PWM Secondary Duty Cycle Register
- SPHASEx: PWM Secondary Phase Shift Register
- TRGCONx: PWM Trigger Control Register
- IOCONx: PWM I/O Control Register
- FCLCONx: PWM Fault Current-Limit Control Register
- TRIGx: PWM Primary Trigger Compare Value Register
- STRIGx: PWM Secondary Trigger Compare Value Register(1)
- LEBCONx: Leading-Edge Blanking Control Register
- LEBDLYx: Leading-Edge Blanking Delay Register
- AUXCONx: PWM Auxiliary Control Register
- PWMCAPx: Primary PWM Time Base Capture Register

| R/W-0                          | U-0                                                                             | R/W-0                               | HS/HC-0                              | R/W-0                      | R/W-0                | R/W-0                           | R/W-0                 |  |  |
|--------------------------------|---------------------------------------------------------------------------------|-------------------------------------|--------------------------------------|----------------------------|----------------------|---------------------------------|-----------------------|--|--|
| PTEN                           |                                                                                 | PTSIDL                              | SESTAT                               | SEIEN                      | EIPU <sup>(1)</sup>  | SYNCPOL <sup>(1)</sup>          | SYNCOEN <sup>(1</sup> |  |  |
| bit 15                         |                                                                                 |                                     | •                                    | •                          | •                    | ·                               | bit                   |  |  |
| DAMO                           | DAMO                                                                            | D/M/ O                              | DAMO                                 | D/M/O                      |                      | DAM 0                           | DAMO                  |  |  |
| R/W-0<br>SYNCEN <sup>(1)</sup> | R/W-0                                                                           | R/W-0<br>YNCSRC<2:0                 | R/W-0                                | R/W-0                      | R/W-0                | R/W-0<br>PS<3:0> <sup>(1)</sup> | R/W-0                 |  |  |
| bit 7                          | 5                                                                               | TNCSRC<2:0                          | >(.)                                 |                            | SEVI                 | PS<3:0>**                       | bit (                 |  |  |
|                                |                                                                                 |                                     |                                      |                            |                      |                                 | Dit                   |  |  |
| Legend:                        |                                                                                 | HC = Cleare                         | d in Hardware                        | HS = Set in                | Hardware             |                                 |                       |  |  |
| R = Readable b                 | bit                                                                             | W = Writable                        | e bit                                | U = Unimpl                 | emented bit, re      | ead as '0'                      |                       |  |  |
| -n = Value at P                | OR                                                                              | '1' = Bit is se                     | t                                    | '0' = Bit is c             | leared               | x = Bit is unk                  | nown                  |  |  |
| bit 15                         | PTEN: PWM                                                                       | l Module Enab                       | le bit                               |                            |                      |                                 |                       |  |  |
|                                | 1 = PWM module is enabled                                                       |                                     |                                      |                            |                      |                                 |                       |  |  |
|                                | 0 = PWM mc                                                                      | odule is disable                    | ed                                   |                            |                      |                                 |                       |  |  |
| bit 14                         | Unimplemen                                                                      | nted: Read as                       | '0'                                  |                            |                      |                                 |                       |  |  |
| bit 13                         |                                                                                 |                                     | Stop in Idle Mo                      |                            |                      |                                 |                       |  |  |
|                                |                                                                                 |                                     | n CPU Idle mod                       |                            |                      |                                 |                       |  |  |
| bit 12                         |                                                                                 |                                     | errupt Status bi                     |                            |                      |                                 |                       |  |  |
|                                |                                                                                 | Event Interrupt                     | •                                    |                            |                      |                                 |                       |  |  |
|                                | 0 = Special Event Interrupt is not pending                                      |                                     |                                      |                            |                      |                                 |                       |  |  |
| bit 11                         | SEIEN: Special Event Interrupt Enable bit                                       |                                     |                                      |                            |                      |                                 |                       |  |  |
|                                |                                                                                 | Event Interrupt<br>Event Interrupt  |                                      |                            |                      |                                 |                       |  |  |
| bit 10                         | EIPU: Enable                                                                    | e Immediate P                       | eriod Updates                        | bit <sup>(1)</sup>         |                      |                                 |                       |  |  |
|                                |                                                                                 |                                     | s updated immo<br>pdates occur o     |                            | e boundaries         |                                 |                       |  |  |
| bit 9                          | SYNCPOL: Synchronize Input and Output Polarity bit <sup>(1)</sup>               |                                     |                                      |                            |                      |                                 |                       |  |  |
|                                |                                                                                 | SYNCO1 pola<br>SYNCO1 is ac         | rity is inverted<br>tive-high        | (active-low)               |                      |                                 |                       |  |  |
| bit 8                          | SYNCOEN:                                                                        | Primary Time I                      | Base Sync Ena                        | able bit <sup>(1)</sup>    |                      |                                 |                       |  |  |
|                                |                                                                                 | 1 output is ena<br>1 output is disa |                                      |                            |                      |                                 |                       |  |  |
| bit 7                          | SYNCEN: Ex                                                                      | xternal Time B                      | ase Synchroniz                       | zation Enable              | e bit <sup>(1)</sup> |                                 |                       |  |  |
|                                |                                                                                 |                                     | n of primary tir<br>n of primary tir |                            |                      |                                 |                       |  |  |
| bit 6-4                        | SYNCSRC<<br>000 = SYNC<br>001 = SYNC<br>010 = SYNC<br>011 = SYNC<br>100 = Reser | 511<br>512<br>513<br>514            | nous Source S                        | election bits <sup>(</sup> | 1)                   |                                 |                       |  |  |

### REGISTER 16-1: PTCON: PWM TIME BASE CONTROL REGISTER

**Note 1:** These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the period register with a value that is slightly larger than the expected period of the external synchronization input signal.

© 2010 Microchip Technology Inc.

### REGISTER 16-1: PTCON: PWM TIME BASE CONTROL REGISTER (CONTINUED)

```
    bit 3-0 SEVTPS<3:0>: PWM Special Event Trigger Output Postscaler Select bits<sup>(1)</sup>
    1111 = 1:16 Postscaler generates Special Event Trigger on every sixteenth compare match event
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
```

**Note 1:** These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the period register with a value that is slightly larger than the expected period of the external synchronization input signal.

# dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

| U-0                                                                   | U-0 | U-0 | U-0             | U-0                                | U-0                         | U-0   | U-0   |
|-----------------------------------------------------------------------|-----|-----|-----------------|------------------------------------|-----------------------------|-------|-------|
| —                                                                     | _   | —   | —               | —                                  | —                           | —     | —     |
| bit 15                                                                |     | -   |                 |                                    | •                           |       | bit 8 |
|                                                                       |     |     |                 |                                    |                             |       |       |
| U-0                                                                   | U-0 | U-0 | U-0             | U-0                                | R/W-0                       | R/W-0 | R/W-0 |
| —                                                                     |     | —   | _               | —                                  | PCLKDIV<2:0> <sup>(1)</sup> |       |       |
| bit 7                                                                 |     |     |                 |                                    |                             |       | bit 0 |
|                                                                       |     |     |                 |                                    |                             |       |       |
| Legend:                                                               |     |     |                 |                                    |                             |       |       |
| R = Readable bit W = Writable bit                                     |     |     | bit             | U = Unimplemented bit, read as '0' |                             |       |       |
| -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is un |     |     | x = Bit is unkr | nown                               |                             |       |       |

### REGISTER 16-2: PTCON2: PWM CLOCK DIVIDER SELECT REGISTER

bit 15-3 Unimplemented: Read as '0'

- bit 2-0 PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits<sup>(1)</sup>
  - 111 = Reserved

110 = Divide by 64, maximum PWM timing resolution

101 = Divide by 32, maximum PWM timing resolution

100 = Divide by 16, maximum PWM timing resolution

011 = Divide by 8, maximum PWM timing resolution

010 = Divide by 4, maximum PWM timing resolution

001 = Divide by 2, maximum PWM timing resolution

000 = Divide by 1, maximum PWM timing resolution (power-on default)

**Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

### **REGISTER 16-3: PTPER: PRIMARY MASTER TIME BASE PERIOD REGISTER**<sup>(1,2)</sup>

| R/W-1                                                                  | R/W-1 | R/W-1          | R/W-1 | R/W-1                              | R/W-1 | R/W-1 | R/W-1 |
|------------------------------------------------------------------------|-------|----------------|-------|------------------------------------|-------|-------|-------|
|                                                                        |       |                | PTPE  | R<15:8>                            |       |       |       |
| bit 15                                                                 |       |                |       |                                    |       |       | bit 8 |
|                                                                        |       |                |       |                                    |       |       |       |
| R/W-1                                                                  | R/W-1 | R/W-1          | R/W-1 | R/W-1                              | R/W-0 | R/W-0 | R/W-0 |
|                                                                        |       |                | PTPE  | R<7:0>                             |       |       |       |
| bit 7                                                                  |       |                |       |                                    |       |       | bit 0 |
|                                                                        |       |                |       |                                    |       |       |       |
| Legend:                                                                |       |                |       |                                    |       |       |       |
| R = Readable                                                           | bit   | W = Writable b | bit   | U = Unimplemented bit, read as '0' |       |       |       |
| -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unk |       |                |       | nown                               |       |       |       |

bit 15-0 PTPER<15:0>: Primary Master Time Base (PMTMR) Period Value bits

Note 1: The PWM time base has a minimum value of 0x0010, and a maximum value of 0xFFF8.

**2:** Any Period value that is less than 0x0028 must have the least significant 3 bits set to '0', thus yielding a Period resolution at 8.32 ns (at fastest auxiliary clock rate).

| R/W-0                              | R/W-0 | R/W-0                              | R/W-0                | R/W-0    | R/W-0              | R/W-0 | R/W-0 |
|------------------------------------|-------|------------------------------------|----------------------|----------|--------------------|-------|-------|
|                                    |       |                                    | SEVTC                | MP<15:8> |                    |       |       |
| bit 15                             |       |                                    |                      |          |                    |       | bit 8 |
| R/W-0                              | R/W-0 | R/W-0                              | R/W-0                | R/W-0    | U-0                | U-0   | U-0   |
|                                    | S     | SEVTCMP<7:3>                       |                      |          |                    | —     |       |
| bit 7                              |       |                                    |                      |          |                    | ·     | bit ( |
| Legend:                            |       |                                    |                      |          |                    |       |       |
| R = Readable bit W = Writable bit  |       | U = Unimplemented bit, read as '0' |                      |          |                    |       |       |
| -n = Value at POR '1' = Bit is set |       |                                    | '0' = Bit is cleared |          | x = Bit is unknown |       |       |

# **REGISTER 16-4:** SEVTCMP: PWM SPECIAL EVENT COMPARE REGISTER<sup>(1)</sup>

bit 15-3 SEVTCMP<15:3>: Special Event Compare Count Value bits

bit 2-0 Unimplemented: Read as '0'

**Note 1:** One LSB = 1.04 ns (at fastest auxiliary clock rate); therefore, the minimum SEVTCMP resolution is 8.32 ns.

| U-0             | U-0                                                                                                                             | U-0                                                | HS/HC-0                                  | R/W-0            | R/W-0               | R/W-0           | R/W-0   |  |  |  |  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------|------------------|---------------------|-----------------|---------|--|--|--|--|
| —               | —                                                                                                                               | —                                                  | SESTAT                                   | SEIEN            | EIPU <sup>(1)</sup> | SYNCPOL         | SYNCOEN |  |  |  |  |
| bit 15          |                                                                                                                                 |                                                    |                                          |                  |                     |                 | bit 8   |  |  |  |  |
|                 | DAMO                                                                                                                            | DALO                                               | DAMA                                     | D MI O           | DAMO                | DAMO            | DANIO   |  |  |  |  |
| R/W-0           | R/W-0                                                                                                                           | R/W-0                                              | R/W-0                                    | R/W-0            | R/W-0               | R/W-0           | R/W-0   |  |  |  |  |
| SYNCEN          |                                                                                                                                 | SYNCSRC<2:                                         | 0>                                       |                  | SEVIE               | PS<3:0>         |         |  |  |  |  |
| bit 7           |                                                                                                                                 |                                                    |                                          |                  |                     |                 | bit (   |  |  |  |  |
| Legend:         |                                                                                                                                 |                                                    |                                          |                  |                     |                 |         |  |  |  |  |
| R = Readable    | bit                                                                                                                             | W = Writable                                       | bit                                      | U = Unimple      | mented bit, rea     | d as '0'        |         |  |  |  |  |
| -n = Value at F | POR                                                                                                                             | '1' = Bit is se                                    | t                                        | '0' = Bit is cle | eared               | x = Bit is unk  | nown    |  |  |  |  |
|                 |                                                                                                                                 |                                                    |                                          |                  |                     |                 |         |  |  |  |  |
| bit 15-13       | Unimpleme                                                                                                                       | nted: Read as                                      | '0'                                      |                  |                     |                 |         |  |  |  |  |
| bit 12          |                                                                                                                                 |                                                    | errupt Status bi                         |                  |                     |                 |         |  |  |  |  |
|                 |                                                                                                                                 |                                                    | nt Interrupt is p                        |                  |                     |                 |         |  |  |  |  |
|                 |                                                                                                                                 |                                                    | nt Interrupt is r                        |                  |                     |                 |         |  |  |  |  |
| bit 11          | SEIEN: Special Event Interrupt Enable bit                                                                                       |                                                    |                                          |                  |                     |                 |         |  |  |  |  |
|                 | <ul> <li>1 = Secondary Special Event Interrupt is enabled</li> <li>0 = Secondary Special Event Interrupt is disabled</li> </ul> |                                                    |                                          |                  |                     |                 |         |  |  |  |  |
| bit 10          |                                                                                                                                 |                                                    | eriod Updates                            |                  |                     |                 |         |  |  |  |  |
| bit fo          |                                                                                                                                 |                                                    | od register is up                        |                  | atelv               |                 |         |  |  |  |  |
|                 |                                                                                                                                 |                                                    | <b>U</b> 1                               |                  | PWM cycle bou       | Indries         |         |  |  |  |  |
| vit 9           | SYNCPOL:                                                                                                                        | SYNCPOL: Synchronize Input and Output Polarity bit |                                          |                  |                     |                 |         |  |  |  |  |
|                 |                                                                                                                                 |                                                    | rity is inverted (<br>rity is active-hig |                  |                     |                 |         |  |  |  |  |
| bit 8           | SYNCOEN: Secondary Master Time Base Sync Enable bit                                                                             |                                                    |                                          |                  |                     |                 |         |  |  |  |  |
|                 |                                                                                                                                 | 2 output is ena<br>2 output is disa                |                                          |                  |                     |                 |         |  |  |  |  |
| bit 7           | SYNCEN: External Secondary Master Time Base Synchronization Enable bit                                                          |                                                    |                                          |                  |                     |                 |         |  |  |  |  |
|                 |                                                                                                                                 | •                                                  | on of secondary<br>on of secondary       |                  |                     |                 |         |  |  |  |  |
| bit 6-4         |                                                                                                                                 | -                                                  | ry Time Base S                           |                  |                     |                 |         |  |  |  |  |
|                 | 000 = SYNC                                                                                                                      |                                                    | 5                                        |                  |                     |                 |         |  |  |  |  |
|                 |                                                                                                                                 | 001 = SYNCI2                                       |                                          |                  |                     |                 |         |  |  |  |  |
|                 |                                                                                                                                 | 010 = SYNCI3                                       |                                          |                  |                     |                 |         |  |  |  |  |
|                 | 011 = SYNCl4<br>100 = Reserved                                                                                                  |                                                    |                                          |                  |                     |                 |         |  |  |  |  |
|                 | 101 = Reserved                                                                                                                  |                                                    |                                          |                  |                     |                 |         |  |  |  |  |
|                 | 111 = Reserved                                                                                                                  |                                                    |                                          |                  |                     |                 |         |  |  |  |  |
| bit 3-0         |                                                                                                                                 |                                                    | ondary Special                           | Event Trigger    | Output Postsca      | ler Select bits |         |  |  |  |  |
|                 | 1111 = 1:16<br>0001 = 1:2 F                                                                                                     |                                                    |                                          |                  |                     |                 |         |  |  |  |  |
|                 | •                                                                                                                               | 0310010                                            |                                          |                  |                     |                 |         |  |  |  |  |
|                 |                                                                                                                                 |                                                    |                                          |                  |                     |                 |         |  |  |  |  |
|                 | •                                                                                                                               |                                                    |                                          |                  |                     |                 |         |  |  |  |  |
|                 | •                                                                                                                               |                                                    |                                          |                  |                     |                 |         |  |  |  |  |

### REGISTER 16-5: STCON: PWM SECONDARY MASTER TIME BASE CONTROL REGISTER

**Note 1:** This bit only applies to the secondary master time base period.

| U-0                                                                    | U-0 | U-0 | U-0             | U-0                                | U-0                         | U-0   | U-0   |  |
|------------------------------------------------------------------------|-----|-----|-----------------|------------------------------------|-----------------------------|-------|-------|--|
| —                                                                      | —   | —   | —               |                                    | —                           | —     | —     |  |
| bit 15                                                                 |     |     |                 |                                    |                             |       | bit 8 |  |
|                                                                        |     |     |                 |                                    |                             |       |       |  |
| U-0                                                                    | U-0 | U-0 | U-0             | U-0                                | R/W-0                       | R/W-0 | R/W-0 |  |
| —                                                                      | _   | —   |                 |                                    | PCLKDIV<2:0> <sup>(1)</sup> |       |       |  |
| bit 7                                                                  |     |     |                 |                                    |                             |       | bit 0 |  |
|                                                                        |     |     |                 |                                    |                             |       |       |  |
| Legend:                                                                |     |     |                 |                                    |                             |       |       |  |
| R = Readable bit W = Writable bit                                      |     |     | bit             | U = Unimplemented bit, read as '0' |                             |       |       |  |
| -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unl |     |     | x = Bit is unkr | nown                               |                             |       |       |  |

bit 15-3 Unimplemented: Read as '0'

- bit 2-0 PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits<sup>(1)</sup>
  - 111 = Reserved

110 = Divide by 64, maximum PWM timing resolution

- 101 = Divide by 32, maximum PWM timing resolution
- 100 = Divide by 16, maximum PWM timing resolution
- 011 = Divide by 8, maximum PWM timing resolution
- 010 = Divide by 4, maximum PWM timing resolution
- 001 = Divide by 2, maximum PWM timing resolution
- 000 = Divide by 1, maximum PWM timing resolution (power-on default)
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

### REGISTER 16-7: STPER: SECONDARY MASTER TIME BASE PERIOD REGISTER

| R/W-1                             | R/W-1                              | R/W-1 | R/W-1                              | R/W-1                | R/W-1 | R/W-1              | R/W-1 |
|-----------------------------------|------------------------------------|-------|------------------------------------|----------------------|-------|--------------------|-------|
|                                   |                                    |       | STPE                               | R<15:8>              |       |                    |       |
| bit 15                            |                                    |       |                                    |                      |       |                    | bit 8 |
|                                   |                                    |       |                                    |                      |       |                    |       |
| R/W-1                             | R/W-1                              | R/W-1 | R/W-1                              | R/W-1                | R/W-0 | R/W-0              | R/W-0 |
|                                   |                                    |       | STPE                               | R<7:0>               |       |                    |       |
| bit 7                             |                                    |       |                                    |                      |       |                    | bit 0 |
| Legend:                           |                                    |       |                                    |                      |       |                    |       |
| R = Readable bit W = Writable bit |                                    | bit   | U = Unimplemented bit, read as '0' |                      |       |                    |       |
| -n = Value at P                   | -n = Value at POR '1' = Bit is set |       |                                    | '0' = Bit is cleared |       | x = Bit is unknown |       |

bit 15-0 STPER<15:0>: Secondary Master Time Base (SMTMR) Period Value bits

# dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

### **REGISTER 16-8: SSEVTCMP: PWM SECONDARY SPECIAL EVENT COMPARE REGISTER**

|        | 00    |       |         |          |       |       |       |
|--------|-------|-------|---------|----------|-------|-------|-------|
| R/W-0  | R/W-0 | R/W-0 | R/W-0   | R/W-0    | U-0   | U-0   | U-0   |
| bit 15 |       |       |         |          |       |       | bit 8 |
|        |       |       | SSEVTCI | MP<15:8> |       |       |       |
| R/W-0  | R/W-0 | R/W-0 | R/W-0   | R/W-0    | R/W-0 | R/W-0 | R/W-0 |
|        |       |       |         |          |       |       |       |

| SSEVTCMP<7:3> | - | _ | _ | —     |
|---------------|---|---|---|-------|
| bit 7         |   |   |   | bit 0 |
|               |   |   |   |       |
|               |   |   |   |       |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-3SSEVTCMP<15:3>: Special Event Compare Count Value bitsbit 2-0Unimplemented: Read as '0'

### REGISTER 16-9: CHOP: PWM CHOP CLOCK GENERATOR REGISTER

| R/W-0    | U-0   | U-0   | U-0   | U-0   | U-0 | R/W-0 | R/W-0  |
|----------|-------|-------|-------|-------|-----|-------|--------|
| CHPCLKEN | —     | —     | —     | —     | —   | CHOF  | P<9:8> |
| bit 15   |       |       |       |       |     |       | bit 8  |
|          |       |       |       |       |     |       |        |
| R/W-0    | R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | U-0   | U-0    |
|          |       |       |       |       |     |       |        |

|                  | CHOP<7:3>        |               |                 | —      | _     |
|------------------|------------------|---------------|-----------------|--------|-------|
| bit 7            |                  |               |                 |        | bit 0 |
|                  |                  |               |                 |        |       |
| Legend:          |                  |               |                 |        |       |
| R - Readable bit | M - Mritable bit | II – Unimplei | mented hit read | as 'O' |       |

| R = Readable bit  | VV = VVritable bit | U = Unimplemented bit, | , read as '0'      |
|-------------------|--------------------|------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set   | '0' = Bit is cleared   | x = Bit is unknown |
|                   |                    |                        |                    |

| bit 15    | CHPCLKEN: Enable Chop Clock Generator bit                                                                 |
|-----------|-----------------------------------------------------------------------------------------------------------|
|           | 1 = Chop clock generator is enabled                                                                       |
|           | 0 = Chop clock generator is disabled                                                                      |
| bit 14-10 | Unimplemented: Read as '0'                                                                                |
| bit 9-3   | CHOP<9:3>: Chop Clock Divider bits                                                                        |
|           | Value in 8.32 ns increments. The frequency of the chop clock signal is given by the following expression: |
|           | Chop Frequency = 1/(16.64 * (CHOP<7:3> + 1) * Primary Master PWM Input Clock Period)                      |
|           |                                                                                                           |
| Note:     | The chop clock generator operates with the primary PWM clock prescaler (PCLKDIV<2:0>) in the PTCON2       |

**Note:** The chop clock generator operates with the primary PWM clock prescaler (PCLKDIV<2:0>) in the PTCON2 register (Register 16-2).

| R/W-0                               | R/W-0 | R/W-0            | R/W-0                              | R/W-0                | R/W-0 | R/W-0              | R/W-0 |
|-------------------------------------|-------|------------------|------------------------------------|----------------------|-------|--------------------|-------|
|                                     |       |                  | MDC                                | C<15:8>              |       |                    |       |
| bit 15                              |       |                  |                                    |                      |       |                    | bit 8 |
| R/W-0                               | R/W-0 | R/W-0            | R/W-0                              | R/W-0                | R/W-0 | R/W-0              | R/W-0 |
|                                     |       |                  | MD                                 | C<7:0>               |       |                    |       |
| bit 7                               |       |                  |                                    |                      |       |                    | bit ( |
| Legend:                             |       |                  |                                    |                      |       |                    |       |
| R = Readable bit $W = Writable bit$ |       | bit              | U = Unimplemented bit, read as '0' |                      |       |                    |       |
| -n = Value at POR                   |       | '1' = Bit is set |                                    | '0' = Bit is cleared |       | x = Bit is unknown |       |

bit 15-0 MDC<15:0>: Master PWM Duty Cycle Value bits

**Note 1:** The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to a value of Period - 0x0008.

2: As the Duty Cycle gets closer to 0% or 100% of the PWM Period (0 to 40 ns, depending on the mode of operation), PWM Duty Cycle resolution will increase from 1 to 3 LSBs.

| HS/HC-0              | HS/HC-0                                | HS/HC-0                                | R/W-0                     | R/W-0            | R/W-0                           | R/W-0                         | R/W-0               |
|----------------------|----------------------------------------|----------------------------------------|---------------------------|------------------|---------------------------------|-------------------------------|---------------------|
| FLTSTAT <sup>(</sup> | <sup>1)</sup> CLSTAT <sup>(1)</sup>    | TRGSTAT                                | FLTIEN                    | CLIEN            | TRGIEN                          | ITB <sup>(3)</sup>            | MDCS <sup>(3)</sup> |
| bit 15               | •                                      |                                        |                           |                  | •                               |                               | bit 8               |
| DAMO                 | DAM 0                                  | D.M.O                                  |                           | DAMO             | DAMO                            | D MALO                        | DAMA                |
| R/W-0                | R/W-0                                  | R/W-0<br>DTCP <sup>(4)</sup>           | U-0                       | R/W-0            | R/W-0<br>CAM <sup>(2,3,5)</sup> | R/W-0<br>XPRES <sup>(6)</sup> | R/W-0               |
|                      | C<1:0>                                 | DICPO                                  |                           | MTBS             | CAM <sup>(_,,,,,,)</sup>        | XPRES <sup>(9)</sup>          | IUE                 |
| bit 7                |                                        |                                        |                           |                  |                                 |                               | bit C               |
| Legend:              |                                        | HC = Cleared                           | l in Hardware             | HS = Set in      | Hardware                        |                               |                     |
| R = Readat           | ole bit                                | W = Writable                           | bit                       | U = Unimple      | mented bit, read                | l as '0'                      |                     |
| -n = Value a         | at POR                                 | '1' = Bit is set                       |                           | '0' = Bit is cl  |                                 | x = Bit is unkr               | nown                |
|                      |                                        |                                        |                           |                  |                                 |                               |                     |
| bit 15               | FLTSTAT: Fa                            | ult Interrupt Sta                      | atus bit <sup>(1)</sup>   |                  |                                 |                               |                     |
|                      | 1 = Fault inte                         | rrupt is pending                       | 9                         |                  |                                 |                               |                     |
|                      |                                        | interrupt is pen                       |                           |                  |                                 |                               |                     |
|                      |                                        | ared by setting                        |                           | (1)              |                                 |                               |                     |
| bit 14               |                                        | rent-Limit Inter                       | •                         | (•)              |                                 |                               |                     |
|                      |                                        | mit interrupt is<br>nt-limit interrupt |                           |                  |                                 |                               |                     |
|                      |                                        | ared by setting                        |                           |                  |                                 |                               |                     |
| bit 13               | TRGSTAT: Tr                            | igger Interrupt                        | Status bit                |                  |                                 |                               |                     |
|                      | 1 = Trigger in                         | terrupt is pend                        | ing                       |                  |                                 |                               |                     |
|                      |                                        | r interrupt is pe<br>ared by setting   |                           |                  |                                 |                               |                     |
| bit 12               |                                        | It Interrupt Enal                      |                           |                  |                                 |                               |                     |
|                      | 1 = Fault inte                         | rrupt is enabled                       | t                         |                  |                                 |                               |                     |
|                      |                                        | rrupt is disable                       |                           | T bit is cleare  | ed                              |                               |                     |
| bit 11               |                                        | ent-Limit Interru                      | •                         |                  |                                 |                               |                     |
|                      |                                        | mit interrupt en<br>mit interrupt dis  |                           | STAT bit is cl   | eared                           |                               |                     |
| bit 10               |                                        | ger Interrupt E                        |                           |                  |                                 |                               |                     |
|                      | 1 = A trigger                          | event generate                         | s an interrupt            |                  | bit is cleared                  |                               |                     |
| bit 9                | ITB: Indepen                           | dent Time Base                         | e Mode bit <sup>(3)</sup> |                  |                                 |                               |                     |
|                      | 1 = PHASEx/                            | SPHASEx regi                           | sters provide             |                  | iod for this PWN                | l generator                   |                     |
|                      | 0 = PTPER re                           | egister provides                       | s timing for thi          | s PWM gener      | ator                            |                               |                     |
| Note 1:              | Software must cle                      | ear the interrup                       | t status here, a          | and in the cor   | responding IFS I                | bit in the Interru            | upt Controller.     |
| 2:                   | The Independent<br>CAM bit is ignore   |                                        | de (ITB = 1) m            | nust be enable   | ed to use Center-               | Aligned mode.                 | If ITB = 0, the     |
| 3:                   | These bits should                      | I not be change                        | ed after the PV           | VM is enabled    | (PTEN = 1) (P                   | TCON<15>).                    |                     |
| 4:                   | For DTCP to be e                       | effective, DTC<                        | 1:0> must be              | set to '11'; oth | nerwise, DTCP is                | s ignored.                    |                     |
| 5:                   | Center-Aligned m<br>The highest Center |                                        |                           |                  |                                 |                               |                     |
| 6:                   | clock.<br>Configure CLMOI<br>mode.     | D = 0 (FCLCOM                          | NX<8>) and IT             | B=1 (PWMC        | CONx<9>) to ope                 | rate in Externa               | I Period Rese       |

## REGISTER 16-11: PWMCONX: PWM CONTROL REGISTER

### REGISTER 16-11: PWMCONX: PWM CONTROL REGISTER (CONTINUED)

| bit 8   | MDCS: Master Duty Cycle Register Select bit <sup>(3)</sup>                                                                                                                                                                                                                                                                       |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | <ul> <li>1 = MDC register provides duty cycle information for this PWM generator</li> <li>0 = PDCx and SDCx registers provide duty cycle information for this PWM generator</li> </ul>                                                                                                                                           |
| bit 7-6 | DTC<1:0>: Dead Time Control bits                                                                                                                                                                                                                                                                                                 |
|         | <ul> <li>11 = Dead Time Compensation mode</li> <li>10 = Dead time function is disabled</li> <li>01 = Negative dead time actively applied for Complementary Output mode</li> <li>00 = Positive dead time actively applied for all output modes</li> </ul>                                                                         |
| bit 5   | <b>DTCP:</b> Dead Time Compensation Polarity bit <sup>(4)</sup>                                                                                                                                                                                                                                                                  |
|         | 1 = If DTCMPx = 0, PWMxL is shortened, and PWMxH is lengthened                                                                                                                                                                                                                                                                   |
|         | If DTCMPx = 1, PWMxH is shortened, and PWMxL is lengthened<br>0 = If DTCMPx = 0, PWMxH is shortened, and PWMLx is lengthened                                                                                                                                                                                                     |
|         | If DTCMPx = 1, PWMxL is shortened, and PWMxH is lengthened                                                                                                                                                                                                                                                                       |
| bit 4   | Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                       |
| bit 3   | MTBS: Master Time Base Select bit                                                                                                                                                                                                                                                                                                |
|         | <ul> <li>1 = PWM generator uses the secondary master time base for synchronization and the clock source<br/>for the PWM generation logic (if secondary time base is available)</li> <li>0 = PWM generator uses the primary master time base for synchronization and the clock source for<br/>the PWM generation logic</li> </ul> |
| bit 2   | CAM: Center-Aligned Mode Enable bit <sup>(2,3,5)</sup>                                                                                                                                                                                                                                                                           |
|         | <ul> <li>1 = Center-Aligned mode is enabled</li> <li>0 = Edge-Aligned mode is enabled</li> </ul>                                                                                                                                                                                                                                 |
| bit 1   | XPRES: External PWM Reset Control bit <sup>(6)</sup>                                                                                                                                                                                                                                                                             |
|         | <ul> <li>1 = Current-limit source resets the time base for this PWM generator if it is in Independent Time Base mode</li> <li>a External pipe do not affect PWM time base</li> </ul>                                                                                                                                             |
| bit 0   | 0 = External pins do not affect PWM time base<br>IUE: Immediate Update Enable bit                                                                                                                                                                                                                                                |
| bit 0   | <ul> <li>1 = Updates to the active MDC/PDCx/SDCx registers are immediate</li> <li>0 = Updates to the active PDCx registers are synchronized to the PWM time base</li> </ul>                                                                                                                                                      |
| Note 1: | Software must clear the interrupt status here, and in the corresponding IFS bit in the Interrupt Controller.                                                                                                                                                                                                                     |
| 2:      | The Independent Time Base mode (ITB = 1) must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.                                                                                                                                                                                                         |
| 3:      | These bits should not be changed after the PWM is enabled (PTEN = 1) (PTCON<15>).                                                                                                                                                                                                                                                |
| 4:      | For DTCP to be effective, DTC<1:0> must be set to '11'; otherwise, DTCP is ignored.                                                                                                                                                                                                                                              |
| 5.      | Contar Aligned mode ignores the least significant 2 bits of the duty system phase, and dead time registers                                                                                                                                                                                                                       |

- 5: Center-Aligned mode ignores the least significant 3 bits of the duty cycle, phase, and dead time registers. The highest Center-Aligned mode resolution available is 8.32 ns with the clock prescaler set to the fastest clock.
- 6: Configure CLMOD = 0 (FCLCONX<8>) and ITB = 1 (PWMCONx<9>) to operate in External Period Reset mode.

### REGISTER 16-12: PDCx: PWM GENERATOR DUTY CYCLE REGISTER

| R/W-0                                                                | R/W-0 | R/W-0 | R/W-0 | R/W-0  | R/W-0 | R/W-0 | R/W-0 |
|----------------------------------------------------------------------|-------|-------|-------|--------|-------|-------|-------|
|                                                                      |       |       | PDC>  | <15:8> |       |       |       |
| bit 15                                                               |       |       |       |        |       |       | bit 8 |
|                                                                      |       |       |       |        |       |       |       |
| R/W-0                                                                | R/W-0 | R/W-0 | R/W-0 | R/W-0  | R/W-0 | R/W-0 | R/W-0 |
|                                                                      |       |       | PDC   | x<7:0> |       |       |       |
| bit 7                                                                |       |       |       |        |       |       | bit 0 |
|                                                                      |       |       |       |        |       |       |       |
| Legend:                                                              |       |       |       |        |       |       |       |
| R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' |       |       |       |        |       |       |       |

bit 15-0 PDCx<15:0>: PWM Generator # Duty Cycle Value bits

'1' = Bit is set

-n = Value at POR

- Note 1: In Independent PWM mode, the PDCx register controls the PWMxH duty cycle only. In the Complementary, Redundant and Push-Pull PWM modes, the PDCx register controls the duty cycle of both the PWMxH and PWMxL.
   2: The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0008,
  - **2:** The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to a value of Period 0x0008.

'0' = Bit is cleared

x = Bit is unknown

**3:** As the Duty Cycle gets closer to 0% or 100% of the PWM Period (0 to 40 ns, depending on the mode of operation), PWM Duty Cycle resolution will increase from 1 to 3 LSBs.

### REGISTER 16-13: SDCx: PWM SECONDARY DUTY CYCLE REGISTER

| R/W-0  | R/W-0 | R/W-0 | R/W-0 | R/W-0  | R/W-0 | R/W-0 | R/W-0 |
|--------|-------|-------|-------|--------|-------|-------|-------|
|        |       |       | SDCx  | <15:8> |       |       |       |
| bit 15 |       |       |       |        |       |       | bit 8 |
|        |       |       |       |        |       |       |       |
| R/W-0  | R/W-0 | R/W-0 | R/W-0 | R/W-0  | R/W-0 | R/W-0 | R/W-0 |
|        |       |       | SDCx  | <7:0>  |       |       |       |
| bit 7  |       |       |       |        |       |       | bit 0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

#### bit 15-0 SDCx<15:0>: Secondary Duty Cycle bits for PWMxL Output Pin

| Note 1: | The SDCx register is used in Independent PWM mode only. When used in Independent PWM mode, the SDCx register controls the PWMxL duty cycle.                                           |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:      | The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to a value of Period - 0x0008. |
| 3:      | As the Duty Cycle gets closer to 0% or 100% of the PWM Period (0 to 40 ns, depending on the mode of operation), PWM Duty Cycle resolution will increase from 1 to 3 LSBs.             |

© 2010 Microchip Technology Inc.

| R/W-0           | R/W-0 | R/W-0            | R/W-0 | R/W-0                                   | R/W-0 | R/W-0 | R/W-0 |
|-----------------|-------|------------------|-------|-----------------------------------------|-------|-------|-------|
|                 |       |                  | PHAS  | Ex<15:8>                                |       |       |       |
| bit 15          |       |                  |       |                                         |       |       | bit 8 |
|                 |       |                  |       |                                         |       |       |       |
| R/W-0           | R/W-0 | R/W-0            | R/W-0 | R/W-0                                   | R/W-0 | R/W-0 | R/W-0 |
|                 |       |                  | PHAS  | Ex<7:0>                                 |       |       |       |
| bit 7           |       |                  |       |                                         |       |       | bit 0 |
|                 |       |                  |       |                                         |       |       |       |
| Legend:         |       |                  |       |                                         |       |       |       |
| R = Readable    | bit   | W = Writable b   | bit   | U = Unimplemented bit, read as '0'      |       |       |       |
| -n = Value at P | OR    | '1' = Bit is set |       | '0' = Bit is cleared x = Bit is unknown |       |       | nown  |

bit 15-0 **PHASEx<15:0>:** PWM Phase Shift Value or Independent Time Base Period bits for the PWM Generator

| If $PWMCONx<9> = 0$ , the following applies based on the mode of operation:                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Complementary, Redundant and Push-Pull Output mode (IOCONx&lt;10:8&gt; = 00, 01, or 10)<br/>PHASEx&lt;15:0&gt; = Phase shift value for PWMxH and PWMxL outputs</li> </ul>             |
| <ul> <li>True Independent Output mode (IOCONx&lt;10:8&gt; = 11) PHASEx&lt;15:0&gt; = Phase shift value for<br/>PWMxH only</li> </ul>                                                           |
| • When the PHASEx/SPHASEx register provides the phase shift with respect to the master time base; therefore, the valid range is 0x0000 through Period.                                         |
| If $PWMCONx < 9 > = 1$ , the following applies based on the mode of operation:                                                                                                                 |
| <ul> <li>Complementary, Redundant, and Push-Pull Output mode (IOCONx&lt;10:8&gt; = 00, 01, or 10) PHA-<br/>SEx&lt;15:0&gt; = Independent time base period value for PWMxH and PWMxL</li> </ul> |
| <ul> <li>True Independent Output mode (IOCONx&lt;10:8&gt; = 11) PHASEx&lt;15:0&gt; = Independent time base<br/>period value for PWMxH only</li> </ul>                                          |
| • When the PHASEx/SPHASEx register provides the local period, the valid range is 0x0000 through 0xFFF8.                                                                                        |
|                                                                                                                                                                                                |

| R/W-0           | R/W-0  | R/W-0            | R/W-0 | R/W-0                                   | R/W-0  | R/W-0  | R/W-0 |
|-----------------|--------|------------------|-------|-----------------------------------------|--------|--------|-------|
|                 |        |                  | SPHAS | Ex<15:8>                                |        |        |       |
| bit 15          |        |                  |       |                                         |        |        | bit 8 |
| R/W-0           | R/W-0  | R/W-0            | R/W-0 | R/W-0                                   | R/W-0  | R/W-0  | R/W-0 |
| 10000           | 1010 0 | 10100            |       | SEx<7:0>                                | 1010 0 | 1010 0 | 1010  |
| bit 7           |        |                  |       |                                         |        |        | bit 0 |
| Legend:         |        |                  |       |                                         |        |        |       |
| R = Readable I  | bit    | W = Writable b   | oit   | U = Unimplemented bit, read as '0'      |        |        |       |
| -n = Value at P | OR     | '1' = Bit is set |       | '0' = Bit is cleared x = Bit is unknown |        |        | nown  |

bit 15-0 SPHASEx<15:0>: Secondary Phase Offset bits for PWMxL Output Pin (used in Independent PWM mode only)

**Note 1:** If PWMCONx<9> = 0, the following applies based on the mode of operation:

- Complementary, Redundant and Push-Pull Output mode (IOCONx<10:8> = 00, 01, or 10) SPHA-SEx<15:0> = Not used
- True Independent Output mode (IOCONx<10:8> = 11) PHASEx<15:0> = Phase shift value for PWMxL only
- **2:** If PWMCONx<9> = 1, the following applies based on the mode of operation:
  - Complementary, Redundant and Push-Pull Output mode (IOCONx<10:8> = 00, 01, or 10) SPHA-SEx<15:0> = Not used
  - True Independent Output mode (IOCONx<10:8> = 11) PHASEx<15:0> = Independent time base period value for PWMxL only
  - When the PHASEx/SPHASEx register provides the local period, the valid range of values is 0x0010-0xFFF8.

| U-0                               | R/W-0 | R/W-0           | R/W-0                              | R/W-0                | R/W-0 | R/W-0                                                                                                                               |  |  |
|-----------------------------------|-------|-----------------|------------------------------------|----------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|
| _                                 |       | DTRx<13:8>      |                                    |                      |       |                                                                                                                                     |  |  |
| bit 15                            |       |                 |                                    |                      |       |                                                                                                                                     |  |  |
|                                   |       |                 |                                    |                      |       |                                                                                                                                     |  |  |
| R/W-0                             | R/W-0 | R/W-0           | R/W-0                              | R/W-0                | R/W-0 | R/W-0                                                                                                                               |  |  |
|                                   |       | DTR             | x<7:0>                             |                      |       |                                                                                                                                     |  |  |
|                                   |       |                 |                                    |                      |       | bit 0                                                                                                                               |  |  |
|                                   |       |                 |                                    |                      |       |                                                                                                                                     |  |  |
|                                   |       |                 |                                    |                      |       |                                                                                                                                     |  |  |
| R = Readable bit W = Writable bit |       |                 | U = Unimplemented bit, read as '0' |                      |       |                                                                                                                                     |  |  |
| -n = Value at POR                 |       | 1' = Bit is set |                                    | '0' = Bit is cleared |       | nown                                                                                                                                |  |  |
|                                   |       | R/W-0 R/W-0     |                                    |                      |       | DTRx<13:8>           R/W-0         R/W-0         R/W-0         R/W-0           DTRx<7:0>         U = Unimplemented bit, read as '0' |  |  |

bit 15-14 Unimplemented: Read as '0'

bit 13-0 DTRx<13:0>: Unsigned 14-bit Dead Time Value bits for PWMx Dead Time Unit

### **REGISTER 16-17: ALTDTRx: PWM ALTERNATE DEAD TIME REGISTER**

| U-0             | U-0   | R/W-0            | R/W-0         | R/W-0                                    | R/W-0 | R/W-0 | R/W-0 |  |  |
|-----------------|-------|------------------|---------------|------------------------------------------|-------|-------|-------|--|--|
| _               | —     |                  | ALTDTRx<13:8> |                                          |       |       |       |  |  |
| bit 15 b        |       |                  |               |                                          |       |       |       |  |  |
| <b></b>         |       |                  |               |                                          |       |       |       |  |  |
| R/W-0           | R/W-0 | R/W-0            | R/W-0         | R/W-0                                    | R/W-0 | R/W-0 | R/W-0 |  |  |
|                 |       |                  | ALTDT         | Rx<7:0>                                  |       |       |       |  |  |
| bit 7           |       |                  |               |                                          |       |       | bit 0 |  |  |
|                 |       |                  |               |                                          |       |       |       |  |  |
| Legend:         |       |                  |               |                                          |       |       |       |  |  |
| R = Readable    | bit   | W = Writable b   | oit           | U = Unimplemented bit, read as '0'       |       |       |       |  |  |
| -n = Value at P | OR    | '1' = Bit is set |               | 0' = Bit is cleared $x = Bit is unknown$ |       |       | nown  |  |  |

bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-bit Dead Time Value bits for PWMx Dead Time Unit

| R/W-0              | R/W-0                                                                                                    | R/W-0                                | R/W-0          | U-0               | U-0                                    | U-0             | U-0          |  |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------|----------------|-------------------|----------------------------------------|-----------------|--------------|--|--|--|
|                    | TRGDI                                                                                                    | V<3:0>                               |                | —                 | —                                      | —               | —            |  |  |  |
| bit 15             |                                                                                                          |                                      |                |                   |                                        |                 | bit          |  |  |  |
| R/W-0              | U-0                                                                                                      | R/W-0                                | R/W-0          | R/W-0             | R/W-0                                  | R/W-0           | R/W-0        |  |  |  |
| DTM <sup>(1)</sup> |                                                                                                          | 10/00-0                              | 11/00-0        |                   | TRT<5:0>                               | 10/00-0         | 11/10-0      |  |  |  |
| bit 7              |                                                                                                          |                                      |                | 11631             | 1K1<3.0>                               |                 | bit          |  |  |  |
|                    |                                                                                                          |                                      |                |                   |                                        |                 | DI           |  |  |  |
| Legend:            |                                                                                                          |                                      |                |                   |                                        |                 |              |  |  |  |
| R = Readabl        | e bit                                                                                                    | W = Writable                         | bit            | U = Unimpler      | nented bit, read                       | l as '0'        |              |  |  |  |
| -n = Value at      | POR                                                                                                      | '1' = Bit is set                     |                | '0' = Bit is cle  | ared                                   | x = Bit is unkr | nown         |  |  |  |
|                    |                                                                                                          |                                      |                |                   |                                        |                 |              |  |  |  |
| bit 15-12          |                                                                                                          | >: Trigger # Ou                      | -              |                   |                                        |                 |              |  |  |  |
|                    | 00                                                                                                       | er output for ev<br>er output for ev | ,              |                   |                                        |                 |              |  |  |  |
|                    |                                                                                                          |                                      |                |                   |                                        |                 |              |  |  |  |
|                    | 1101 = Trigger output for every 14th trigger event<br>1100 = Trigger output for every 13th trigger event |                                      |                |                   |                                        |                 |              |  |  |  |
|                    | 1011 = Trigger output for every 12th trigger event                                                       |                                      |                |                   |                                        |                 |              |  |  |  |
|                    | 1010 = Trigger output for every 11th trigger event<br>1001 = Trigger output for every 10th trigger event |                                      |                |                   |                                        |                 |              |  |  |  |
|                    |                                                                                                          | er output for ev<br>er output for ev |                |                   |                                        |                 |              |  |  |  |
|                    |                                                                                                          | er output for ev                     |                |                   |                                        |                 |              |  |  |  |
|                    |                                                                                                          | er output for ev                     |                |                   |                                        |                 |              |  |  |  |
|                    |                                                                                                          | er output for ev                     |                |                   |                                        |                 |              |  |  |  |
|                    |                                                                                                          | er output for ev                     |                |                   |                                        |                 |              |  |  |  |
|                    |                                                                                                          | er output for ever output for ever   |                |                   |                                        |                 |              |  |  |  |
|                    |                                                                                                          | er output for ev                     |                |                   |                                        |                 |              |  |  |  |
|                    |                                                                                                          | er output for ev                     |                |                   |                                        |                 |              |  |  |  |
| bit 11-8           | Unimplemer                                                                                               | nted: Read as '                      | 0'             |                   |                                        |                 |              |  |  |  |
| bit 7              |                                                                                                          | rigger Mode bit                      |                |                   |                                        |                 |              |  |  |  |
|                    | 0 = Seconda                                                                                              |                                      | is not combine | ed with the prim  | y trigger event t<br>hary trigger ever |                 |              |  |  |  |
| bit 6              | Unimplemer                                                                                               | nted: Read as '                      | 0'             |                   |                                        |                 |              |  |  |  |
| bit 5-0            | TRGSTRT<5:0>: Trigger Postscaler Start Enable Select bits                                                |                                      |                |                   |                                        |                 |              |  |  |  |
|                    | 111111 = Wa                                                                                              | ait 63 PWM cyc                       | cles before ge | nerating the firs | st trigger event                       | after the modul | e is enabled |  |  |  |
|                    | •                                                                                                        |                                      |                |                   |                                        |                 |              |  |  |  |
|                    | •                                                                                                        |                                      |                |                   |                                        |                 |              |  |  |  |
|                    | •                                                                                                        |                                      |                |                   |                                        |                 |              |  |  |  |
|                    | 000010 = Wa<br>000001 = Wa                                                                               |                                      |                |                   | trigger event a                        |                 |              |  |  |  |

## REGISTER 16-18: TRGCONX: PWM TRIGGER CONTROL REGISTER

**Note 1:** The secondary PWM generator cannot generate PWM trigger interrupts.

| R/W-0                                  | R/W-0                                        | R/W-0                                                                                                                                                                                      | R/W-0                                               | R/W-0                                                             | R/W-0                | R/W-0           | R/W-0  |  |  |
|----------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------|----------------------|-----------------|--------|--|--|
| PENH                                   | PENL                                         | POLH                                                                                                                                                                                       | POLL                                                | PMOD-                                                             | <1:0> <sup>(1)</sup> | OVRENH          | OVRENL |  |  |
| bit 15                                 |                                              |                                                                                                                                                                                            |                                                     |                                                                   |                      |                 | bit    |  |  |
| R/W-0                                  | R/W-0                                        | R/W-0                                                                                                                                                                                      | R/W-0                                               | R/W-0                                                             | R/W-0                | R/W-0           | R/W-0  |  |  |
| OVRDAT<1:0> FLTDAT<1:0> CLDAT<1:0> SWA |                                              |                                                                                                                                                                                            |                                                     |                                                                   | SWAP                 | OSYNC           |        |  |  |
| bit 7                                  |                                              |                                                                                                                                                                                            |                                                     |                                                                   |                      |                 | bit    |  |  |
| Legend:                                |                                              |                                                                                                                                                                                            |                                                     |                                                                   |                      |                 |        |  |  |
| R = Readabl                            | le bit                                       | W = Writable                                                                                                                                                                               | bit                                                 | U = Unimplem                                                      | nented bit, rea      | d as '0'        |        |  |  |
| -n = Value at                          | t POR                                        | '1' = Bit is se                                                                                                                                                                            | t                                                   | '0' = Bit is clea                                                 | ared                 | x = Bit is unkn | iown   |  |  |
| bit 15                                 | 1 = PWM mo                                   | xH Output Pin<br>dule controls F<br>dule controls F                                                                                                                                        |                                                     |                                                                   |                      |                 |        |  |  |
| bit 14                                 | 1 = PWM mo                                   | KL Output Pin<br>dule controls F<br>dule controls F                                                                                                                                        |                                                     |                                                                   |                      |                 |        |  |  |
| bit 13                                 | 1 = PWMxH p                                  | xH Output Pin<br>bin is active-lo<br>bin is active-hi                                                                                                                                      | w                                                   |                                                                   |                      |                 |        |  |  |
| bit 12                                 | 1 = PWMxL p                                  | POLL: PWMxL Output Pin Polarity bit<br>1 = PWMxL pin is active-low<br>0 = PWMxL pin is active-high                                                                                         |                                                     |                                                                   |                      |                 |        |  |  |
| bit 11-10                              | 11 = PWM I/C<br>10 = PWM I/C<br>01 = PWM I/C | D pin pair is in<br>D pin pair is in<br>D pin pair is in                                                                                                                                   | the Push-Pull the Redundan                          | pendent Output                                                    |                      |                 |        |  |  |
| bit 9                                  | 1 = OVRDAT                                   | <1> provides of                                                                                                                                                                            | for PWMxH P<br>data for output<br>s data for PWI    | on PWMxH pin                                                      |                      |                 |        |  |  |
| bit 8                                  | 1 = OVRDAT                                   | <0> provides of                                                                                                                                                                            | for PWMxL Pin<br>data for output<br>es data for PWI | on PWMxL pin                                                      |                      |                 |        |  |  |
| bit 7-6                                | If OVERENH                                   | <b>OVRDAT&lt;1:0&gt;:</b> Data for PWMxH, PWMxL Pins if Override is Enabled bits<br>If OVERENH = 1, OVRDAT<1> provides data for PWMxH<br>If OVERENL = 1, OVRDAT<0> provides data for PWMxL |                                                     |                                                                   |                      |                 |        |  |  |
| bit 5-4                                | FCLCONx <if<br>If Fault active</if<br>       | LTMOD> = 0:<br>, then FLTDAT                                                                                                                                                               | Normal Fault                                        | WMxL Pins if F<br><u>mode</u><br>state for PWMx<br>state for PWMx | Н                    | abled bits      |        |  |  |
|                                        |                                              | it active, then                                                                                                                                                                            |                                                     | rovides data for                                                  |                      |                 |        |  |  |

## REGISTER 16-19: IOCONx: PWM I/O CONTROL REGISTER

**Note 1:** These bits should not be changed after the PWM module is enabled (PTEN = 1).

2: State represents the active/inactive state of the PWM depending on the POLH and POLL bit settings.

### REGISTER 16-19: IOCONx: PWM I/O CONTROL REGISTER (CONTINUED)

| bit 3-2 | CLDAT<1:0>: State <sup>(2)</sup> for PWMxH and PWMxL Pins if CLMOD is Enabled bits                 |
|---------|----------------------------------------------------------------------------------------------------|
|         | FCLCONx <ifltmod> = 0: Normal Fault mode</ifltmod>                                                 |
|         | If current-limit active, then CLDAT<1> provides state for PWMxH                                    |
|         | If current-limit active, then CLDAT<0> provides state for PWMxL                                    |
|         | FCLCONx <ifltmod> = 1: Independent Fault mode<br/>CLDAT&lt;1:0&gt; is ignored</ifltmod>            |
| bit 1   | SWAP: SWAP PWMxH and PWMxL pins bit                                                                |
|         | 1 = PWMxH output signal is connected to PWMxL pins; PWMxL output signal is connected to PWMxH pins |
|         | 0 = PWMxH and PWMxL pins are mapped to their respective pins                                       |
| bit 0   | OSYNC: Output Override Synchronization bit                                                         |
|         | 1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWM time base                |
|         | 0 = Output overrides via the OVDDAT<1:0> bits occur on next CPU clock boundary                     |
|         |                                                                                                    |
|         |                                                                                                    |

- **Note 1:** These bits should not be changed after the PWM module is enabled (PTEN = 1).
  - 2: State represents the active/inactive state of the PWM depending on the POLH and POLL bit settings.

| R/W-0                             | R/W-0 | R/W-0            | R/W-0                              | R/W-0                | R/W-0 | R/W-0              | R/W-0 |
|-----------------------------------|-------|------------------|------------------------------------|----------------------|-------|--------------------|-------|
|                                   |       |                  | TRGC                               | MP<15:8>             |       |                    |       |
| bit 15                            |       |                  |                                    |                      |       |                    | bit   |
| R/W-0                             | R/W-0 | R/W-0            | R/W-0                              | R/W-0                | U-0   | U-0                | U-0   |
|                                   |       | TRGCMP<7:3>      |                                    |                      |       | _                  | _     |
| bit 7                             |       |                  |                                    | ·                    |       |                    | bit   |
| Legend:                           |       |                  |                                    |                      |       |                    |       |
| R = Readable bit W = Writable bit |       | oit              | U = Unimplemented bit, read as '0' |                      |       |                    |       |
| -n = Value at POR                 |       | '1' = Bit is set |                                    | '0' = Bit is cleared |       | x = Bit is unknown |       |

## REGISTER 16-20: TRIGX: PWM PRIMARY TRIGGER COMPARE VALUE REGISTER

bit 15-3 **TRGCMP<15:3>:** Trigger Compare Value bits When the primary PWM functions in local time base, this register contains the compare values that can trigger the ADC module.

bit 2-0 Unimplemented: Read as '0'

|                              | R/W-0 | R/W-0                     | R/W-0             | R/W-0 | R/W-0                   | R/W-0                   |
|------------------------------|-------|---------------------------|-------------------|-------|-------------------------|-------------------------|
|                              | CLS   | 3RC<4:0> <sup>(2,3)</sup> |                   |       | CLPOL <sup>(1)</sup>    | CLMOD                   |
|                              |       |                           |                   |       |                         | bit 8                   |
| R/W-0                        | R/W-0 | R/W-0                     | R/W-0             | R/W-0 | R/W-0                   | R/W-0                   |
| FLTSRC<4:0> <sup>(2,3)</sup> |       |                           |                   |       | FLTMO                   | D<1:0>                  |
|                              |       |                           |                   |       |                         | bit 0                   |
|                              |       | R/W-0 R/W-0               | R/W-0 R/W-0 R/W-0 |       | R/W-0 R/W-0 R/W-0 R/W-0 | R/W-0 R/W-0 R/W-0 R/W-0 |

### REGISTER 16-21: FCLCONx: PWM FAULT CURRENT-LIMIT CONTROL REGISTER

| Legend:           |                  |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

bit 15

**IFLTMOD:** Independent Fault Mode Enable bit

- 1 = Independent Fault mode: Current-limit input maps FLTDAT<1> to PWMxH output, and Fault input maps FLTDAT<0> to PWMxL output. The CLDAT<1:0> bits are not used for override functions.
- 0 = Normal Fault mode: Current-Limit mode maps CLDAT<1:0> bits to the PWMxH and PWMxL outputs. The PWM Fault mode maps FLTDAT<1:0> to the PWMxH and PWMxL outputs.

#### **Note 1:** These bits should be changed only when PTEN = 0 (PTCON<15>).

- 2: When Independent Fault mode is enabled (IFLTMOD = 1), and Fault 1 is used for Current-Limit mode (CLSRC<4:0> = b0000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.
- **3:** When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Fault mode (FLTSRC<4:0> = b0000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.

### REGISTER 16-21: FCLCONx: PWM FAULT CURRENT-LIMIT CONTROL REGISTER (CONTINUED)

bit 14-10 **CLSRC<4:0>:** Current-Limit Control Signal Source Select bits for PWM Generator  $\#^{(2,4)}$ . These bits also specify the source for the dead time compensation input signal, DTCMPx.

|       | These bits also specify the source for the dead time compensation           |
|-------|-----------------------------------------------------------------------------|
|       | 11111 = Reserved                                                            |
|       | 11110 = Fault 23                                                            |
|       | 11101 = Fault 22                                                            |
|       | 11100 <b>= Fault 21</b>                                                     |
|       | 11011 = Fault 20                                                            |
|       | 11010 <b>= Fault 19</b>                                                     |
|       | 11001 <b>= Fault 18</b>                                                     |
|       | 11000 <b>= Fault 17</b>                                                     |
|       | 10111 <b>= Fault 16</b>                                                     |
|       | 10110 <b>= Fault 15</b>                                                     |
|       | 10101 <b>= Fault 14</b>                                                     |
|       | 10100 <b>= Fault 13</b>                                                     |
|       | 10011 = Fault 12                                                            |
|       | 10010 = Fault 11                                                            |
|       | 10001 = Fault 10                                                            |
|       | 10000 = Fault 9                                                             |
|       | 01111 = Fault 8                                                             |
|       | 01110 = Fault 7                                                             |
|       | 01101 = Fault 6                                                             |
|       | 01100 = Fault 5                                                             |
|       | 01011 = Fault 4                                                             |
|       | 01010 = Fault 3                                                             |
|       | 01001 = Fault 2                                                             |
|       | 01000 = Fault 1                                                             |
|       | 00111 = Reserved                                                            |
|       | 00110 = Reserved                                                            |
|       | 00101 = Reserved                                                            |
|       | 00100 = Reserved                                                            |
|       | 00011 = Analog Comparator 4                                                 |
|       | 00010 = Analog Comparator 3                                                 |
|       | 00001 = Analog Comparator 2                                                 |
|       | 00000 = Analog Comparator 1                                                 |
| bit 9 | <b>CLPOL:</b> Current-Limit Polarity bit for PWM Generator # <sup>(1)</sup> |
|       | 1 = The selected current-limit source is active-low                         |
|       | 0 = The selected current-limit source is active-high                        |
| bit 8 | <b>CLMOD:</b> Current-Limit Mode Enable bit for PWM Generator #             |
|       | 1 = Current-Limit mode is enabled                                           |
|       | 0 = Current-Limit mode is disabled                                          |
|       |                                                                             |

- **Note 1:** These bits should be changed only when PTEN = 0 (PTCON<15>).
  - 2: When Independent Fault mode is enabled (IFLTMOD = 1), and Fault 1 is used for Current-Limit mode (CLSRC<4:0> = b0000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.
  - 3: When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Fault mode (FLTSRC<4:0> = b0000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.

#### REGISTER 16-21: FCLCONx: PWM FAULT CURRENT-LIMIT CONTROL REGISTER (CONTINUED)

bit 7-3

bit 2

bit 1-0

FLTSRC<4:0>: Fault Control Signal Source Select bits for PWM Generator #(2,4)

- 11111 = Reserved 11110 = Fault 23 11101 = Fault 22 11100 = Fault 21 11011 = Fault 20 11010 = Fault 19 11001 = Fault 18 11000 = Fault 17 10111 = Fault 16 10110 = Fault 15 10101 = Fault 14 10100 = Fault 13 10011 = Fault 12 10010 = Fault 11 10001 = Fault 10 10000 = Fault 9 01111 = Fault 8 01110 = Fault 7 01101 = Fault 6 01100 = Fault 5 01011 = Fault 4 01010 = Fault 3 01001 = Fault 2 01000 = Fault 1 00111 = Reserved 00110 = Reserved 00101 = Reserved 00100 = Reserved 00011 = Analog Comparator 4 00010 = Analog Comparator 3 00001 = Analog Comparator 2 00000 = Analog Comparator 1 FLTPOL: Fault Polarity bit for PWM Generator #(1) 1 = The selected Fault source is active-low 0 = The selected Fault source is active-high FLTMOD<1:0>: Fault Mode bits for PWM Generator # 11 = Fault input is disabled 10 = Reserved
  - 01 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (cycle)
  - 00 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (latched condition)
- **Note 1:** These bits should be changed only when PTEN = 0 (PTCON<15>).
  - 2: When Independent Fault mode is enabled (IFLTMOD = 1), and Fault 1 is used for Current-Limit mode (CLSRC<4:0> = b0000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.
  - **3:** When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Fault mode (FLTSRC<4:0> = b0000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.

| R/W-0                              | R/W-0 | R/W-0 | R/W-0                                 | R/W-0    | R/W-0 | R/W-0 | R/W-0 |
|------------------------------------|-------|-------|---------------------------------------|----------|-------|-------|-------|
|                                    |       |       | STRGC                                 | MP<15:8> |       |       |       |
| bit 15                             |       |       |                                       |          |       |       | bit 8 |
| R/W-0                              | R/W-0 | R/W-0 | R/W-0                                 | R/W-0    | U-0   | U-0   | U-0   |
| STRGCMP<7:3>                       |       |       |                                       | —        | _     | —     |       |
| bit 7                              |       |       |                                       |          |       | •     | bit C |
| Legend:                            |       |       |                                       |          |       |       |       |
| R = Readable bit W = Writable bit  |       |       | U = Unimplemented bit, read as '0'    |          |       |       |       |
| -n = Value at POR '1' = Bit is set |       |       | '0' = Bit is cleared x = Bit is unkno |          |       | nown  |       |

# REGISTER 16-22: STRIGX: PWM SECONDARY TRIGGER COMPARE VALUE REGISTER<sup>(1)</sup>

bit 15-3 STRGCMP<15:3>: Secondary Trigger Compare Value bits When the secondary PWM functions in local time base, this register contains the compare values that can trigger the ADC module.

bit 2-0 Unimplemented: Read as '0'

**Note 1:** STRIGx cannot generate the PWM trigger interrupts.

| R/W-0            | R/W-0                                                                                                                                                                                                                                           | R/W-0                                                                                                                                                                                             | R/W-0                               | R/W-0                                                | R/W-0            | U-0              | U-0          |  |  |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------|------------------|------------------|--------------|--|--|--|--|
| PHR              | PHF                                                                                                                                                                                                                                             | PLR                                                                                                                                                                                               | PLF                                 | FLTLEBEN                                             | CLLEBEN          |                  |              |  |  |  |  |
| bit 15           |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                   | ·                                   |                                                      |                  |                  | bit          |  |  |  |  |
| U-0              | U-0                                                                                                                                                                                                                                             | R/W-0                                                                                                                                                                                             | R/W-0                               | R/W-0                                                | R/W-0            | R/W-0            | R/W-0        |  |  |  |  |
| —                |                                                                                                                                                                                                                                                 | BCH                                                                                                                                                                                               | BCL                                 | BPHH                                                 | BPHL             | BPLH             | BPLL         |  |  |  |  |
| bit 7            |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                   |                                     | •                                                    |                  |                  | bit          |  |  |  |  |
| Legend:          |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                   |                                     |                                                      |                  |                  |              |  |  |  |  |
| R = Readable     | e bit                                                                                                                                                                                                                                           | W = Writable                                                                                                                                                                                      | bit                                 | U = Unimpler                                         | mented bit, read | as '0'           |              |  |  |  |  |
| -n = Value at    | POR                                                                                                                                                                                                                                             | '1' = Bit is se                                                                                                                                                                                   | t                                   | '0' = Bit is cle                                     | ared             | x = Bit is unkr  | iown         |  |  |  |  |
| bit 15<br>bit 14 | 1 = Rising ed<br>0 = Leading-I                                                                                                                                                                                                                  |                                                                                                                                                                                                   | will trigger Le<br>ignores rising   | ading-Edge Bla<br>edge of PWM                        |                  |                  |              |  |  |  |  |
|                  | 1 = Falling ec                                                                                                                                                                                                                                  | dge of PWMxH                                                                                                                                                                                      | will trigger Le                     | ading-Edge Bla<br>g edge of PWM                      |                  |                  |              |  |  |  |  |
| bit 13           | 1 = Rising ed                                                                                                                                                                                                                                   |                                                                                                                                                                                                   | will trigger Lea                    | e bit<br>ading-Edge Bla<br>edge of PWM               |                  |                  |              |  |  |  |  |
| bit 12           | PLF: PWMxL Falling Edge Trigger Enable bit<br>1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter<br>0 = Leading-Edge Blanking ignores falling edge of PWMxL                                                                   |                                                                                                                                                                                                   |                                     |                                                      |                  |                  |              |  |  |  |  |
| bit 11           | 1 = Leading-                                                                                                                                                                                                                                    | <b>FLTLEBEN:</b> Fault Input Leading-Edge Blanking Enable bit<br>1 = Leading-Edge Blanking is applied to selected fault input<br>0 = Leading-Edge Blanking is not applied to selected fault input |                                     |                                                      |                  |                  |              |  |  |  |  |
| bit 10           | 1 = Leading-                                                                                                                                                                                                                                    | Edge Blanking                                                                                                                                                                                     | is applied to s                     | Blanking Enable<br>selected curren<br>to selected cu |                  |                  |              |  |  |  |  |
| bit 9-6          | Unimplemen                                                                                                                                                                                                                                      | ted: Read as                                                                                                                                                                                      | ʻ0'                                 |                                                      |                  |                  |              |  |  |  |  |
| bit 5            | BCH: Blankir                                                                                                                                                                                                                                    | BCH: Blanking in Selected-Blanking Signal High Enable bit <sup>(1)</sup>                                                                                                                          |                                     |                                                      |                  |                  |              |  |  |  |  |
|                  |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                   |                                     |                                                      | als) when select | ed blanking sig  | gnal is high |  |  |  |  |
| <b>L</b> .1. A   |                                                                                                                                                                                                                                                 | ing when selec                                                                                                                                                                                    | •                                   | •                                                    | ⊾:₄(1)           |                  |              |  |  |  |  |
| bit 4            | <b>BCL:</b> Blanking in Selected-Blanking Signal Low Enable bit <sup>(1)</sup><br>1 = State blanking (of current-limit and/or fault input signals) when selected blanking signal is low<br>0 = No blanking when selected blanking signal is low |                                                                                                                                                                                                   |                                     |                                                      |                  |                  |              |  |  |  |  |
| bit 3            | <b>BPHH:</b> Blanking in PWMxH High Enable bit                                                                                                                                                                                                  |                                                                                                                                                                                                   |                                     |                                                      |                  |                  |              |  |  |  |  |
|                  | 1 = State blar                                                                                                                                                                                                                                  | -                                                                                                                                                                                                 | nt-limit and/or                     | fault input sign                                     | als) when PWM    | xH output is hi  | gh           |  |  |  |  |
| bit 2            | BPHL: Blanking in PWMxH Low Enable bit                                                                                                                                                                                                          |                                                                                                                                                                                                   |                                     |                                                      |                  |                  |              |  |  |  |  |
|                  |                                                                                                                                                                                                                                                 | nking (of curre<br>ing when PWM                                                                                                                                                                   |                                     |                                                      | als) when PWM    | xH output is lov | N            |  |  |  |  |
| bit 1            |                                                                                                                                                                                                                                                 | ing in PWMxL                                                                                                                                                                                      | •                                   |                                                      |                  |                  |              |  |  |  |  |
|                  |                                                                                                                                                                                                                                                 | nking (of curre<br>ing when PWM                                                                                                                                                                   |                                     |                                                      | als) when PWM    | xL output is hig | Jh           |  |  |  |  |
| bit 0            | BPLL: Blanki                                                                                                                                                                                                                                    | ing in PWMxL                                                                                                                                                                                      | Low Enable b                        | it                                                   |                  |                  |              |  |  |  |  |
|                  |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                   | nt-limit and/or<br>IxL output is lo |                                                      | als) when PWM    | xL output is lov | v            |  |  |  |  |

# REGISTER 16-23: LEBCONx: LEADING-EDGE BLANKING CONTROL REGISTER

Note 1: The blanking signal is selected via the BLANKSEL bits in the AUXCONx register.

| U-0             | U-0           | U-0              | U-0           | R/W-0             | R/W-0            | R/W-0           | R/W-0 |
|-----------------|---------------|------------------|---------------|-------------------|------------------|-----------------|-------|
|                 | —             | —                | _             |                   | LEB<             | 11:8>           |       |
| bit 15          |               |                  |               |                   |                  |                 | bit 8 |
|                 |               |                  |               |                   |                  |                 |       |
| R/W-0           | R/W-0         | R/W-0            | R/W-0         | R/W-0             | U-0              | U-0             | U-0   |
|                 |               | LEB<7:3>         |               |                   | —                | —               | —     |
| bit 7           |               |                  |               |                   |                  |                 | bit 0 |
|                 |               |                  |               |                   |                  |                 |       |
| Legend:         |               |                  |               |                   |                  |                 |       |
| R = Readable    | bit           | W = Writable I   | bit           | U = Unimplem      | nented bit, read | as '0'          |       |
| -n = Value at I | POR           | '1' = Bit is set |               | '0' = Bit is clea | ared             | x = Bit is unkn | iown  |
|                 |               |                  |               |                   |                  |                 |       |
| bit 15-12       | Unimplemen    | ted: Read as 'd  | )'            |                   |                  |                 |       |
| bit 11-3        | LEB<11:3>:    | _eading-Edge E   | Blanking Dela | y bits for Currer | nt-Limit and Fau | ult Inputs      |       |
|                 | Value in 8.32 | ns increments    |               |                   |                  |                 |       |
| bit 2-0         | Unimplemen    | ted: Read as 'd  | )'            |                   |                  |                 |       |
|                 | •             |                  |               |                   |                  |                 |       |

# REGISTER 16-24: LEBDLYx: LEADING-EDGE BLANKING DELAY REGISTER

Note: The LEB delay timing operates with the primary PWM clock prescaler bits, PCLKDIV<2:0> (PTCON<10:8>).

| R/W-0         | R/W-0                                                                                                                                            | U-0                                                                                                                                                                              | U-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R/W-0                                                                                                     | R/W-0           | R/W-0           | R/W-0   |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------|-----------------|---------|
| HRPDIS        | HRDDIS                                                                                                                                           | —                                                                                                                                                                                | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                           | BLANK           | SEL<3:0>        |         |
| bit 15        |                                                                                                                                                  |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                 |                 | bit 8   |
| U-0           | U-0                                                                                                                                              | R/W-0                                                                                                                                                                            | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R/W-0                                                                                                     | R/W-0           | R/W-0           | R/W-0   |
| <u> </u>      |                                                                                                                                                  |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SEL<3:0>                                                                                                  | 10,00-0         | CHOPHEN         | CHOPLEN |
| bit 7         |                                                                                                                                                  |                                                                                                                                                                                  | onor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 022<0.02                                                                                                  |                 | GHOITHEN        | bit (   |
| Legend:       |                                                                                                                                                  |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                 |                 |         |
| R = Readable  | bit                                                                                                                                              | W = Writable                                                                                                                                                                     | bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U = Unimplen                                                                                              | nented bit, rea | id as '0'       |         |
| -n = Value at | POR                                                                                                                                              | '1' = Bit is set                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | '0' = Bit is cle                                                                                          | ared            | x = Bit is unkr | nown    |
| bit 15        | 1 = High reso                                                                                                                                    |                                                                                                                                                                                  | riod is disable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ed to reduce po                                                                                           | wer consumpt    | ion             |         |
| bit 14        | HRDDIS: Higl<br>1 = High reso                                                                                                                    |                                                                                                                                                                                  | WM Duty Cyc<br>ty cycle is dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cle Disable bit <sup>(1)</sup><br>abled to reduce                                                         |                 | mption          |         |
| bit 13-12     | -                                                                                                                                                | ted: Read as '                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                 |                 |         |
|               | (if enabled via<br>1001 = PWM<br>1000 = PWM<br>0111 = PWM<br>0101 = PWM<br>0101 = PWM<br>0010 = PWM<br>0010 = PWM<br>0001 = PWM<br>0000 = 1'b0 ( | a the BCH and<br>9H selected as<br>8H selected as<br>7H selected as<br>6H selected as<br>5H selected as<br>3H selected as<br>2H selected as<br>1H selected as<br>no state blanki | BCL bits in the state blank of state | source<br>source<br>source<br>source<br>source<br>source<br>source                                        |                 | nput signals    |         |
| bit 7-6       | -                                                                                                                                                | ted: Read as '                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                 |                 |         |
| bit 5-2       | The selected<br>1001 = PWM<br>1000 = PWM<br>0111 = PWM<br>0101 = PWM<br>0100 = PWM<br>0011 = PWM<br>0010 = PWM                                   | 9H selected as<br>8H selected as<br>7H selected as<br>6H selected as<br>5H selected as<br>4H selected as<br>3H selected as<br>2H selected as<br>1H selected as                   | ble and disab<br>CHOP clock<br>CHOP clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | le (CHOP) the s<br>source<br>source<br>source<br>source<br>source<br>source<br>source<br>source<br>source |                 | outputs         |         |
| bit 1         | <b>CHOPHEN:</b> F<br>1 = PWMxH c                                                                                                                 | PWMxH Output<br>chopping functi<br>chopping functi                                                                                                                               | Chopping Ei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nable bit                                                                                                 |                 |                 |         |
| bit 0         | CHOPLEN: P<br>1 = PWMxL c                                                                                                                        | WMxL Output<br>hopping function<br>hopping function                                                                                                                              | Chopping En                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | able bit                                                                                                  |                 |                 |         |

### REGISTER 16-25: AUXCONX: PWM AUXILIARY CONTROL REGISTER

| R-0             | R-0             | R-0                | R-0           | R-0                               | R-0                | R-0              | R-0           |
|-----------------|-----------------|--------------------|---------------|-----------------------------------|--------------------|------------------|---------------|
|                 |                 |                    | PWMCA         | \P<15:8>                          |                    |                  |               |
| bit 15          |                 |                    |               |                                   |                    |                  | bit 8         |
|                 |                 |                    |               |                                   |                    |                  |               |
| R-0             | R-0             | R-0                | R-0           | R-0                               | U-0                | U-0              | U-0           |
| L               | F               | PWMCAP<7:3>        |               |                                   |                    | —                | _             |
| bit 7           |                 |                    |               |                                   |                    |                  | bit 0         |
|                 |                 |                    |               |                                   |                    |                  |               |
| Legend:         |                 |                    |               |                                   |                    |                  |               |
| R = Readable    | bit             | W = Writable       | bit           | U = Unimpler                      | mented bit, read   | l as '0'         |               |
| -n = Value at F | POR             | '1' = Bit is set   |               | 0' = Bit is cleared x = Bit is un |                    |                  | own           |
|                 |                 |                    |               |                                   |                    |                  |               |
| bit 15-3        | PWMCAP<1        | 5:3>: Captured     | PWM Time B    | ase Value bits                    | (1,2,3,4)          |                  |               |
|                 |                 | this register re   | -             | captured PW                       | M time base va     | alue when a lea  | ading edge is |
|                 | detected on     | the current-limit  | input.        |                                   |                    |                  |               |
| bit 2-0         | Unimpleme       | nted: Read as '    | כ'            |                                   |                    |                  |               |
|                 |                 |                    |               |                                   |                    |                  |               |
| Note 1: Th      | e capture feat  | ure is only availa | able on prima | ry output (PWN                    | ∕IxH).             |                  |               |
| <b>2:</b> Th    | is feature is a | ctive only after L | EB processin  | g on the currer                   | nt-limit input sig | nal is complete. |               |
| 3• Th           | e minimum ca    | nture resolution   | is 8 32 ns    |                                   |                    |                  |               |

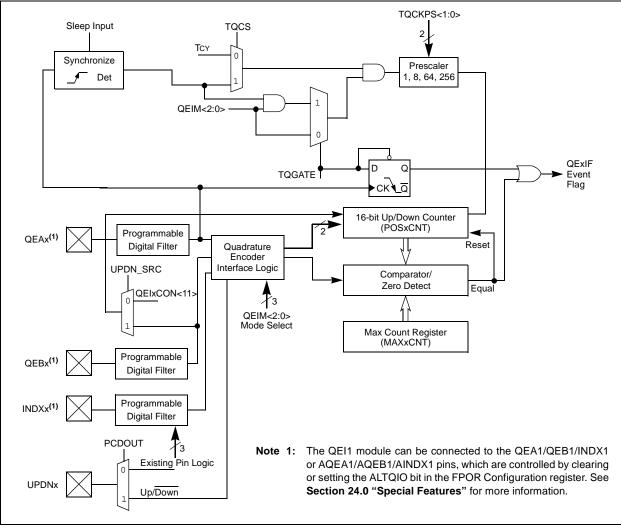
#### **REGISTER 16-26: PWMCAPx: PRIMARY PWM TIME BASE CAPTURE REGISTER**

- **3:** The minimum capture resolution is 8.32 ns.
- 4: This feature can be used when the XPRES bit (PWMCONx<1>) is set to '0'.

# 17.0 QUADRATURE ENCODER INTERFACE (QEI) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Quadrature Encoder Interface (QEI)" (DS70208) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data.


The operational features of the QEI include:

- Three input channels for two phase signals and index pulse
- 16-bit up/down position counter
- · Count direction status
- Position Measurement (x2 and x4) mode
- Programmable digital noise filters on inputs
- Alternate 16-bit Timer/Counter mode
- Quadrature Encoder Interface interrupts

These operating modes are determined by setting the appropriate bits, QEIM<2:0> in (QEIxCON<10:8>). Figure 17-1 depicts the Quadrature Encoder Interface block diagram.

**Note:** An 'x' used in the names of pins, control/ status bits and registers denotes a particular Quadrature Encoder Interface (QEI) module number (x = 1 or 2).

FIGURE 17-1: QUADRATURE ENCODER INTERFACE BLOCK DIAGRAM (x = 1 OR 2)



| REGISTER 1      | 7-1: QEIxC                                                                                                                                                                         | ON: QEIx C                                                                                          | ONTROL RE                                                            | GISTER (x =                                        | : 1 or 2)                                                                  |                                  |                          |     |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------|----------------------------------|--------------------------|-----|
| R/W-0           | U-0                                                                                                                                                                                | R/W-0                                                                                               | R-0                                                                  | R/W-0                                              | R/W-0                                                                      | R/W-0                            | R/W-0                    | 0   |
| CNTERR          |                                                                                                                                                                                    | QEISIDL                                                                                             | INDEX                                                                | UPDN                                               |                                                                            | QEIM<2:0>                        |                          |     |
| bit 15          |                                                                                                                                                                                    |                                                                                                     |                                                                      | ·                                                  |                                                                            |                                  |                          | bit |
| R/W-0           | R/W-0                                                                                                                                                                              | R/W-0                                                                                               | R/W-0                                                                | R/W-0                                              | R/W-0                                                                      | R/W-0                            | R/W-(                    | 0   |
| SWPAB           | PCDOUT                                                                                                                                                                             | TQGATE                                                                                              | TQCK                                                                 | PS<1:0>                                            | POSRES                                                                     | TQCS                             | UPDN_S                   | SRO |
| bit 7           |                                                                                                                                                                                    |                                                                                                     |                                                                      |                                                    | I                                                                          |                                  |                          | bit |
| Legend:         |                                                                                                                                                                                    |                                                                                                     |                                                                      |                                                    |                                                                            |                                  |                          |     |
| R = Readable    | bit                                                                                                                                                                                | W = Writable                                                                                        | bit                                                                  | U = Unimplei                                       | mented bit, read                                                           | as '0'                           |                          |     |
| -n = Value at I | POR                                                                                                                                                                                | '1' = Bit is set                                                                                    | :                                                                    | '0' = Bit is cle                                   | eared                                                                      | x = Bit is unl                   | known                    |     |
| bit 15          | 1 = Position of                                                                                                                                                                    | ount Error Statu<br>count error has<br>on count error l                                             | occurred                                                             |                                                    |                                                                            |                                  |                          |     |
| bit 14          | -                                                                                                                                                                                  | ted: Read as '                                                                                      |                                                                      |                                                    |                                                                            |                                  |                          |     |
| bit 13          | 1 = Discontin                                                                                                                                                                      | op in Idle Mode<br>ue module ope<br>module operat                                                   | eration when d                                                       |                                                    | lle mode                                                                   |                                  |                          |     |
| bit 12          | <ul> <li>0 = Continue module operation in Idle mode</li> <li>INDEX: Index Pin State Status bit (Read-Only)</li> <li>1 = Index pin is High</li> <li>0 = Index pin is Low</li> </ul> |                                                                                                     |                                                                      |                                                    |                                                                            |                                  |                          |     |
| bit 11          | 1 = Position (                                                                                                                                                                     | ion Counter Dir<br>Counter Directi<br>Counter Directi                                               | on is positive                                                       | (+)                                                |                                                                            |                                  |                          |     |
| bit 10-8        | QEIM<2:0>:                                                                                                                                                                         | Quadrature En                                                                                       | coder Interfac                                                       | e Mode Select                                      | bits                                                                       |                                  |                          |     |
|                 | (MAXx<br>110 = Quadra<br>101 = Quadra<br>(MAXx<br>100 = Quadra<br>011 = Unuse<br>010 = Unuse<br>001 = Starts                                                                       | CNT)<br>ature Encoder<br>ature Encoder<br>CNT)<br>ature Encoder<br>d (Module disa<br>d (Module disa | Interface enat<br>Interface enat<br>Interface enat<br>bled)<br>bled) | bled (x4 mode)<br>bled (x2 mode)<br>bled (x2 mode) | with position co<br>with Index Puls<br>with position co<br>with Index Puls | e reset of pos<br>unter reset by | sition counte<br>y match |     |
| bit 7           |                                                                                                                                                                                    | ase A and Phas                                                                                      | •                                                                    | •                                                  |                                                                            |                                  |                          |     |
|                 |                                                                                                                                                                                    | and Phase B ir<br>and Phase B ir                                                                    |                                                                      |                                                    |                                                                            |                                  |                          |     |
| bit 6           |                                                                                                                                                                                    | sition Counter                                                                                      | -                                                                    | -                                                  | le hit                                                                     |                                  |                          |     |
| bit 0           |                                                                                                                                                                                    |                                                                                                     |                                                                      | •                                                  | El logic controls                                                          | state of I/O n                   | in)                      |     |
|                 |                                                                                                                                                                                    |                                                                                                     |                                                                      |                                                    | Normal I/O pin o                                                           |                                  | ,                        |     |
| Note 1: Cl      | NTERR flag onl                                                                                                                                                                     | y applies wher                                                                                      | QEIM<2:0> =                                                          | = '110' or '100                                    |                                                                            |                                  |                          |     |
| <b>2:</b> Re    | ead-only bit whe                                                                                                                                                                   | en QEIM<2:0>                                                                                        | = '1xx'. Read                                                        | l/write bit when                                   | QEIM<2:0> = '                                                              | 001'.                            |                          |     |
| <b>3:</b> Pr    | escaler utilized                                                                                                                                                                   | for 16-bit Time                                                                                     | er mode only.                                                        |                                                    |                                                                            |                                  |                          |     |
| 4: Th           | nis bit applies or                                                                                                                                                                 | nly when QEIN                                                                                       | <2:0> = 100                                                          | or 110.                                            |                                                                            |                                  |                          |     |
|                 |                                                                                                                                                                                    | · · · ·                                                                                             |                                                                      |                                                    |                                                                            |                                  |                          |     |

# **REGISTER 17-1:** QEIXCON: QEIX CONTROL REGISTER (x = 1 or 2)

#### **REGISTER 17-1:** QEIXCON: QEIX CONTROL REGISTER (x = 1 or 2) (CONTINUED)

| bit 5   | TQGATE: Timer Gated Time Accumulation Enable bit                                      |
|---------|---------------------------------------------------------------------------------------|
|         | 1 = Timer gated time accumulation enabled                                             |
|         | 0 = Timer gated time accumulation disabled                                            |
| bit 4-3 | TQCKPS<1:0>: Timer Input Clock Prescale Select bits <sup>(3)</sup>                    |
|         | 11 = 1:256 prescale value                                                             |
|         | 10 = 1:64 prescale value                                                              |
|         | 01 = 1:8 prescale value                                                               |
|         | 00 = 1:1 prescale value                                                               |
| bit 2   | <b>POSRES:</b> Position Counter Reset Enable bit <sup>(4)</sup>                       |
|         | 1 = Index Pulse resets Position Counter                                               |
|         | 0 = Index Pulse does not reset Position Counter                                       |
| bit 1   | TQCS: Timer Clock Source Select bit                                                   |
|         | 1 = External clock from pin QEAx (on the rising edge)                                 |
|         | 0 = Internal clock (TCY)                                                              |
| bit 0   | UPDN_SRC: Position Counter Direction Selection Control bit <sup>(5)</sup>             |
|         | 1 = QEBx pin state defines position counter direction                                 |
|         | 0 = Control/Status bit, UPDN (QEIxCON<11>), defines timer counter (POSxCNT) direction |
| Note 1: | CNTERR flag only applies when QEIM<2:0> = '110' or '100'.                             |

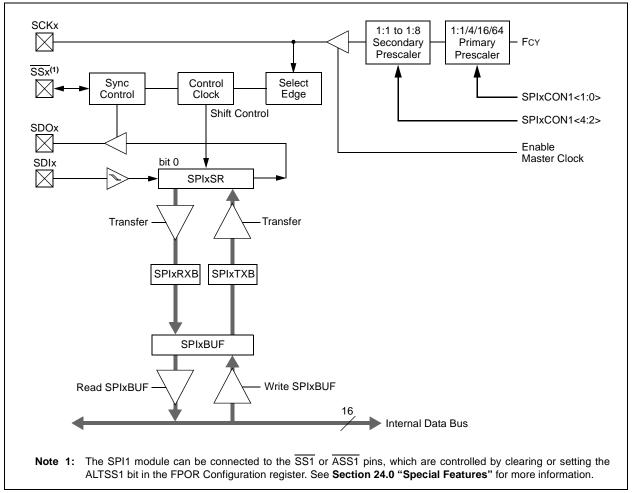
- 2: Read-only bit when QEIM<2:0> = '1XX'. Read/write bit when QEIM<2:0> = '001'.
- 3: Prescaler utilized for 16-bit Timer mode only.
- 4: This bit applies only when QEIM < 2:0 > = 100 or 110.
- 5: When configured for QEI mode, this control bit is a 'don't care'.

| U-0            | U-0                                                                                                                                                                                                                                                                                                       | U-0                                                                                                                                                                                                                                                                                                                            | U-0                                                                                                                                                          | U-0                                                                                                            | R/W-0                                                             | R/W-0                   | R/W-0 |  |  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------|-------|--|--|
| —              |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                | —                                                                                                                                                            |                                                                                                                | IMV<                                                              | :2:0>                   | CEID  |  |  |
| bit 15         |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |                                                                                                                |                                                                   |                         | bit 8 |  |  |
|                |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |                                                                                                                |                                                                   |                         |       |  |  |
| R/W-0          | ł                                                                                                                                                                                                                                                                                                         | R/W-0                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                              |                                                                                                                | U-0                                                               | U-0                     | U-0   |  |  |
| QEOUT          |                                                                                                                                                                                                                                                                                                           | QECK<2:0>                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                              |                                                                                                                | —                                                                 |                         |       |  |  |
| bit 7          |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |                                                                                                                |                                                                   |                         | bit   |  |  |
| Legend:        |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |                                                                                                                |                                                                   |                         |       |  |  |
| R = Readabl    | le bit                                                                                                                                                                                                                                                                                                    | W = Writable k                                                                                                                                                                                                                                                                                                                 | oit                                                                                                                                                          | U = Unimpler                                                                                                   | nented bit, read                                                  | l as '0'                |       |  |  |
| -n = Value at  | t POR                                                                                                                                                                                                                                                                                                     | '1' = Bit is set                                                                                                                                                                                                                                                                                                               |                                                                                                                                                              | '0' = Bit is cle                                                                                               | ared                                                              | x = Bit is unkr         | nown  |  |  |
|                |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |                                                                                                                |                                                                   |                         |       |  |  |
| bit 15-11      | •                                                                                                                                                                                                                                                                                                         | ted: Read as '0                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |                                                                                                                |                                                                   |                         |       |  |  |
| oit 10-9       |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              | e bits allow the                                                                                               |                                                                   |                         |       |  |  |
|                | QEAx and QEBx input pins during an Index pulse when the POSxCNT register is to be reset.                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |                                                                                                                |                                                                   |                         |       |  |  |
|                | In x4 Quadrature Count Mode:                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |                                                                                                                |                                                                   |                         |       |  |  |
|                | IMV1 = Required State of Phase B input signal for match on index pulse                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |                                                                                                                |                                                                   |                         |       |  |  |
|                |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |                                                                                                                |                                                                   |                         |       |  |  |
|                | IMV0 = F                                                                                                                                                                                                                                                                                                  | Required State                                                                                                                                                                                                                                                                                                                 | of Phase A i                                                                                                                                                 | nput signal for r<br>nput signal for r                                                                         |                                                                   |                         |       |  |  |
|                | IMV0 = F<br>In x4 Quadrate                                                                                                                                                                                                                                                                                | Required State<br>ure Count Mod                                                                                                                                                                                                                                                                                                | of Phase A i<br><u>e</u> :                                                                                                                                   | nput signal for r                                                                                              | natch on index                                                    | pulse                   |       |  |  |
|                | IMV0 = F<br>In x4 Quadrate<br>IMV1 = S                                                                                                                                                                                                                                                                    | Required State<br><u>ure Count Mod</u><br>Selects Phase i                                                                                                                                                                                                                                                                      | of Phase A in<br><u>e</u> :<br>nput signal fo                                                                                                                | nput signal for r<br>or Index state m                                                                          | natch on index<br>natch (0 = Phas                                 | pulse<br>e A, 1 = Phase |       |  |  |
|                | IMV0 = F<br>In x4 Quadrate<br>IMV1 = S                                                                                                                                                                                                                                                                    | Required State<br><u>ure Count Mod</u><br>Selects Phase i                                                                                                                                                                                                                                                                      | of Phase A in<br><u>e</u> :<br>nput signal fo                                                                                                                | nput signal for r                                                                                              | natch on index<br>natch (0 = Phas                                 | pulse<br>e A, 1 = Phase |       |  |  |
| bit 8          | IMV0 = F<br>In x4 Quadrate<br>IMV1 = S<br>IMV0 = F<br>CEID: Count F                                                                                                                                                                                                                                       | Required State<br>ure Count Mod<br>Selects Phase i<br>Required state<br>Error Interrupt I                                                                                                                                                                                                                                      | of Phase A in<br><u>e:</u><br>nput signal fo<br>of the selecto<br>Disable bit                                                                                | nput signal for r<br>or Index state m<br>ed Phase input                                                        | natch on index<br>natch (0 = Phas                                 | pulse<br>e A, 1 = Phase |       |  |  |
| bit 8          | IMV0 = F<br>In x4 Quadrate<br>IMV1 = S<br>IMV0 = F<br>CEID: Count F<br>1 = Interrupts                                                                                                                                                                                                                     | Required State<br>ure Count Mod<br>Selects Phase i<br>Required state<br>Error Interrupt I<br>due to count en                                                                                                                                                                                                                   | of Phase A in<br><u>e</u> :<br>nput signal fo<br>of the selecte<br>Disable bit<br>rrors are disa                                                             | nput signal for r<br>or Index state n<br>ed Phase input<br>abled                                               | natch on index<br>natch (0 = Phas                                 | pulse<br>e A, 1 = Phase |       |  |  |
| bit 8          | IMV0 = F<br>In x4 Quadrate<br>IMV1 = S<br>IMV0 = F<br>CEID: Count F<br>1 = Interrupts                                                                                                                                                                                                                     | Required State<br>ure Count Mod<br>Selects Phase i<br>Required state<br>Error Interrupt I                                                                                                                                                                                                                                      | of Phase A in<br><u>e</u> :<br>nput signal fo<br>of the selecte<br>Disable bit<br>rrors are disa                                                             | nput signal for r<br>or Index state n<br>ed Phase input<br>abled                                               | natch on index<br>natch (0 = Phas                                 | pulse<br>e A, 1 = Phase |       |  |  |
| bit 8<br>bit 7 | IMV0 = F<br>In x4 Quadrate<br>IMV1 = S<br>IMV0 = F<br>CEID: Count F<br>1 = Interrupts<br>0 = Interrupts                                                                                                                                                                                                   | Required State<br>ure Count Mod<br>Selects Phase i<br>Required state<br>Error Interrupt I<br>due to count en<br>due to count en                                                                                                                                                                                                | of Phase A in<br><u>e</u> :<br>nput signal for<br>of the selecte<br>Disable bit<br>rrors are disa<br>rrors are ena                                           | nput signal for r<br>or Index state n<br>ed Phase input<br>abled                                               | natch on index<br>natch (0 = Phas<br>signal for matcł             | pulse<br>e A, 1 = Phase |       |  |  |
|                | IMV0 = F<br>In x4 Quadratu<br>IMV1 = S<br>IMV0 = F<br>CEID: Count F<br>1 = Interrupts<br>0 = Interrupts<br>QEOUT: QEA<br>1 = Digital filte                                                                                                                                                                | Required State<br>ure Count Mod<br>Selects Phase i<br>Required state<br>Error Interrupt I<br>due to count en<br>due to count en<br>x/QEBx/INDXx<br>er outputs enab                                                                                                                                                             | of Phase A in<br><u>e</u> :<br>nput signal for<br>of the selected<br>Disable bit<br>rrors are disa<br>rrors are ena<br>. Pin Digital F<br>led                | nput signal for r<br>or Index state n<br>ed Phase input<br>abled<br>bled<br>ilter Output Ena                   | natch on index<br>natch (0 = Phas<br>signal for matcł             | pulse<br>e A, 1 = Phase |       |  |  |
|                | IMV0 = F<br>In x4 Quadratu<br>IMV1 = S<br>IMV0 = F<br>CEID: Count F<br>1 = Interrupts<br>0 = Interrupts<br>QEOUT: QEA<br>1 = Digital filte                                                                                                                                                                | Required State<br>ure Count Mod<br>Selects Phase i<br>Required state<br>Error Interrupt I<br>due to count en<br>due to count en<br>x/QEBx/INDXx                                                                                                                                                                                | of Phase A in<br><u>e</u> :<br>nput signal for<br>of the selected<br>Disable bit<br>rrors are disa<br>rrors are ena<br>. Pin Digital F<br>led                | nput signal for r<br>or Index state n<br>ed Phase input<br>abled<br>bled<br>ilter Output Ena                   | natch on index<br>natch (0 = Phas<br>signal for matcł             | pulse<br>e A, 1 = Phase |       |  |  |
|                | IMV0 = F<br>In x4 Quadratu<br>IMV1 = S<br>IMV0 = F<br>CEID: Count F<br>1 = Interrupts<br>0 = Interrupts<br>QEOUT: QEA<br>1 = Digital filte<br>0 = Digital filte                                                                                                                                           | Required State<br>ure Count Mod<br>Selects Phase i<br>Required state<br>Error Interrupt I<br>due to count en<br>due to count en<br>x/QEBx/INDXx<br>er outputs enab<br>er outputs disab                                                                                                                                         | of Phase A in<br><u>e</u> :<br>nput signal for<br>of the selecter<br>Disable bit<br>rrors are disa<br>rrors are ena<br>Pin Digital F<br>led<br>oled (normal) | nput signal for r<br>or Index state n<br>ed Phase input<br>abled<br>bled<br>ilter Output Ena                   | natch on index<br>natch (0 = Phas<br>signal for match<br>able bit | pulse<br>e A, 1 = Phase |       |  |  |
| bit 7          | IMV0 = F<br>In x4 Quadratu<br>IMV1 = S<br>IMV0 = F<br>CEID: Count F<br>1 = Interrupts<br>0 = Interrupts<br>QEOUT: QEA<br>1 = Digital filte<br>0 = Digital filte                                                                                                                                           | Required State<br>ure Count Mod<br>Selects Phase i<br>Required state<br>Error Interrupt I<br>due to count en<br>due to count en<br>x/QEBx/INDXx<br>er outputs enab<br>er outputs disab<br>QEAx/QEBx/IN                                                                                                                         | of Phase A in<br><u>e</u> :<br>nput signal for<br>of the selecter<br>Disable bit<br>rrors are disa<br>rrors are ena<br>Pin Digital F<br>led<br>oled (normal) | nput signal for r<br>or Index state n<br>ed Phase input<br>abled<br>bled<br>ilter Output Ena<br>pin operation) | natch on index<br>natch (0 = Phas<br>signal for match<br>able bit | pulse<br>e A, 1 = Phase |       |  |  |
| bit 7          | IMV0 = F<br>In x4 Quadratu<br>IMV1 = S<br>IMV0 = F<br>CEID: Count F<br>1 = Interrupts<br>0 = Interrupts<br>QEOUT: QEA<br>1 = Digital filte<br>0 = Digital filte<br>QECK<2:0>:                                                                                                                             | Required State<br>ure Count Mod<br>Selects Phase i<br>Required state<br>Error Interrupt I<br>due to count en<br>due to count en<br>x/QEBx/INDXx<br>er outputs enab<br>er outputs disab<br>QEAx/QEBx/IN<br>Clock Divide                                                                                                         | of Phase A in<br><u>e</u> :<br>nput signal for<br>of the selecter<br>Disable bit<br>rrors are disa<br>rrors are ena<br>Pin Digital F<br>led<br>oled (normal) | nput signal for r<br>or Index state n<br>ed Phase input<br>abled<br>bled<br>ilter Output Ena<br>pin operation) | natch on index<br>natch (0 = Phas<br>signal for match<br>able bit | pulse<br>e A, 1 = Phase |       |  |  |
| bit 7          | IMV0 = F<br>In x4 Quadrati<br>IMV1 = S<br>IMV0 = F<br>CEID: Count F<br>1 = Interrupts<br>0 = Interrupts<br>QEOUT: QEA<br>1 = Digital filte<br>0 = Digital filte<br>QECK<2:0>: (<br>111 = 1:256 C<br>110 = 1:128 C<br>101 = 1:64 Ch                                                                        | Required State<br>ure Count Mod<br>Selects Phase i<br>Required state<br>Error Interrupt I<br>due to count en<br>due to count en<br>x/QEBx/INDXx<br>er outputs enab<br>er outputs disab<br>QEAx/QEBx/IN<br>Clock Divide<br>Ock Divide                                                                                           | of Phase A in<br><u>e</u> :<br>nput signal for<br>of the selecter<br>Disable bit<br>rrors are disa<br>rrors are ena<br>Pin Digital F<br>led<br>oled (normal) | nput signal for r<br>or Index state n<br>ed Phase input<br>abled<br>bled<br>ilter Output Ena<br>pin operation) | natch on index<br>natch (0 = Phas<br>signal for match<br>able bit | pulse<br>e A, 1 = Phase |       |  |  |
| bit 7          | IMV0 = F<br>In x4 Quadratu<br>IMV1 = S<br>IMV0 = F<br>CEID: Count F<br>1 = Interrupts<br>0 = Interrupts<br>QEOUT: QEA<br>1 = Digital filte<br>0 = Digital filte<br>QECK<2:0>:<br>111 = 1:256 C<br>110 = 1:128 C                                                                                           | Required State<br>ure Count Mod<br>Selects Phase i<br>Required state<br>Error Interrupt I<br>due to count en<br>due to count en<br>x/QEBx/INDXx<br>er outputs enab<br>er outputs disab<br>QEAx/QEBx/IN<br>Clock Divide<br>Ock Divide                                                                                           | of Phase A in<br><u>e</u> :<br>nput signal for<br>of the selecter<br>Disable bit<br>rrors are disa<br>rrors are ena<br>Pin Digital F<br>led<br>oled (normal) | nput signal for r<br>or Index state n<br>ed Phase input<br>abled<br>bled<br>ilter Output Ena<br>pin operation) | natch on index<br>natch (0 = Phas<br>signal for match<br>able bit | pulse<br>e A, 1 = Phase |       |  |  |
| bit 7          | IMV0 = F<br>In x4 Quadratu<br>IMV1 = S<br>IMV0 = F<br>CEID: Count F<br>1 = Interrupts<br>0 = Interrupts<br>QEOUT: QEA<br>1 = Digital filte<br>0 = Digital filte<br>QECK<2:0>:<br>111 = 1:256 C<br>110 = 1:128 C<br>101 = 1:64 Ch<br>100 = 1:32 Ch<br>011 = 1:16 Ch                                        | Required State<br>ure Count Mod<br>Selects Phase i<br>Required state of<br>Error Interrupt I<br>due to count en<br>due to count en<br>x/QEBx/INDXx<br>er outputs enab<br>er outputs disab<br>QEAx/QEBx/IN<br>Clock Divide<br>Ock Divide<br>ock Divide<br>ock Divide<br>ock Divide                                              | of Phase A in<br><u>e</u> :<br>nput signal for<br>of the selecter<br>Disable bit<br>rrors are disa<br>rrors are ena<br>Pin Digital F<br>led<br>oled (normal) | nput signal for r<br>or Index state n<br>ed Phase input<br>abled<br>bled<br>ilter Output Ena<br>pin operation) | natch on index<br>natch (0 = Phas<br>signal for match<br>able bit | pulse<br>e A, 1 = Phase |       |  |  |
| bit 7          | IMV0 = F<br>In x4 Quadratu<br>IMV1 = S<br>IMV0 = F<br>CEID: Count F<br>1 = Interrupts<br>0 = Interrupts<br>QEOUT: QEA<br>1 = Digital filte<br>0 = Digital filte<br>0 = Digital filte<br>QECK<2:0>: 1<br>111 = 1:256 C<br>110 = 1:128 C<br>101 = 1:64 Ck<br>100 = 1:32 Ck<br>011 = 1:16 Ck<br>010 = 1:4 Ck | Required State<br>ure Count Mod<br>Selects Phase i<br>Required state of<br>Error Interrupt I<br>due to count en<br>due to count en<br>due to count en<br>x/QEBx/INDXx<br>er outputs enab<br>er outputs disab<br>QEAx/QEBx/IN<br>Clock Divide<br>Ock Divide<br>ock Divide<br>ock Divide<br>ock Divide                           | of Phase A in<br><u>e</u> :<br>nput signal for<br>of the selecter<br>Disable bit<br>rrors are disa<br>rrors are ena<br>Pin Digital F<br>led<br>oled (normal) | nput signal for r<br>or Index state n<br>ed Phase input<br>abled<br>bled<br>ilter Output Ena<br>pin operation) | natch on index<br>natch (0 = Phas<br>signal for match<br>able bit | pulse<br>e A, 1 = Phase |       |  |  |
| bit 7          | IMV0 = F<br>In x4 Quadratu<br>IMV1 = S<br>IMV0 = F<br>CEID: Count F<br>1 = Interrupts<br>0 = Interrupts<br>QEOUT: QEA<br>1 = Digital filte<br>0 = Digital filte<br>QECK<2:0>:<br>111 = 1:256 C<br>110 = 1:128 C<br>101 = 1:64 Ch<br>100 = 1:32 Ch<br>011 = 1:16 Ch                                        | Required State<br>ure Count Mod<br>Selects Phase i<br>Required state of<br>Error Interrupt I<br>due to count en<br>due to count en<br>due to count en<br>x/QEBx/INDXx<br>er outputs enab<br>er outputs disab<br>QEAx/QEBx/IN<br>Clock Divide<br>Ock Divide<br>ock Divide<br>ock Divide<br>ock Divide<br>ck Divide<br>ck Divide | of Phase A in<br><u>e</u> :<br>nput signal for<br>of the selecter<br>Disable bit<br>rrors are disa<br>rrors are ena<br>Pin Digital F<br>led<br>oled (normal) | nput signal for r<br>or Index state n<br>ed Phase input<br>abled<br>bled<br>ilter Output Ena<br>pin operation) | natch on index<br>natch (0 = Phas<br>signal for match<br>able bit | pulse<br>e A, 1 = Phase |       |  |  |

bit 3-0 Unimplemented: Read as '0'

# 18.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "Serial Peripheral Interface (SPI)" (DS70206) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.


The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, analog-to-digital converters and so on. The SPI module is compatible with SPI and SIOP from Motorola<sup>®</sup>.

The SPI module consists of a 16-bit shift register, SPIxSR (where x = 1), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a STATUS register, SPIxSTAT, indicates status conditions.

The serial interface consists of 4 pins:

- SDIx (Serial Data Input)
- SDOx (Serial Data Output)
- SCKx (Shift Clock Input Or Output)
- SSx (Active-Low Slave Select).

In Master mode operation, SCK is a clock output; in Slave mode, it is a clock input.



### FIGURE 18-1: SPI MODULE BLOCK DIAGRAM

| R/W-0        | U-0                       | R/W-0                                                                                                                                    | U-0                           | U-0              | U-0              | U-0                            | U-0    |  |  |
|--------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------|------------------|--------------------------------|--------|--|--|
| SPIEN        |                           | SPISIDL                                                                                                                                  | _                             |                  | _                |                                |        |  |  |
| bit 15       |                           |                                                                                                                                          |                               |                  |                  |                                | bit 8  |  |  |
|              |                           |                                                                                                                                          |                               |                  |                  |                                |        |  |  |
| U-0          | R/C-0                     | U-0                                                                                                                                      | U-0                           | U-0              | U-0              | R-0                            | R-0    |  |  |
| _            | SPIROV                    |                                                                                                                                          | _                             | —                |                  | SPITBF                         | SPIRBF |  |  |
| bit 7        |                           |                                                                                                                                          |                               |                  |                  |                                | bit (  |  |  |
| Legend:      |                           | C = Clearable                                                                                                                            | hit                           |                  |                  |                                |        |  |  |
| R = Readab   | le bit                    | W = Writable b                                                                                                                           |                               | U = Unimpler     | mented bit, read | d as '0'                       |        |  |  |
| -n = Value a |                           | '1' = Bit is set                                                                                                                         |                               | '0' = Bit is cle |                  | x = Bit is unkr                | nown   |  |  |
|              |                           |                                                                                                                                          |                               |                  |                  |                                |        |  |  |
| bit 15       | SPIEN: SPIX               | Enable bit                                                                                                                               |                               |                  |                  |                                |        |  |  |
|              | 1 = Enables r             | nodule and con                                                                                                                           | figures SCKx                  | , SDOx, SDIx     | and SSx as ser   | rial port pins                 |        |  |  |
|              | 0 = Disables              | module                                                                                                                                   |                               |                  |                  |                                |        |  |  |
| bit 14       | Unimplemen                | ted: Read as '0                                                                                                                          | )'                            |                  |                  |                                |        |  |  |
| bit 13       |                           | p in Idle Mode b                                                                                                                         |                               |                  |                  |                                |        |  |  |
|              |                           | ue module oper                                                                                                                           |                               |                  | lle mode         |                                |        |  |  |
| bit 12-7     |                           | module operation ted: Read as '0                                                                                                         |                               | ue               |                  |                                |        |  |  |
| bit 6        | •                         |                                                                                                                                          |                               |                  |                  |                                |        |  |  |
|              |                           | <b>SPIROV:</b> Receive Overflow Flag bit<br>1 = A new byte/word is completely received and discarded. The user software has not read the |                               |                  |                  |                                |        |  |  |
|              | previous                  | previous data in the SPIxBUF register.                                                                                                   |                               |                  |                  |                                |        |  |  |
|              |                           | ow has occurre                                                                                                                           |                               |                  |                  |                                |        |  |  |
| bit 5-2      | •                         | ted: Read as '0                                                                                                                          |                               |                  |                  |                                |        |  |  |
| bit 1        |                           | <pre>&lt; Transmit Buffe</pre>                                                                                                           |                               |                  |                  |                                |        |  |  |
|              | 0 = Transmit<br>location, |                                                                                                                                          | XB is empty.<br>(B. Automatio | Automatically    |                  | e when CPU w<br>n SPIx module  |        |  |  |
| bit 0        | SPIRBF: SPI               | x Receive Buffe                                                                                                                          | r Full Status                 | bit              |                  |                                |        |  |  |
|              | 0 = Receive<br>data from  | •                                                                                                                                        | , SPIxRXB is<br>PIxRXB. Auto  |                  | •                | ardware when<br>e when core re |        |  |  |

### REGISTER 18-1: SPIXSTAT: SPIX STATUS AND CONTROL REGISTER

| REGISTEF            | R 18-2: SPIxC                 | ON1: SPIx C                           | ONTROL RI       | EGISTER 1                              |                   |                  |                      |
|---------------------|-------------------------------|---------------------------------------|-----------------|----------------------------------------|-------------------|------------------|----------------------|
| U-0                 | U-0                           | U-0                                   | R/W-0           | R/W-0                                  | R/W-0             | R/W-0            | R/W-0                |
|                     |                               | —                                     | DISSCK          | DISSDO                                 | MODE16            | SMP              | CKE <sup>(1)</sup>   |
| bit 15              |                               |                                       |                 |                                        |                   |                  | bit 8                |
| R/W-0               | R/W-0                         | R/W-0                                 | R/W-0           | R/W-0                                  | R/W-0             | R/W-0            | R/W-0                |
| SSEN <sup>(3)</sup> |                               | MSTEN                                 |                 | SPRE<2:0>(2                            |                   |                  | <1:0> <sup>(2)</sup> |
| bit 7               |                               |                                       |                 |                                        |                   |                  | bit 0                |
| Legend:             |                               |                                       |                 |                                        |                   |                  |                      |
| R = Readal          | ble bit                       | W = Writable                          | bit             | U = Unimpler                           | nented bit, read  | as '0'           |                      |
| -n = Value a        |                               | '1' = Bit is se                       |                 | '0' = Bit is cle                       |                   | x = Bit is unkr  | nown                 |
|                     |                               |                                       | •               | 0 200000                               |                   |                  |                      |
| bit 15-13           | Unimplemen                    | ted: Read as                          | 0'              |                                        |                   |                  |                      |
| bit 12              | -                             | able SCKx pin                         |                 | er modes only)                         |                   |                  |                      |
|                     | 1 = Internal S                | SPI clock is dis                      | abled; pin func |                                        |                   |                  |                      |
|                     |                               | SPI clock is ena                      |                 |                                        |                   |                  |                      |
| bit 11              |                               | able SDOx pin                         |                 |                                        |                   |                  |                      |
|                     |                               | n is not used by<br>n is controlled b |                 | unctions as I/C                        | )                 |                  |                      |
| bit 10              | •                             | ord/Byte Comn                         | •               | ect bit                                |                   |                  |                      |
|                     | 1 = Commun                    | ication is word ication is byte-      | -wide (16 bits) |                                        |                   |                  |                      |
| bit 9               |                               | ata Input Sam                         |                 |                                        |                   |                  |                      |
|                     | Master mode                   | <u>.</u>                              |                 |                                        |                   |                  |                      |
|                     |                               | a sampled at e                        |                 |                                        |                   |                  |                      |
|                     | 0 = input data<br>Slave mode: | a sampled at m                        |                 | Sulput lime                            |                   |                  |                      |
|                     |                               | e cleared when                        | SPIx is used i  | in Slave mode.                         |                   |                  |                      |
| bit 8               |                               | lock Edge Sele                        |                 |                                        |                   |                  |                      |
|                     |                               |                                       |                 |                                        | clock state to Id |                  |                      |
| bit 7               |                               | Select Enable                         |                 |                                        |                   | e clock state (: | see bit oj           |
|                     |                               | used for Slave                        |                 |                                        |                   |                  |                      |
|                     |                               |                                       |                 | rolled by port fu                      | Inction           |                  |                      |
| bit 6               |                               | Polarity Select                       |                 |                                        |                   |                  |                      |
|                     |                               |                                       |                 | ve state is a lov<br>e state is a higl |                   |                  |                      |
| bit 5               |                               | ster Mode Enal                        |                 |                                        | Tievei            |                  |                      |
| DIT D               | 1 = Master m                  |                                       |                 |                                        |                   |                  |                      |
|                     | 0 = Slave mo                  | ode                                   |                 |                                        |                   |                  |                      |
| Note 1:             | The CKE bit is n              | ot used in the                        | Framed SPI      | modes. Progra                          | m this bit to '0' | for the Frame    | ed SPI modes         |
|                     | (FRMEN = 1).                  |                                       | _               |                                        |                   |                  |                      |
| 2:                  | Do not set both p             | rimary and sec                        | condary presca  | alers to a value                       | of 1:1.           |                  |                      |
| •                   | <b>TILL IN AL</b>             |                                       |                 |                                        |                   |                  |                      |

### REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1

**3:** This bit must be cleared when FRMEN = 1.

#### REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- - **Note 1:** The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).
    - 2: Do not set both primary and secondary prescalers to a value of 1:1.
    - **3:** This bit must be cleared when FRMEN = 1.

| R/W-0           | R/W-0        | R/W-0                                                                           | U-0              | U-0                  | U-0              | U-0      | U-0                |  |  |
|-----------------|--------------|---------------------------------------------------------------------------------|------------------|----------------------|------------------|----------|--------------------|--|--|
| FRMEN           | SPIFSD       | FRMPOL                                                                          | —                | _                    |                  | —        | —                  |  |  |
| bit 15          |              |                                                                                 |                  |                      |                  |          | bit 8              |  |  |
|                 |              |                                                                                 |                  |                      |                  |          |                    |  |  |
| U-0             | U-0          | U-0                                                                             | U-0              | U-0                  | U-0              | R/W-0    | U-0                |  |  |
|                 | —            | _                                                                               | —                | —                    | _                | FRMDLY   | —                  |  |  |
| bit 7           |              |                                                                                 |                  |                      |                  |          | bit 0              |  |  |
|                 |              |                                                                                 |                  |                      |                  |          |                    |  |  |
| Legend:         |              |                                                                                 |                  |                      |                  |          |                    |  |  |
| R = Readable    | bit          | W = Writable                                                                    | bit              | U = Unimpler         | mented bit, read | l as '0' |                    |  |  |
| -n = Value at I | POR          | '1' = Bit is set                                                                |                  | '0' = Bit is cleared |                  |          | x = Bit is unknown |  |  |
|                 |              |                                                                                 |                  |                      |                  |          |                    |  |  |
| bit 15          | FRMEN: Fran  | RMEN: Framed SPIx Support bit                                                   |                  |                      |                  |          |                    |  |  |
|                 |              | 1 = Framed SPIx support enabled (SSx pin used as frame sync pulse input/output) |                  |                      |                  |          |                    |  |  |
|                 |              | SPIx support dis                                                                |                  |                      |                  |          |                    |  |  |
| bit 14          |              | me Sync Pulse                                                                   |                  | ntrol bit            |                  |          |                    |  |  |
|                 |              | nc pulse input<br>nc pulse outpu                                                |                  |                      |                  |          |                    |  |  |
| bit 13          | FRMPOL: Fra  | ame Sync Puls                                                                   | e Polarity bit   |                      |                  |          |                    |  |  |
|                 |              | nc pulse is acti                                                                |                  |                      |                  |          |                    |  |  |
|                 | 0 = Frame sy | nc pulse is acti                                                                | ve-low           |                      |                  |          |                    |  |  |
| bit 12-2        | Unimplemen   | ted: Read as '                                                                  | 0'               |                      |                  |          |                    |  |  |
| bit 1           | FRMDLY: Fra  | ame Sync Pulse                                                                  | e Edge Selec     | t bit                |                  |          |                    |  |  |
|                 |              | nc pulse coinci                                                                 |                  |                      |                  |          |                    |  |  |
|                 | 0 = Frame sy | nc pulse prece                                                                  | des first bit cl | ock                  |                  |          |                    |  |  |
| bit 0           | Unimplemen   | ted: This bit m                                                                 | ust not be se    | t to '1' by the us   | ser application  |          |                    |  |  |
|                 |              |                                                                                 |                  |                      |                  |          |                    |  |  |

### REGISTER 18-3: SPIxCON2: SPIx CONTROL REGISTER 2

NOTES:

# 19.0 INTER-INTEGRATED CIRCUIT (I<sup>2</sup>C<sup>™</sup>)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit (I<sup>2</sup>C<sup>TM</sup>)" (DS70195) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit  $(I^2C)$  module provides complete hardware support for both Slave and Multi-Master modes of the  $I^2C$  serial communication standard with a 16-bit interface.

The I<sup>2</sup>C module has a 2-pin interface:

- The SCLx pin is clock.
- The SDAx pin is data.

The I<sup>2</sup>C module offers the following key features:

- I<sup>2</sup>C interface supporting both Master and Slave modes of operation.
- I<sup>2</sup>C Slave mode supports 7-bit and 10-bit addressing.
- I<sup>2</sup>C Master mode supports 7-bit and 10-bit addressing.
- I<sup>2</sup>C port allows bidirectional transfers between master and slaves.
- Serial clock synchronization for I<sup>2</sup>C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control).
- I<sup>2</sup>C supports multi-master operation, detects bus collision and arbitrates accordingly.

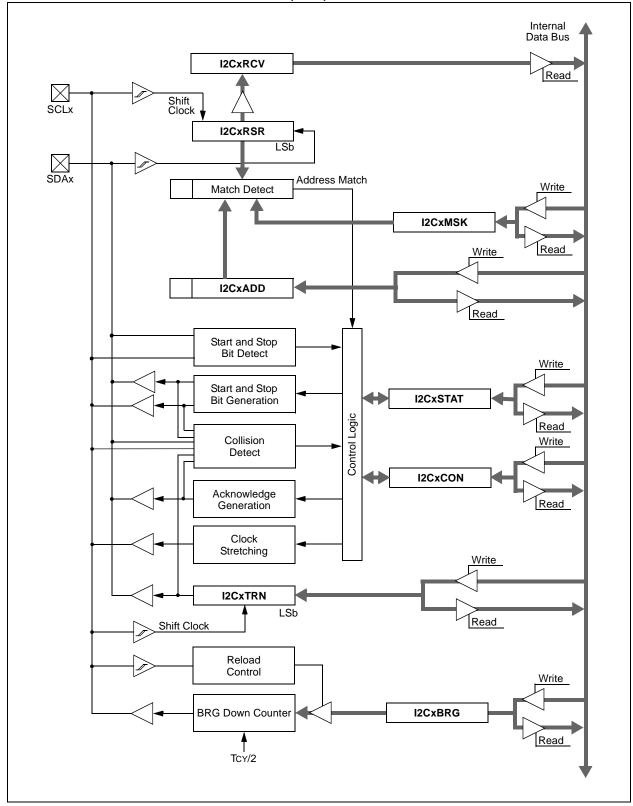
### 19.1 Operating Modes

The hardware fully implements all the master and slave functions of the  $I^2C$  Standard and Fast mode specifications, as well as 7-bit and 10-bit addressing.

The I<sup>2</sup>C module can operate either as a slave or a master on an I<sup>2</sup>C bus.

The following types of I<sup>2</sup>C operation are supported:

- I<sup>2</sup>C slave operation with 7-bit addressing
- I<sup>2</sup>C slave operation with 10-bit addressing
- I<sup>2</sup>C master operation with 7-bit or 10-bit addressing


For details about the communication sequence in each of these modes, refer to the "*dsPIC33F/PIC24H Family Reference Manual*". Please see the Microchip web site (www.microchip.com) for the latest "*dsPIC33F/PIC24H Family Reference Manual*" sections.

# 19.2 I<sup>2</sup>C Registers

I2CxCON and I2CxSTAT are control and STATUS registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write:

- I2CxRSR is the shift register used for shifting data internal to the module and the user application has no access to it.
- I2CxRCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read.
- I2CxTRN is the transmit register to which bytes are written during a transmit operation.
- The I2CxADD register holds the slave address.
- A Status bit, ADD10, indicates 10-Bit Address mode.
- The I2CxBRG acts as the Baud Rate Generator (BRG) reload value.

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV, and an interrupt pulse is generated. FIGURE 19-1:  $I^2 C^{TM}$  BLOCK DIAGRAM (x = 1)



| REGISTER 1      | 9-1: I2Cx                                                                                | CON: I2Cx                                           | CONTROL                                        | REGISTER                         |                                         |                    |                |  |  |
|-----------------|------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|----------------------------------|-----------------------------------------|--------------------|----------------|--|--|
| R/W-0           | U-0                                                                                      | R/W-0                                               | R/W-1, HC                                      | R/W-0                            | R/W-0                                   | R/W-0              | R/W-0          |  |  |
| I2CEN           |                                                                                          | I2CSIDL                                             | SCLREL                                         | IPMIEN                           | A10M                                    | DISSLW             | SMEN           |  |  |
| bit 15          |                                                                                          |                                                     |                                                |                                  |                                         |                    | bit 8          |  |  |
| R/W-0           | R/W-0                                                                                    | R/W-0                                               | R/W-0, HC                                      | R/W-0, HC                        | R/W-0, HC                               | R/W-0, HC          | R/W-0, HC      |  |  |
| GCEN            | STREN                                                                                    | ACKDT                                               | ACKEN                                          | RCEN                             | PEN                                     | RSEN               | SEN            |  |  |
| bit 7           | onicit                                                                                   | / OTE I                                             | , lon Lin                                      | ROLI                             | . 2.1                                   | ROLIN              | bit (          |  |  |
| Legend:         |                                                                                          | U = Unimple                                         | mented bit, re                                 | ad as '0'                        |                                         |                    |                |  |  |
| R = Readable    | bit                                                                                      | W = Writable                                        |                                                | HS = Hardwar                     | e Settable bit                          | HC = Hardwar       | e Clearable bi |  |  |
| -n = Value at F |                                                                                          | '1' = Bit is set                                    |                                                | '0' = Bit is clea                |                                         | x = Bit is unknown |                |  |  |
|                 | U.N.                                                                                     |                                                     |                                                |                                  |                                         |                    |                |  |  |
| bit 15          |                                                                                          | x Enable bit                                        | dulo and con                                   | figures the SD                   |                                         | s as serial port p | vinc           |  |  |
|                 |                                                                                          |                                                     |                                                |                                  | lled by port func                       |                    | ///15          |  |  |
| bit 14          | Unimplem                                                                                 | ented: Read                                         | <b>as</b> '0'                                  |                                  |                                         |                    |                |  |  |
| bit 13          | I2CSIDL: S                                                                               | Stop in Idle Mo                                     | ode bit                                        |                                  |                                         |                    |                |  |  |
|                 |                                                                                          |                                                     | operation whe<br>eration in Idle               |                                  | s an Idle mode                          |                    |                |  |  |
| bit 12          | SCLREL: S                                                                                | SCLx Release                                        | e Control bit (v                               | when operating                   | as l <sup>2</sup> C slave)              |                    |                |  |  |
|                 | <ul><li>1 = Release SCLx clock</li><li>0 = Hold SCLx clock low (clock stretch)</li></ul> |                                                     |                                                |                                  |                                         |                    |                |  |  |
|                 |                                                                                          | (i.e., software                                     |                                                |                                  | h and write '1' to<br>t end of slave re | release clock).    | Hardware clea  |  |  |
|                 | <u>If STREN =</u><br>Bit is R/S (i<br>transmissio                                        | .e., software                                       | can only write                                 | '1' to release o                 | clock). Hardware                        | clear at beginni   | ng of slave    |  |  |
| bit 11          | 1 = IPMI m                                                                               |                                                     | -                                              | ement Interface<br>es Acknowledg | e (IPMI) Enable b<br>ged                | bit                |                |  |  |
| bit 10          | A10M: 10-I                                                                               | Bit Slave Add                                       | ress bit                                       |                                  |                                         |                    |                |  |  |
|                 |                                                                                          | DD is a 10-bit<br>DD is a 7-bit s                   | slave address<br>lave address                  | 3                                |                                         |                    |                |  |  |
| bit 9           | DISSLW: D                                                                                | isable Slew I                                       | Rate Control b                                 | oit                              |                                         |                    |                |  |  |
|                 |                                                                                          | ate control dis<br>ate control ena                  |                                                |                                  |                                         |                    |                |  |  |
| bit 8           | SMEN: SM                                                                                 | Bus Input Le                                        | vels bit                                       |                                  |                                         |                    |                |  |  |
|                 |                                                                                          | I/O pin thres<br>SMBus inpu                         |                                                | nt with SMBus                    | specification                           |                    |                |  |  |
| bit 7           | GCEN: Ge                                                                                 | neral Call Ena                                      | able bit (when                                 | operating as I <sup>2</sup>      | <sup>2</sup> C slave)                   |                    |                |  |  |
|                 | (module                                                                                  | interrupt whe<br>e is enabled fo<br>al call address | or reception)                                  | all address is re                | eceived in the I2                       | CxRSR              |                |  |  |
| bit 6           |                                                                                          |                                                     |                                                | it (when operat                  | ting as I <sup>2</sup> C slave          | )                  |                |  |  |
|                 | Used in con<br>1 = Enable                                                                | njunction with<br>software or r                     | SCLREL bit.<br>eceive clock s<br>receive clock | stretching                       | . <u>.</u>                              | ,                  |                |  |  |

### REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER

### REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

| bit 5 | <b>ACKDT:</b> Acknowledge Data bit (when operating as I <sup>2</sup> C master, applicable during master receive)                                                                                                 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Value that is transmitted when the software initiates an Acknowledge sequence.<br>1 = Send NACK during Acknowledge<br>0 = Send ACK during Acknowledge                                                            |
| bit 4 | <b>ACKEN:</b> Acknowledge Sequence Enable bit (when operating as I <sup>2</sup> C master, applicable during master receive)                                                                                      |
|       | <ul> <li>1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence.</li> <li>0 = Acknowledge sequence not in progress</li> </ul> |
| bit 3 | RCEN: Receive Enable bit (when operating as I <sup>2</sup> C master)                                                                                                                                             |
|       | 1 = Enables Receive mode for $I^2C$ . Hardware clear at end of eighth bit of master receive data byte.<br>0 = Receive sequence not in progress                                                                   |
| bit 2 | <b>PEN:</b> Stop Condition Enable bit (when operating as I <sup>2</sup> C master)                                                                                                                                |
|       | <ul><li>1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence.</li><li>0 = Stop condition not in progress</li></ul>                                                   |
| bit 1 | <b>RSEN:</b> Repeated Start Condition Enable bit (when operating as I <sup>2</sup> C master)                                                                                                                     |
|       | 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence.                                                                                            |
|       | 0 = Repeated Start condition not in progress                                                                                                                                                                     |
| bit 0 | <b>SEN:</b> Start Condition Enable bit (when operating as I <sup>2</sup> C master)                                                                                                                               |
|       | <ul> <li>1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence.</li> <li>0 = Start condition not in progress</li> </ul>                                             |

| R-0, HSC      | R-0, HSC                                      | U-0                                                | U-0                                               | U-0                                         | R/C-0, HSC                   | R-0, HSC                                  | R-0, HSC           |
|---------------|-----------------------------------------------|----------------------------------------------------|---------------------------------------------------|---------------------------------------------|------------------------------|-------------------------------------------|--------------------|
| ACKSTAT       | TRSTAT                                        | _                                                  |                                                   |                                             | BCL                          | GCSTAT                                    | ADD10              |
| bit 15        |                                               |                                                    |                                                   |                                             |                              |                                           | bit 8              |
|               |                                               |                                                    |                                                   |                                             |                              |                                           |                    |
| R/C-0, HS     | R/C-0, HS                                     | R-0, HSC                                           | R/C-0, HSC                                        | R/C-0, HSC                                  | R-0, HSC                     | R-0, HSC                                  | R-0, HSC           |
| IWCOL         | I2COV                                         | D_A                                                | Р                                                 | S                                           | R_W                          | RBF                                       | TBF                |
| bit 7         |                                               |                                                    |                                                   |                                             |                              |                                           | bit 0              |
| <del></del>   |                                               |                                                    |                                                   |                                             |                              |                                           |                    |
| Legend:       |                                               | -                                                  | emented bit, I                                    |                                             | 0 "                          |                                           |                    |
| R = Readabl   |                                               | W = Writable                                       |                                                   |                                             |                              |                                           | Settable/Clearable |
| -n = Value at | POR                                           | '1' = Bit is se                                    | et                                                | '0' = Bit is cle                            | ared                         | x = Bit is unknow                         | /n                 |
| bit 15        | (when opera<br>1 = NACK r<br>0 = ACK rea      | eceived from ceived from s                         | naster, applic<br>slave<br>lave                   | able to master<br>Acknowledge.              | r transmit opera             | ition)                                    |                    |
| bit 14        | <b>TRSTAT:</b> Tr<br>1 = Master<br>0 = Master | ransmit Status<br>transmit is in<br>transmit is no | s bit (when or<br>progress (8 t<br>it in progress | perating as I <sup>2</sup> C<br>bits + ACK) | c master, applic             | able to master trar<br>at end of slave Ac |                    |
| bit 13-11     | Unimpleme                                     | ented: Read a                                      | <b>as</b> '0'                                     |                                             |                              |                                           |                    |
| bit 10        | BCL: Maste                                    | er Bus Collisio                                    | on Detect bit                                     |                                             |                              |                                           |                    |
|               | 0 = No collis                                 |                                                    |                                                   | during a mast                               | ter operation                |                                           |                    |
| bit 9         | GCSTAT: G                                     | eneral Call S                                      | tatus bit                                         |                                             |                              |                                           |                    |
|               | 0 = Genera                                    | l call address<br>l call address<br>et when addr   | was not rece                                      | eived                                       | ddress. Hardwa               | are clear at Stop de                      | etection.          |
| bit 8         |                                               | -Bit Address                                       |                                                   | 5                                           |                              |                                           |                    |
|               | 1 = 10-bit a                                  | ddress was n                                       | natched                                           |                                             |                              |                                           |                    |
|               | Hardware s                                    |                                                    | f 2nd byte of                                     | matched 10-b                                | it address. Harc             | dware clear at Stop                       | o detection.       |
| bit 7         |                                               | ite Collision [                                    |                                                   |                                             |                              |                                           |                    |
|               | 0 = No collis                                 | sion                                               |                                                   |                                             | because the I <sup>2</sup> C | c module is busy<br>d by software).       |                    |
| bit 6         |                                               | ceive Overflow                                     |                                                   |                                             |                              | ,<br>,                                    |                    |
|               | 1 = A byte v<br>0 = No over                   | was received<br>rflow                              | while the I2C                                     | C                                           | is still holding             | the previous byte by software).           |                    |
| bit 5         |                                               |                                                    |                                                   | ng as I <sup>2</sup> C slave                |                              | ,                                         |                    |
|               | 1 = Indicate<br>0 = Indicate                  | es that the las                                    | t byte receive<br>t byte receive                  | ed was data<br>ed was device                | address                      | n of slave byte.                          |                    |
| bit 4         | P: Stop bit                                   | es that a Stop                                     | h : ( h = - h =                                   |                                             |                              |                                           |                    |

#### I2CxSTAT: I2Cx STATUS REGISTER **REGISTER 19-2:** U-0

0 = Stop bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.

### REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

| bit 3 | S: Start bit                                                                                                                                                                                                                         |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | <ul> <li>1 = Indicates that a Start (or Repeated Start) bit has been detected last</li> <li>0 = Start bit was not detected last</li> <li>Hardware set or clear when Start, Repeated Start or Stop detected.</li> </ul>               |
| bit 2 | <b>R_W:</b> Read/Write Information bit (when operating as $I^2C$ slave)                                                                                                                                                              |
|       | <ul> <li>1 = Read – indicates data transfer is output from slave</li> <li>0 = Write – indicates data transfer is input to slave</li> <li>Hardware set or clear after reception of I<sup>2</sup>C device address byte.</li> </ul>     |
| bit 1 | RBF: Receive Buffer Full Status bit                                                                                                                                                                                                  |
|       | <ul> <li>1 = Receive complete, I2CxRCV is full</li> <li>0 = Receive not complete, I2CxRCV is empty</li> <li>Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads</li> <li>I2CxRCV.</li> </ul> |
| bit 0 | TBF: Transmit Buffer Full Status bit                                                                                                                                                                                                 |
|       | <ul> <li>1 = Transmit in progress, I2CxTRN is full</li> <li>0 = Transmit complete, I2CxTRN is empty</li> <li>Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.</li> </ul>                |

| U-0                                | U-0          | U-0   | U-0                                  | U-0                                                   | R/W-0                                                                                                                                            | R/W-0                                                                                                                                                                                            |
|------------------------------------|--------------|-------|--------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    | —            |       | —                                    | —                                                     | AMSK                                                                                                                                             | <9:8>                                                                                                                                                                                            |
|                                    | -            |       |                                      |                                                       |                                                                                                                                                  | bit 8                                                                                                                                                                                            |
|                                    |              |       |                                      |                                                       |                                                                                                                                                  |                                                                                                                                                                                                  |
| R/W-0                              | R/W-0        | R/W-0 | R/W-0                                | R/W-0                                                 | R/W-0                                                                                                                                            | R/W-0                                                                                                                                                                                            |
|                                    |              | AMS   | K<7:0>                               |                                                       |                                                                                                                                                  |                                                                                                                                                                                                  |
|                                    |              |       |                                      |                                                       |                                                                                                                                                  | bit 0                                                                                                                                                                                            |
|                                    |              |       |                                      |                                                       |                                                                                                                                                  |                                                                                                                                                                                                  |
|                                    |              |       |                                      |                                                       |                                                                                                                                                  |                                                                                                                                                                                                  |
| it                                 | W = Writable | bit   | U = Unimplem                         | nented bit, read                                      | l as '0'                                                                                                                                         |                                                                                                                                                                                                  |
| -n = Value at POR '1' = Bit is set |              |       | 0' = Bit is cleared $x = Bit is unk$ |                                                       | x = Bit is unkn                                                                                                                                  | own                                                                                                                                                                                              |
|                                    | R/W-0        |       |                                      | R/W-0         R/W-0         R/W-0           AMSK<7:0> | R/W-0         R/W-0         R/W-0         R/W-0           AMSK<7:0>             bit         W = Writable bit         U = Unimplemented bit, read | -         -         -         -         AMSK           R/W-0         R/W-0         R/W-0         R/W-0         R/W-0           AMSK<7:0>         AMSK         U = Unimplemented bit, read as '0' |

#### REGISTER 19-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSK<9:0>: Mask for Address bit x Select bits

1 = Enable masking for bit x of incoming message address; bit match not required in this position

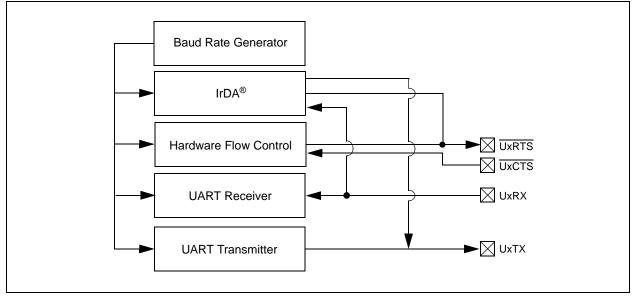
0 = Disable masking for bit x; bit match required in this position

NOTES:

# 20.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "UART" (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 device families. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA encoder and decoder.


The primary features of the UART module are:

- Full-Duplex, 8-Bit or 9-Bit Data Transmission through the UxTX and UxRX pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 10 Mbps to 38 bps at 40 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- Transmit and Receive Interrupts
- A Separate Interrupt for all UART Error Conditions
- · Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- Support for Automatic Baud Rate Detection
- IrDA Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support
- Support for DMA

A simplified block diagram of the UART module is shown in Figure 20-1. The UART module consists of these key hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

#### FIGURE 20-1: UART SIMPLIFIED BLOCK DIAGRAM



| REGISTER 20           | )-1: UxMO                                                     | DE: UARTx N                                        |                              | STER                                      |                                     |                                                       |                |
|-----------------------|---------------------------------------------------------------|----------------------------------------------------|------------------------------|-------------------------------------------|-------------------------------------|-------------------------------------------------------|----------------|
| R/W-0                 | U-0                                                           | R/W-0                                              | R/W-0                        | R/W-0                                     | U-0                                 | R/W-0                                                 | R/W-0          |
| UARTEN <sup>(1)</sup> |                                                               | USIDL                                              | IREN <sup>(2)</sup>          | RTSMD                                     | _                                   | UEN                                                   | <1:0>          |
| bit 15                |                                                               | •                                                  |                              |                                           |                                     | ÷                                                     | bit 8          |
| R/W-0 HC              | R/W-0                                                         | R/W-0, HC                                          | R/W-0                        | R/W-0                                     | R/W-0                               | R/W-0                                                 | R/W-0          |
| WAKE                  | LPBACK                                                        | ABAUD                                              | URXINV                       | BRGH                                      |                                     | L<1:0>                                                | STSEL          |
| bit 7                 | El Briori                                                     | NBNOD                                              | Orotarty                     | Bitteri                                   | 1002                                |                                                       | bit (          |
| Legend:               |                                                               | HC = Hardwa                                        | re Clearable                 |                                           |                                     |                                                       |                |
| R = Readable b        | sit                                                           | W = Writable                                       |                              |                                           | nented bit, read                    | d as '0'                                              |                |
| -n = Value at P       |                                                               | '1' = Bit is set                                   | JIL                          | $0^{\circ} = \text{Bit is clear}$         |                                     | x = Bit is unkr                                       |                |
|                       | OK                                                            |                                                    |                              |                                           | areu                                |                                                       | IOWII          |
| bit 15                | 1 = UARTx is                                                  |                                                    | ARTx pins are                |                                           |                                     | ined by UEN<1:<br>s; UARTx powe                       |                |
| bit 14                | Unimplemen                                                    | ted: Read as 'd                                    | )'                           |                                           |                                     |                                                       |                |
| bit 13                | USIDL: Stop                                                   | in Idle Mode bit                                   |                              |                                           |                                     |                                                       |                |
|                       |                                                               | nue module ope<br>module operat                    |                              |                                           | le mode                             |                                                       |                |
| bit 12                | <b>IREN:</b> $IrDA^{\mathbb{R}}$                              | Encoder and D                                      | ecoder Enable                | e bit <sup>(2)</sup>                      |                                     |                                                       |                |
|                       |                                                               | oder and decoo<br>oder and decoo                   |                              |                                           |                                     |                                                       |                |
| bit 11                | RTSMD: Mod                                                    | le Selection for                                   | UxRTS Pin b                  | it                                        |                                     |                                                       |                |
|                       |                                                               | in in Simplex m<br>in in Flow Cont                 |                              |                                           |                                     |                                                       |                |
| bit 10                | Unimplemen                                                    | ted: Read as 'd                                    | )'                           |                                           |                                     |                                                       |                |
| bit 9-8               |                                                               | ARTx Enable b                                      |                              |                                           |                                     |                                                       |                |
|                       | $\begin{array}{rll} 10 = & UxTX, \\ 01 = & UxTX, \end{array}$ | UxRX, UxCTS<br>UxRX and UxR<br>and UxRX pins       | and UxRTS p<br>TS pins are e | ins are enablec<br>nabled an <u>d use</u> | I an <u>d used</u><br>ed; UxCTS pin | controlled by PC<br>controlled by P<br>/BCLK pins con | ORT latches    |
| bit 7                 | WAKE: Wake                                                    | -up on Start bit                                   | Detect During                | g Sleep Mode B                            | Enable bit                          |                                                       |                |
|                       |                                                               | are on following                                   |                              | RX pin; interru                           | pt generated c                      | on falling edge; I                                    | bit cleared    |
| bit 6                 | LPBACK: UA                                                    | RTx Loopback                                       | Mode Select                  | bit                                       |                                     |                                                       |                |
|                       |                                                               | oopback mode<br>k mode is disat                    | led                          |                                           |                                     |                                                       |                |
| bit 5                 | ABAUD: Auto                                                   | o-Baud Enable                                      | bit                          |                                           |                                     |                                                       |                |
|                       | before ot                                                     | aud rate meas<br>her data; cleare<br>e measurement | ed in hardware               | e upon complet                            | •                                   | eception of a S                                       | ync field (55h |
| info                  | ormation on en                                                |                                                    | T module for                 | receive or trans                          |                                     | amily Reference<br>That section of                    |                |

# REGISTER 20-1: UxMODE: UARTx MODE REGISTER

**2:** This feature is only available for the 16x BRG mode (BRGH = 0).

#### REGISTER 20-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

| bit 4   | <b>URXINV:</b> Receive Polarity Inversion bit<br>1 = UxRX Idle state is '0'<br>0 = UxRX Idle state is '1'                                                                          |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 3   | BRGH: High Baud Rate Enable bit                                                                                                                                                    |
|         | <ul> <li>1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)</li> <li>0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)</li> </ul> |
| bit 2-1 | PDSEL<1:0>: Parity and Data Selection bits                                                                                                                                         |
|         | 11 = 9-bit data, no parity                                                                                                                                                         |
|         | 10 = 8-bit data, odd parity                                                                                                                                                        |
|         | 01 = 8-bit data, even parity<br>00 = 8-bit data, no parity                                                                                                                         |
|         |                                                                                                                                                                                    |
| bit 0   | STSEL: Stop Bit Selection bit                                                                                                                                                      |
|         | 1 = Two Stop bits                                                                                                                                                                  |

- 0 = One Stop bit
- Note 1: Refer to Section 17. "UART" (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual" for information on enabling the UART module for receive or transmit operation. That section of the manual is available on the Microchip web site, www.microchip.com.
  - **2:** This feature is only available for the 16x BRG mode (BRGH = 0).

| R/W-0           | R/W-0                                                                | R/W-0                                                 | U-0             | R/W-0, HC         | R/W-0                | R-0             | R-1           |  |  |  |  |
|-----------------|----------------------------------------------------------------------|-------------------------------------------------------|-----------------|-------------------|----------------------|-----------------|---------------|--|--|--|--|
| UTXISEL1        | UTXINV                                                               | UTXISEL0                                              | —               | UTXBRK            | UTXEN <sup>(1)</sup> | UTXBF           | TRMT          |  |  |  |  |
| bit 15          |                                                                      |                                                       |                 |                   |                      |                 | bit 8         |  |  |  |  |
|                 |                                                                      |                                                       |                 |                   |                      |                 |               |  |  |  |  |
| R/W-0           | R/W-0                                                                | R/W-0                                                 | R-1             | R-0               | R-0                  | R/C-0           | R-0           |  |  |  |  |
|                 | EL<1:0>                                                              | ADDEN                                                 | RIDLE           | PERR              | FERR                 | OERR            | URXDA         |  |  |  |  |
| bit 7           |                                                                      |                                                       |                 |                   |                      |                 | bit           |  |  |  |  |
| Legend:         |                                                                      | HC = Hardware                                         | Clearable bit   | C = Clearable     | e bit                |                 |               |  |  |  |  |
| R = Readable    | bit                                                                  | W = Writable bit                                      |                 | U = Unimpler      | mented bit, rea      | ad as '0'       |               |  |  |  |  |
| -n = Value at F | POR                                                                  | '1' = Bit is set                                      |                 | '0' = Bit is cle  | eared                | x = Bit is unl  | known         |  |  |  |  |
| bit 15,13       |                                                                      | 0>: Transmission                                      | Interrupt Mode  | e Selection bits  |                      |                 |               |  |  |  |  |
|                 |                                                                      | ved; do not use<br>pt when a charac                   | tar is transfor | red to the Trop   | smit Shift roa       | istor and ac    | a recult th   |  |  |  |  |
|                 |                                                                      | nit buffer becomes                                    |                 |                   | ISINI ONIT TEG       | isiei, anu as   | a result, th  |  |  |  |  |
|                 | 01 = Interru                                                         | pt when the last                                      | character is    | shifted out of    | the Transmit         | Shift register; | all transm    |  |  |  |  |
|                 | •                                                                    | ions are completed<br>pt when a charact               |                 | od to the Trans   | mit Shift rogici     | tor (this impli | as thore is   |  |  |  |  |
|                 |                                                                      | one character open                                    |                 |                   |                      |                 |               |  |  |  |  |
| bit 14          | UTXINV: Transmit Polarity Inversion bit                              |                                                       |                 |                   |                      |                 |               |  |  |  |  |
|                 | $\frac{\text{If IREN} = 0}{2}$                                       |                                                       |                 |                   |                      |                 |               |  |  |  |  |
|                 | 1 = UxTX Id<br>0 = UxTX Id                                           |                                                       |                 |                   |                      |                 |               |  |  |  |  |
|                 |                                                                      |                                                       |                 |                   |                      |                 |               |  |  |  |  |
|                 | $\frac{\text{If IREN} = 1:}{1 - \text{Ir} DA^{\text{®}} \text{ er}}$ | ncoded UxTX Idle                                      | etato is '1'    |                   |                      |                 |               |  |  |  |  |
|                 |                                                                      | coded UxTX Idle st                                    |                 |                   |                      |                 |               |  |  |  |  |
| bit 12          | Unimplemer                                                           | nted: Read as '0'                                     |                 |                   |                      |                 |               |  |  |  |  |
| bit 11          | UTXBRK: Tr                                                           | ansmit Break bit                                      |                 |                   |                      |                 |               |  |  |  |  |
|                 |                                                                      | nc Break on next t                                    |                 | Start bit, follow | ed by twelve '0      | ' bits, followe | d by Stop bi  |  |  |  |  |
|                 |                                                                      | by hardware upon                                      |                 | mplotod           |                      |                 |               |  |  |  |  |
| bit 10          |                                                                      | eak transmission d<br>nsmit Enable bit <sup>(1)</sup> |                 | Ilpieteu          |                      |                 |               |  |  |  |  |
|                 |                                                                      | t enabled, UxTX pi                                    | in controlled b | V LIARTX          |                      |                 |               |  |  |  |  |
|                 |                                                                      | t disabled, any per                                   |                 | •                 | l and buffer is      | reset; UxTX p   | oin controlle |  |  |  |  |
| bit 9           |                                                                      | nsmit Buffer Full St                                  | atus bit (read- | onlv)             |                      |                 |               |  |  |  |  |
|                 | 1 = Transmi                                                          |                                                       |                 |                   |                      |                 |               |  |  |  |  |
|                 | 0 = Transmi                                                          | t buffer is not full; a                               | at least one m  | ore character c   | an be written        |                 |               |  |  |  |  |
| bit 8           | TRMT: Trans                                                          | smit Shift Register                                   | Empty bit (rea  | d-only)           |                      |                 |               |  |  |  |  |
|                 |                                                                      | t Shift register is en<br>t Shift register is no      |                 |                   |                      |                 | s completed   |  |  |  |  |
| h:+ 7 C         |                                                                      |                                                       | unt Mada Cal    | action hite       |                      |                 |               |  |  |  |  |

#### REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bits

- 11 = Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters)
- 10 = Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters)
- 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer; receive buffer has one or more characters
- Note 1: Refer to Section 17. "UART" (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual" for information on enabling the UART module for transmit operation. That section of the manual is available on the Microchip web site, www.microchip.com.

#### REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

| bit 5 | <b>ADDEN:</b> Address Character Detect bit (bit 8 of received data = $1$ )                                                                                                                                                       |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | <ul> <li>1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect.</li> <li>0 = Address Detect mode disabled</li> </ul>                                                                         |
| bit 4 | RIDLE: Receiver Idle bit (read-only)                                                                                                                                                                                             |
|       | <ul><li>1 = Receiver is Idle</li><li>0 = Receiver is active</li></ul>                                                                                                                                                            |
| bit 3 | PERR: Parity Error Status bit (read-only)                                                                                                                                                                                        |
|       | <ul> <li>1 = Parity error has been detected for the current character (character at the top of the receive FIFO)</li> <li>0 = Parity error has not been detected</li> </ul>                                                      |
| bit 2 | FERR: Framing Error Status bit (read-only)                                                                                                                                                                                       |
|       | 1 = Framing error has been detected for the current character (character at the top of the receive FIFO)                                                                                                                         |
|       | 0 = Framing error has not been detected                                                                                                                                                                                          |
| bit 1 | OERR: Receive Buffer Overrun Error Status bit (clear/read-only)                                                                                                                                                                  |
|       | <ul> <li>1 = Receive buffer has overflowed</li> <li>0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 → 0 transition) will reset<br/>the receiver buffer and the UxRSR to the empty state.</li> </ul> |
| bit 0 | URXDA: Receive Buffer Data Available bit (read-only)                                                                                                                                                                             |
|       | <ul> <li>1 = Receive buffer has data, at least one more character can be read</li> <li>0 = Receive buffer is empty</li> </ul>                                                                                                    |
|       |                                                                                                                                                                                                                                  |

Note 1: Refer to Section 17. "UART" (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual" for information on enabling the UART module for transmit operation. That section of the manual is available on the Microchip web site, www.microchip.com.

NOTES:

# 21.0 ENHANCED CAN (ECAN™) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70185) in the dsPIC33F/PIC24H Family Reference Manual, which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

#### 21.1 Overview

The Enhanced Controller Area Network (ECAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices contain up to two ECAN modules.

The ECAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to eight transmit buffers with application specified prioritization and abort capability (each buffer can contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier) acceptance filters
- Three full acceptance filter masks
- DeviceNet<sup>™</sup> addressing support
- Programmable wake-up functionality with integrated low-pass filter

- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- Programmable clock source
- Programmable link to input capture module (IC2 for CAN1) for time-stamping and network synchronization
- · Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

### 21.2 Frame Types

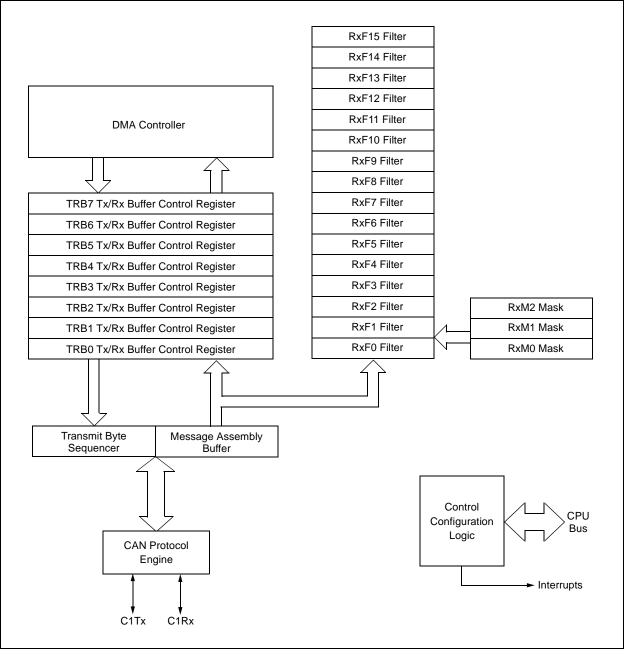
The ECAN module transmits various types of frames which include data messages, or remote transmission requests initiated by the user, as other frames that are automatically generated for control purposes. The following frame types are supported:

- Standard Data Frame: A standard data frame is generated by a node when the node wishes to transmit data. It includes an 11-bit Standard Identifier (SID), but not an 18-bit Extended Identifier (EID).
- Extended Data Frame: An extended data frame is similar to a standard data frame, but includes an extended identifier as well.
- Remote Frame:

It is possible for a destination node to request the data from the source. For this purpose, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node sends a data frame as a response to this remote request.

• Error Frame:

An error frame is generated by any node that detects a bus error. An error frame consists of two fields: an error flag field and an error delimiter field.


Overload Frame:

An overload frame can be generated by a node as a result of two conditions. First, the node detects a dominant bit during interframe space which is an illegal condition. Second, due to internal conditions, the node is not yet able to start reception of the next message. A node can generate a maximum of 2 sequential overload frames to delay the start of the next message.

Interframe Space:

Interframe space separates a proceeding frame (of whatever type) from a following data or remote frame.

### FIGURE 21-1: ECAN<sup>™</sup> MODULE BLOCK DIAGRAM



#### 21.3 Modes of Operation

The ECAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization mode
- Disable mode
- Normal Operation mode
- Listen Only mode
- Listen All Messages mode
- Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module does not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

### 21.3.1 INITIALIZATION MODE

In the Initialization mode, the module does not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The user application has access to Configuration registers that are access restricted in other modes. The module protects the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module can not be modified while the module is on-line. The ECAN module is not allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers:

- All Module Control registers
- Baud Rate and Interrupt Configuration registers
- Bus Timing registers
- Identifier Acceptance Filter registers
- Identifier Acceptance Mask registers

#### 21.3.2 DISABLE MODE

In Disable mode, the module does not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts remains and the error counters retains their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module enters the Module Disable mode. If the module is active, the module waits for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins reverts to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the ECAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the ECAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.

### 21.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins assumes the CAN bus functions. The module transmits and receive CAN bus messages via the CiTX and CiRX pins.

#### 21.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

#### 21.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = '111'. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

### 21.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module connects the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

| U-0          | U-0                                     | R/W-0                                  | R/W-0            | r-0               | R/W-1            | R/W-0             | R/W-0 |  |  |  |  |
|--------------|-----------------------------------------|----------------------------------------|------------------|-------------------|------------------|-------------------|-------|--|--|--|--|
|              |                                         | CSIDL                                  | ABAT             |                   |                  | REQOP<2:0>        |       |  |  |  |  |
| oit 15       |                                         | ÷                                      |                  | · ·               |                  |                   | bit   |  |  |  |  |
|              |                                         |                                        |                  |                   |                  |                   |       |  |  |  |  |
| R-1          | R-0                                     | R-0                                    | U-0              | R/W-0             | U-0              | U-0               | R/W-0 |  |  |  |  |
|              | OPMODE<2:0>                             | >                                      | —                | CANCAP            | <u> </u>         | <u> </u>          | WIN   |  |  |  |  |
| oit 7        |                                         |                                        |                  |                   |                  |                   | bit   |  |  |  |  |
| Legend:      |                                         | C = Writable                           | bit, but only '0 | ' can be written  | to clear the bit | t r = Bit is Rese | rved  |  |  |  |  |
| R = Readab   | le bit                                  | W = Writable                           |                  | U = Unimplem      |                  |                   | , vou |  |  |  |  |
| -n = Value a | t POR                                   | '1' = Bit is set                       |                  | '0' = Bit is clea |                  | x = Bit is unkn   | own   |  |  |  |  |
|              |                                         |                                        |                  |                   |                  |                   |       |  |  |  |  |
| bit 15-14    | Unimplemen                              | nted: Read as '                        | 0'               |                   |                  |                   |       |  |  |  |  |
| bit 13       |                                         | in Idle Mode bi                        |                  |                   |                  |                   |       |  |  |  |  |
|              |                                         |                                        |                  | levice enters Idl | e mode           |                   |       |  |  |  |  |
| L:1 1 0      |                                         | module operat                          |                  |                   |                  |                   |       |  |  |  |  |
| bit 12       |                                         | All Pending Tra                        |                  |                   |                  |                   |       |  |  |  |  |
|              |                                         | transmit buffer<br>vill clear this bit |                  | smissions are a   | borted           |                   |       |  |  |  |  |
| bit 11       | Reserved: D                             |                                        |                  |                   |                  |                   |       |  |  |  |  |
| oit 10-8     | REQOP<2:0>: Request Operation Mode bits |                                        |                  |                   |                  |                   |       |  |  |  |  |
|              | 000 = Set Normal Operation mode         |                                        |                  |                   |                  |                   |       |  |  |  |  |
|              | 001 = Set Dis                           |                                        |                  |                   |                  |                   |       |  |  |  |  |
|              |                                         | opback mode                            |                  |                   |                  |                   |       |  |  |  |  |
|              |                                         | sten Only Mode                         |                  |                   |                  |                   |       |  |  |  |  |
|              | 101 = Reserv                            |                                        |                  |                   |                  |                   |       |  |  |  |  |
|              | 110 = Reserv                            |                                        |                  |                   |                  |                   |       |  |  |  |  |
|              |                                         | sten All Messag                        |                  |                   |                  |                   |       |  |  |  |  |
| bit 7-5      |                                         | :0>: Operation                         |                  |                   |                  |                   |       |  |  |  |  |
|              |                                         | e is in Normal (<br>e is in Disable ı  |                  | de                |                  |                   |       |  |  |  |  |
|              |                                         | e is in Loopbac                        |                  |                   |                  |                   |       |  |  |  |  |
|              |                                         | e is in Listen O                       |                  |                   |                  |                   |       |  |  |  |  |
|              |                                         | e is in Configur                       | ation mode       |                   |                  |                   |       |  |  |  |  |
|              | 101 = Reserv<br>110 = Reserv            |                                        |                  |                   |                  |                   |       |  |  |  |  |
|              |                                         | e is in Listen Al                      | l Messages m     | node              |                  |                   |       |  |  |  |  |
| oit 4        |                                         | nted: Read as '                        | -                |                   |                  |                   |       |  |  |  |  |
| oit 3        | -                                       |                                        |                  | Capture Event I   | Enable bit       |                   |       |  |  |  |  |
|              |                                         |                                        |                  | nessage receive   |                  |                   |       |  |  |  |  |
|              | 0 = Disable C                           | CAN capture                            |                  |                   |                  |                   |       |  |  |  |  |
| oit 2-1      | -                                       | nted: Read as '                        |                  |                   |                  |                   |       |  |  |  |  |
| bit 0        |                                         | ap Window Sel                          | ect bit          |                   |                  |                   |       |  |  |  |  |
|              | 1 = Use filter                          |                                        |                  |                   |                  |                   |       |  |  |  |  |
|              | 0 = Use buffe                           | erwindow                               |                  |                   |                  |                   |       |  |  |  |  |

| <b>REGISTER 21</b> | -2: CiCTF | RL2: ECAN™       | CONTROL       | REGISTER 2        | 2               |                 |       |
|--------------------|-----------|------------------|---------------|-------------------|-----------------|-----------------|-------|
| U-0                | U-0       | U-0              | U-0           | U-0               | U-0             | U-0             | U-0   |
| —                  | _         | —                | _             | —                 | —               | _               | —     |
| bit 15             |           |                  |               |                   |                 |                 | bit 8 |
| U-0                | U-0       | U-0              | R-0           | R-0               | R-0             | R-0             | R-0   |
| —                  | _         | _                |               |                   | DNCNT<4:0       | )>              |       |
| bit 7              |           |                  |               |                   |                 |                 | bit 0 |
| Legend:            |           | C = Writeable    | bit, but only | '0' can be writte | en to clear the | bit             |       |
| R = Readable b     | it        | W = Writable I   | bit           | U = Unimpler      | mented bit, rea | ad as '0'       |       |
| -n = Value at PO   | DR        | '1' = Bit is set |               | '0' = Bit is cle  | ared            | x = Bit is unkr | nown  |
| -n = Value at PC   | DR        |                  |               | •                 |                 |                 | nown  |

| Unimplemented: Read as '0'                                                                |
|-------------------------------------------------------------------------------------------|
| DNCNT<4:0>: DeviceNet <sup>™</sup> Filter Bit Number bits                                 |
| 10010-11111 = Invalid selection<br>10001 = Compare up to data byte 3, bit 6 with EID<17>  |
| •                                                                                         |
| •                                                                                         |
| •                                                                                         |
| 00001 = Compare up to data byte 1, bit 7 with EID<0><br>00000 = Do not compare data bytes |
|                                                                                           |

© 2010 Microchip Technology Inc.

| U-0           | U-0                                                                | U-0                                | R-0             | R-0               | R-0               | R-0             | R-0  |  |  |  |  |
|---------------|--------------------------------------------------------------------|------------------------------------|-----------------|-------------------|-------------------|-----------------|------|--|--|--|--|
| —             |                                                                    |                                    |                 |                   | FILHIT<4:0>       |                 |      |  |  |  |  |
| bit 15        | ·                                                                  |                                    |                 |                   |                   |                 | bit  |  |  |  |  |
|               |                                                                    |                                    |                 |                   |                   |                 |      |  |  |  |  |
| U-0           | R-1                                                                | R-0                                | R-0             | R-0<br>ICODE<6:0: | R-0               | R-0             | R-0  |  |  |  |  |
| <br>oit 7     |                                                                    |                                    |                 |                   | >                 |                 | bit  |  |  |  |  |
|               |                                                                    |                                    |                 |                   |                   |                 | bit  |  |  |  |  |
| Legend:       |                                                                    | C = Writeable                      | e bit, but only | 0' can be writt   | en to clear the b | it              |      |  |  |  |  |
| R = Readable  | e bit                                                              | W = Writable                       | bit             | U = Unimple       | mented bit, read  | l as '0'        |      |  |  |  |  |
| -n = Value at | POR                                                                | '1' = Bit is set                   | t               | '0' = Bit is cle  | eared             | x = Bit is unkr | nown |  |  |  |  |
| bit 15-13     | Unimplomon                                                         | ted: Read as '                     | 0'              |                   |                   |                 |      |  |  |  |  |
| bit 12-8      | •                                                                  | Filter Hit Num                     |                 |                   |                   |                 |      |  |  |  |  |
| 511 12 0      |                                                                    | 1 = Reserved                       |                 |                   |                   |                 |      |  |  |  |  |
|               | 01111 = Filte                                                      |                                    |                 |                   |                   |                 |      |  |  |  |  |
|               | •                                                                  |                                    |                 |                   |                   |                 |      |  |  |  |  |
|               | •                                                                  |                                    |                 |                   |                   |                 |      |  |  |  |  |
|               | •                                                                  |                                    |                 |                   |                   |                 |      |  |  |  |  |
|               | 00001 = Filte<br>00000 = Filte                                     |                                    |                 |                   |                   |                 |      |  |  |  |  |
| bit 7         |                                                                    | -                                  | 0'              |                   |                   |                 |      |  |  |  |  |
| bit 6-0       | Unimplemented: Read as '0'<br>ICODE<6:0>: Interrupt Flag Code bits |                                    |                 |                   |                   |                 |      |  |  |  |  |
|               | 1000101-1111111 = Reserved                                         |                                    |                 |                   |                   |                 |      |  |  |  |  |
|               |                                                                    | IFO almost full                    |                 |                   |                   |                 |      |  |  |  |  |
|               |                                                                    | eceiver overflo<br>/ake-up interru |                 |                   |                   |                 |      |  |  |  |  |
|               | 10000010 = W<br>10000001 = E<br>10000000 = N                       | rror interrupt                     | pr              |                   |                   |                 |      |  |  |  |  |
|               | •                                                                  | ·                                  |                 |                   |                   |                 |      |  |  |  |  |
|               | •                                                                  |                                    |                 |                   |                   |                 |      |  |  |  |  |
|               | •                                                                  |                                    |                 |                   |                   |                 |      |  |  |  |  |
|               |                                                                    | 11111 = Rese<br>B15 buffer Inte    |                 |                   |                   |                 |      |  |  |  |  |
|               | •                                                                  |                                    |                 |                   |                   |                 |      |  |  |  |  |
|               | •                                                                  |                                    |                 |                   |                   |                 |      |  |  |  |  |
|               | •                                                                  |                                    |                 |                   |                   |                 |      |  |  |  |  |
|               |                                                                    | B9 buffer inter<br>B8 buffer inter |                 |                   |                   |                 |      |  |  |  |  |
|               | 0000111 = T                                                        | RB7 buffer inte                    | errupt          |                   |                   |                 |      |  |  |  |  |
|               |                                                                    | RB6 buffer inte                    |                 |                   |                   |                 |      |  |  |  |  |
|               |                                                                    | RB5 buffer inte<br>RB4 buffer inte |                 |                   |                   |                 |      |  |  |  |  |
|               | 0000011 = T                                                        | RB3 buffer inte                    | errupt          |                   |                   |                 |      |  |  |  |  |
|               |                                                                    | RB2 buffer inte                    | •               |                   |                   |                 |      |  |  |  |  |
|               | 0000001 = T                                                        | RB1 buffer inte                    | errupt          |                   |                   |                 |      |  |  |  |  |

| R/W-0         | R/W-0                                                                             | R/W-0                                                                                                            | U-0                                      | U-0              | U-0                | U-0   | U-0   |  |
|---------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------|--------------------|-------|-------|--|
|               | DMABS<2:0>                                                                        |                                                                                                                  |                                          |                  | —                  | _     | —     |  |
| bit 15        | bit 15                                                                            |                                                                                                                  |                                          |                  |                    |       | bit 8 |  |
| U-0           | U-0                                                                               | U-0                                                                                                              | R/W-0                                    | R/W-0            | R/W-0              | R/W-0 | R/W-0 |  |
|               | _                                                                                 | _                                                                                                                |                                          |                  | FSA<4:0>           |       |       |  |
| bit 7         |                                                                                   |                                                                                                                  | •                                        |                  |                    |       | bit 0 |  |
| Legend:       |                                                                                   | C = Writeable                                                                                                    | bit, but only '                          | 0' can be writte | en to clear the bi | it    |       |  |
| R = Readable  | e bit                                                                             | W = Writable                                                                                                     |                                          |                  | mented bit, read   |       |       |  |
| -n = Value at | POR                                                                               | '1' = Bit is set                                                                                                 | 0' = Bit is cleared $x = Bit is unknown$ |                  |                    |       |       |  |
|               | 101 = 24 buff<br>100 = 16 buff<br>011 = 12 buff<br>010 = 8 buffe<br>001 = 6 buffe | ved<br>fers in DMA RA<br>fers in DMA RA<br>fers in DMA RA<br>fers in DMA RAM<br>ers in DMA RAM<br>ers in DMA RAM | M<br>M<br>M<br>A                         |                  |                    |       |       |  |
| bit 12-5      | Unimplemen                                                                        | ted: Read as '                                                                                                   | 0'                                       |                  |                    |       |       |  |
| bit 4-0       | <b>FSA&lt;4:0&gt;</b> : F                                                         | IFO Area Starts                                                                                                  | s with Buffer b                          | its              |                    |       |       |  |
|               |                                                                                   | ad buffer RB31<br>ad buffer RB30                                                                                 |                                          |                  |                    |       |       |  |
|               | •                                                                                 |                                                                                                                  |                                          |                  |                    |       |       |  |
|               | •                                                                                 |                                                                                                                  |                                          |                  |                    |       |       |  |
|               |                                                                                   |                                                                                                                  |                                          |                  |                    |       |       |  |

00001 = Tx/Rx buffer TRB1 00000 = Tx/Rx buffer TRB0

| U-0          | U-0                      | R-0                                                                         | R-0              | R-0              | R-0               | R-0             | R-0   |
|--------------|--------------------------|-----------------------------------------------------------------------------|------------------|------------------|-------------------|-----------------|-------|
| _            |                          |                                                                             |                  | FBP              | <b>°&lt;</b> 5:0> |                 |       |
| bit 15       |                          |                                                                             |                  |                  |                   |                 | bit 8 |
| U-0          | U-0                      | R-0                                                                         | R-0              | R-0              | R-0               | R-0             | R-0   |
| _            | _                        |                                                                             | -                | FNR              | B<5:0>            |                 |       |
| bit 7        |                          |                                                                             |                  |                  |                   |                 | bit ( |
| Legend:      |                          | C = Writable I                                                              | oit, but only 'C | ' can be written | n to clear the    | bit             |       |
| R = Readab   | le bit                   | W = Writable                                                                | -                | U = Unimplen     |                   |                 |       |
| -n = Value a | t POR                    | '1' = Bit is set                                                            |                  | '0' = Bit is cle | ared              | x = Bit is unkı | nown  |
|              | 000000 =                 | TRB1 buffer<br>TRB0 buffer                                                  |                  |                  |                   |                 |       |
| bit 7-6      | -                        | ented: Read as '                                                            |                  |                  |                   |                 |       |
| bit 5-0      | 011111 = H<br>011110 = H | >: FIFO Next Rea<br>RB31 buffer<br>RB30 buffer<br>RB1 buffer<br>IRB1 buffer | ad Buffer Poir   | iter bits        |                   |                 |       |

| U-0           | U-0                                 | R-0                                                                | R-0                                 | R-0              | R-0             | R-0             | R-0   |
|---------------|-------------------------------------|--------------------------------------------------------------------|-------------------------------------|------------------|-----------------|-----------------|-------|
|               |                                     | TXBO                                                               | TXBP                                | RXBP             | TXWAR           | RXWAR           | EWARN |
| bit 15        |                                     |                                                                    |                                     |                  |                 |                 | bit 8 |
| R/C-0         | R/C-0                               | R/C-0                                                              | U-0                                 | R/C-0            | R/C-0           | R/C-0           | R/C-0 |
| IVRIF         | WAKIF                               | ERRIF                                                              | _                                   | FIFOIF           | RBOVIF          | RBIF            | TBIF  |
| bit 7         |                                     |                                                                    |                                     |                  |                 |                 | bit   |
| Legend:       |                                     | C = Writeable                                                      | e bit, but only '                   | 0' can be writte | en to clear the | bit             |       |
| R = Readabl   | e bit                               | W = Writable                                                       | bit                                 | U = Unimpler     | nented bit, rea | ad as '0'       |       |
| -n = Value at | POR                                 | '1' = Bit is set                                                   | t                                   | '0' = Bit is cle | ared            | x = Bit is unki | nown  |
| bit 15-14     | Unimpleme                           | nted: Read as '                                                    | 0'                                  |                  |                 |                 |       |
| bit 13        | 1 = Transmit                        | smitter in Error<br>tter is in Bus Off<br>tter is not in Bus       | fstate                              | bit              |                 |                 |       |
| bit 12        | <b>TXBP</b> : Trans<br>1 = Transmit | smitter in Error s<br>tter is in Bus Pa<br>tter is not in Bus      | State Bus Pass<br>ssive state       |                  |                 |                 |       |
| bit 11        | <b>RXBP</b> : Receive               | eiver in Error Sta<br>r is in Bus Pass<br>r is not in Bus P        | ate Bus Passiv<br>ive state         |                  |                 |                 |       |
| bit 10        | <b>TXWAR</b> : Tra<br>1 = Transmit  | ansmitter in Error W<br>tter is in Error W<br>tter is not in Error | or State Warnin<br>/arning state    | -                |                 |                 |       |
| bit 9         | <b>RXWAR</b> : Re<br>1 = Receive    | ceiver in Error S<br>r is in Error War<br>r is not in Error        | State Warning<br>ming state         |                  |                 |                 |       |
| bit 8         | <b>EWARN</b> : Tra<br>1 = Transmit  | ansmitter or Rec<br>tter or Receiver<br>tter or Receiver           | ceiver in Error<br>is in Error Stat | e Warning stat   | te              |                 |       |
| bit 7         | IVRIF: Invali<br>1 = Interrupt      | d Message Rec<br>Request has o<br>Request has n                    | eived Interrup                      | -                |                 |                 |       |
| bit 6         | WAKIF: Bus<br>1 = Interrupt         | Wake-up Activ<br>Request has o<br>Request has n                    | ity Interrupt Fla                   | ag bit           |                 |                 |       |
| bit 5         | ERRIF: Erro<br>1 = Interrupt        | r Interrupt Flag<br>Request has o<br>Request has n                 | bit (multiple sc<br>ccurred         | ources in CiINT  | F<13:8> regis   | ster)           |       |
| bit 4         | Unimpleme                           | nted: Read as                                                      | 0'                                  |                  |                 |                 |       |
| bit 3         | FIFOIF: FIFO                        | O Almost Full In                                                   | terrupt Flag bi                     | t                |                 |                 |       |
|               | -                                   | Request has o                                                      |                                     |                  |                 |                 |       |
|               | -                                   | Request has n                                                      |                                     |                  |                 |                 |       |
| bit 2         | 1 = Interrupt                       | K Buffer Overflo                                                   | ccurred                             | g bit            |                 |                 |       |
| bit 1         | RBIF: RX B                          | Request has n<br>uffer Interrupt Fl                                | ag bit                              |                  |                 |                 |       |
|               |                                     | Request has o                                                      |                                     |                  |                 |                 |       |
|               | v = menubt                          |                                                                    |                                     |                  |                 |                 |       |
| bit 0         | -                                   | Request has n<br>ffer Interrupt Fla                                |                                     |                  |                 |                 |       |

| U-0               | U-0                                                                                      | U-0                                                   | U-0           | U-0                  | U-0                | U-0                | U-0   |  |
|-------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------|----------------------|--------------------|--------------------|-------|--|
| _                 | _                                                                                        | _                                                     | _             | _                    | _                  | _                  | _     |  |
| bit 15            |                                                                                          | ·                                                     |               |                      | •                  |                    | bit 8 |  |
|                   |                                                                                          |                                                       |               |                      |                    |                    |       |  |
| R/W-0             | R/W-0                                                                                    | R/W-0                                                 | R/W-0         | R/W-0                | R/W-0              | R/W-0              | R/W-0 |  |
| IVRIE             | WAKIE                                                                                    | ERRIE                                                 | —             | FIFOIE               | RBOVIE             | RBIE               | TBIE  |  |
| bit 7             |                                                                                          |                                                       |               |                      |                    |                    | bit ( |  |
| Legend:           |                                                                                          | C = Writeable                                         | bit, but only | '0' can be writte    | en to clear the bi | it                 |       |  |
| R = Readable bit  |                                                                                          | W = Writable bit $U = Unimplemented bit, read as '0'$ |               |                      |                    |                    |       |  |
| -n = Value at POR |                                                                                          | '1' = Bit is set                                      |               | '0' = Bit is cleared |                    | x = Bit is unknown |       |  |
|                   |                                                                                          |                                                       |               |                      |                    |                    |       |  |
| bit 15-8          | Unimplemented: Read as '0'                                                               |                                                       |               |                      |                    |                    |       |  |
| bit 7             | IVRIE: Invalid Message Received Interrupt Enable bit                                     |                                                       |               |                      |                    |                    |       |  |
|                   | 1 = Interrupt Request Enabled                                                            |                                                       |               |                      |                    |                    |       |  |
|                   | 0 = Interrupt Request not enabled                                                        |                                                       |               |                      |                    |                    |       |  |
| bit 6             | WAKIE: Bus Wake-up Activity Interrupt Flag bit                                           |                                                       |               |                      |                    |                    |       |  |
|                   | 1 = Interrupt Request Enabled                                                            |                                                       |               |                      |                    |                    |       |  |
|                   | 0 = Interrupt Request not enabled                                                        |                                                       |               |                      |                    |                    |       |  |
| bit 5             | ERRIE: Error Interrupt Enable bit                                                        |                                                       |               |                      |                    |                    |       |  |
|                   | 1 = Interrupt Request Enabled                                                            |                                                       |               |                      |                    |                    |       |  |
|                   | 0 = Interrupt Request not enabled                                                        |                                                       |               |                      |                    |                    |       |  |
| bit 4             | Unimplemented: Read as '0'                                                               |                                                       |               |                      |                    |                    |       |  |
| bit 3             | FIFOIE: FIFO Almost Full Interrupt Enable bit                                            |                                                       |               |                      |                    |                    |       |  |
|                   | 1 = Interrupt Request Enabled                                                            |                                                       |               |                      |                    |                    |       |  |
|                   | 0 = Interrupt Request not enabled                                                        |                                                       |               |                      |                    |                    |       |  |
| bit 2             | <b>RBOVIE</b> : RX Buffer Overflow Interrupt Enable bit<br>1 = Interrupt Request Enabled |                                                       |               |                      |                    |                    |       |  |
|                   | 1 = Interrupt Request Enabled<br>0 = Interrupt Request not enabled                       |                                                       |               |                      |                    |                    |       |  |
| bit 1             | RBIE: RX Buffer Interrupt Enable bit                                                     |                                                       |               |                      |                    |                    |       |  |
|                   | 1 = Interrupt Request Enabled                                                            |                                                       |               |                      |                    |                    |       |  |
|                   | 0 = Interrupt Request not enabled                                                        |                                                       |               |                      |                    |                    |       |  |
| bit 0             | <b>TBIE</b> : TX Buffer Interrupt Enable bit                                             |                                                       |               |                      |                    |                    |       |  |
|                   | 1 = Interrupt Request Enabled                                                            |                                                       |               |                      |                    |                    |       |  |
|                   | 1 = Interrupt                                                                            |                                                       | ed            |                      |                    |                    |       |  |

|                   |     |                  | •            |                        |              |                    |       |
|-------------------|-----|------------------|--------------|------------------------|--------------|--------------------|-------|
| R-0               | R-0 | R-0              | R-0          | R-0                    | R-0          | R-0                | R-0   |
|                   |     |                  | TERR         | CNT<7:0>               |              |                    |       |
| bit 15            |     |                  |              |                        |              |                    | bit 8 |
| R-0               | R-0 | R-0              | R-0          | R-0                    | R-0          | R-0                | R-0   |
|                   |     |                  | RERR         | CNT<7:0>               |              |                    |       |
| bit 7             |     |                  |              |                        |              |                    | bit 0 |
| Legend:           |     | C = Writeable bi | it, but only | ' '0' can be written t | o clear the  | e bit              |       |
| R = Readable bit  |     | W = Writable bit |              | U = Unimplemer         | nted bit, re | ad as '0'          |       |
| -n = Value at POR |     | '1' = Bit is set |              | '0' = Bit is cleare    | d            | x = Bit is unknown |       |

| bit 15-8 | TERRCNT<7:0>: Transmit Error Count bits |
|----------|-----------------------------------------|
| bit 7-0  | RERRCNT<7:0>: Receive Error Count bits  |

#### REGISTER 21-9: CiCFG1: ECAN™ BAUD RATE CONFIGURATION REGISTER 1

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0   |
|--------|-----|-----|-----|-----|-----|-----|-------|
|        | —   | _   |     |     |     |     | —     |
| bit 15 |     |     |     |     |     |     | bit 8 |

| R/W-0    | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0  | R/W-0 | R/W-0 |
|----------|-------|-------|-------|-------|--------|-------|-------|
| SJW<1:0> |       |       |       | BRP   | °<5:0> |       |       |
| bit 7    |       |       |       |       |        |       | bit 0 |

| Legend:           |                  |                        |                    |
|-------------------|------------------|------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, | read as '0'        |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared   | x = Bit is unknown |

| Unimplemented: Read as '0'                             |  |  |  |  |
|--------------------------------------------------------|--|--|--|--|
| <b>SJW&lt;1:0&gt;:</b> Synchronization Jump Width bits |  |  |  |  |
| 11 = Length is 4 x TQ                                  |  |  |  |  |
| 10 = Length is 3 x TQ                                  |  |  |  |  |
| 01 = Length is 2 x TQ                                  |  |  |  |  |
| 00 = Length is 1 x TQ                                  |  |  |  |  |
| BRP<5:0>: Baud Rate Prescaler bits                     |  |  |  |  |
| 11 1111 = TQ = 2 x 64 x 1/FCAN                         |  |  |  |  |
| •                                                      |  |  |  |  |
| •                                                      |  |  |  |  |
| •                                                      |  |  |  |  |
| 00 0010 = TQ = 2 x 3 x 1/FCAN                          |  |  |  |  |
| 00 0001 = TQ = 2 x 2 x 1/FCAN                          |  |  |  |  |
| 00 0000 = Tq = 2 x 1 x 1/FCAN                          |  |  |  |  |
|                                                        |  |  |  |  |

| U-0             | R/W-x                                                                                 | U-0               | U-0               | U-0             | R/W-x          | R/W-x            | R/W-x |  |  |  |
|-----------------|---------------------------------------------------------------------------------------|-------------------|-------------------|-----------------|----------------|------------------|-------|--|--|--|
| _               | WAKFIL                                                                                |                   |                   |                 |                | SEG2PH<2:0>      |       |  |  |  |
| bit 15          |                                                                                       |                   |                   |                 |                |                  | bit   |  |  |  |
| R/W-x           | R/W-x                                                                                 | R/W-x             | R/W-x             | R/W-x           | R/W-x          | R/W-x            | R/W-x |  |  |  |
| SEG2PHTS        | SAM                                                                                   |                   | SEG1PH<2:0>       |                 |                | PRSEG<2:0>       |       |  |  |  |
| bit 7           | 0/111                                                                                 |                   | 02011112.02       |                 |                | 1102012.02       | bit   |  |  |  |
| Legend:         |                                                                                       |                   |                   |                 |                |                  |       |  |  |  |
| R = Readable    | bit                                                                                   | W = Writable      | e bit             | U = Unimple     | mented bit, re | ad as '0'        |       |  |  |  |
| -n = Value at P |                                                                                       | '1' = Bit is se   |                   | 0' = Bit is cle |                | x = Bit is unkno | own   |  |  |  |
|                 |                                                                                       |                   |                   |                 |                |                  |       |  |  |  |
| bit 15          | Unimplemen                                                                            | nted: Read as     | '0'               |                 |                |                  |       |  |  |  |
| bit 14          | -                                                                                     |                   | Line Filter for W | /ake-up bit     |                |                  |       |  |  |  |
|                 |                                                                                       | l bus line filter |                   |                 |                |                  |       |  |  |  |
|                 | 0 = CAN bus line filter is not used for wake-up                                       |                   |                   |                 |                |                  |       |  |  |  |
| bit 13-11       | Unimplemen                                                                            | nted: Read as     | '0'               |                 |                |                  |       |  |  |  |
| bit 10-8        | SEG2PH<2:0>: Phase Segment 2 bits                                                     |                   |                   |                 |                |                  |       |  |  |  |
|                 | 111 = Length is 8 x TQ                                                                |                   |                   |                 |                |                  |       |  |  |  |
|                 | •                                                                                     |                   |                   |                 |                |                  |       |  |  |  |
|                 | •                                                                                     |                   |                   |                 |                |                  |       |  |  |  |
|                 | •                                                                                     |                   |                   |                 |                |                  |       |  |  |  |
|                 | 000 = Length                                                                          | n is 1 x Tq       |                   |                 |                |                  |       |  |  |  |
| bit 7           | SEG2PHTS: Phase Segment 2 Time Select bit                                             |                   |                   |                 |                |                  |       |  |  |  |
|                 | 1 = Freely programmable                                                               |                   |                   |                 |                |                  |       |  |  |  |
|                 | 0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater |                   |                   |                 |                |                  |       |  |  |  |
| bit 6           | SAM: Sample of the CAN bus Line bit                                                   |                   |                   |                 |                |                  |       |  |  |  |
|                 | 1 = Bus line is sampled three times at the sample point                               |                   |                   |                 |                |                  |       |  |  |  |
|                 | 0 = Bus line is sampled once at the sample point                                      |                   |                   |                 |                |                  |       |  |  |  |
| bit 5-3         | SEG1PH<2:0>: Phase Segment 1 bits                                                     |                   |                   |                 |                |                  |       |  |  |  |
|                 | 111 = Length is 8 x TQ                                                                |                   |                   |                 |                |                  |       |  |  |  |
|                 | •                                                                                     |                   |                   |                 |                |                  |       |  |  |  |
|                 | •                                                                                     |                   |                   |                 |                |                  |       |  |  |  |
|                 | •                                                                                     |                   |                   |                 |                |                  |       |  |  |  |
|                 | 000 = Length                                                                          | n is 1 x TQ       |                   |                 |                |                  |       |  |  |  |
| bit 2-0         | PRSEG<2:0>                                                                            | >: Propagatior    | n Time Segmen     | t bits          |                |                  |       |  |  |  |
|                 | 111 = Length  is 8 x Tq                                                               |                   |                   |                 |                |                  |       |  |  |  |
|                 | •                                                                                     |                   |                   |                 |                |                  |       |  |  |  |
|                 | •                                                                                     |                   |                   |                 |                |                  |       |  |  |  |
|                 | •                                                                                     |                   |                   |                 |                |                  |       |  |  |  |
|                 | 000 = Length                                                                          | n is 1 x Tq       |                   |                 |                |                  |       |  |  |  |
|                 | 3                                                                                     |                   |                   |                 |                |                  |       |  |  |  |

|                      |         |               |                 |                  | NADEL NEOR        |        |        |
|----------------------|---------|---------------|-----------------|------------------|-------------------|--------|--------|
| R/W-1                | R/W-1   | R/W-1         | R/W-1           | R/W-1            | R/W-1             | R/W-1  | R/W-1  |
| FLTEN15              | FLTEN14 | FLTEN13       | FLTEN12         | FLTEN11          | FLTEN10           | FLTEN9 | FLTEN8 |
| bit 15               |         |               |                 |                  |                   |        | bit 8  |
|                      |         |               |                 |                  |                   |        |        |
| R/W-1                | R/W-1   | R/W-1         | R/W-1           | R/W-1            | R/W-1             | R/W-1  | R/W-1  |
| FLTEN7               | FLTEN6  | FLTEN5        | FLTEN4          | FLTEN3           | FLTEN2            | FLTEN1 | FLTEN0 |
| bit 7                |         |               |                 |                  |                   |        | bit 0  |
| Legend: C = Writeat  |         | C = Writeable | bit, but only ' | 0' can be writte | en to clear the b | it     |        |
| R = Readable bit W = |         | W = Writable  | bit             | U = Unimpler     | mented bit, read  | as '0' |        |

'0' = Bit is cleared

x = Bit is unknown

## REGISTER 21-11: CIFEN1: ECAN™ ACCEPTANCE FILTER ENABLE REGISTER

bit 15-0

-n = Value at POR

FLTENn: Enable Filter n to Accept Messages bits

'1' = Bit is set

1 = Enable Filter n

0 = Disable Filter n

#### REGISTER 21-12: CiBUFPNT1: ECAN™ FILTER 0-3 BUFFER POINTER REGISTER

| R/W-0     | R/W-0     | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
|-----------|-----------|-------|-------|-------|-------|-------|-------|
| F3BP<3:0> |           |       |       | F2BP  | <3:0> |       |       |
| bit 15    |           |       |       |       |       |       | bit 8 |
|           |           |       |       |       |       |       |       |
| R/W-0     | R/W-0     | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
|           | F1BP<3:0> |       |       |       | F0BP  | <3:0> |       |

 bit 7
 bit 0

 Legend:
 C = Writeable bit, but only '0' can be written to clear the bit

 R = Readable bit
 W = Writable bit
 U = Unimplemented bit, read as '0'

|                 | on         |                             |                      |                    |
|-----------------|------------|-----------------------------|----------------------|--------------------|
| -n = Value at P | OR         | '1' = Bit is set            | '0' = Bit is cleared | x = Bit is unknown |
|                 |            |                             |                      |                    |
| bit 15-12       | F3BP<3:0>: | RX Buffer Mask for Filter 3 | bits                 |                    |

|          | 1111 = Filter hits received in RX FIFO buffer<br>1110 = Filter hits received in RX Buffer 14 |
|----------|----------------------------------------------------------------------------------------------|
|          | •                                                                                            |
|          | •                                                                                            |
|          | •                                                                                            |
|          | 0001 = Filter hits received in RX Buffer 1                                                   |
|          | 0000 = Filter hits received in RX Buffer 0                                                   |
| bit 11-8 | F2BP<3:0>: RX Buffer Mask for Filter 2 bits (same values as bit 15-12)                       |
| bit 7-4  | F1BP<3:0>: RX Buffer Mask for Filter 1 bits (same values as bit 15-12)                       |
| bit 3-0  | F0BP<3:0>: RX Buffer Mask for Filter 0 bits (same values as bit 15-12)                       |

© 2010 Microchip Technology Inc.

|                     | 21-13. CIDU                       | FFNIZ. ECAP                                                                |                                   | 4-7 BUFFER                         |                | EGISTER                 |       |
|---------------------|-----------------------------------|----------------------------------------------------------------------------|-----------------------------------|------------------------------------|----------------|-------------------------|-------|
| R/W-0               | R/W-0                             | R/W-0                                                                      | R/W-0                             | R/W-0                              | R/W-0          | R/W-0                   | R/W-0 |
|                     | F7BF                              | °<3:0>                                                                     |                                   |                                    | F6BI           | <b>&gt;</b> <3:0>       |       |
| bit 15              |                                   |                                                                            |                                   |                                    |                |                         | bit 8 |
| R/W-0               | R/W-0                             | R/W-0                                                                      | R/W-0                             | R/W-0                              | R/W-0          | R/W-0                   | R/W-0 |
|                     | F5BF                              | °<3:0>                                                                     |                                   |                                    | F4BI           | ><3:0>                  |       |
| bit 7               |                                   |                                                                            |                                   |                                    |                |                         | bit 0 |
| Legend:             |                                   | C = Writeable                                                              | bit, but only '                   | 0' can be writte                   | n to clear the | bit                     |       |
| R = Readable bit    |                                   | W = Writable bit                                                           |                                   | U = Unimplemented bit, read as '0' |                |                         |       |
| -n = Value at POR   |                                   | '1' = Bit is set                                                           |                                   | '0' = Bit is clea                  |                | ared x = Bit is unknown |       |
| bit 15-12           | 1111 = Filte<br>1110 = Filte<br>• | RX Buffer Mas<br>r hits received ir<br>r hits received ir                  | n RX FIFO but<br>n RX Buffer 14   | ffer                               |                |                         |       |
| bit 11-8<br>bit 7-4 | 0000 = Filte<br>F6BP<3:0>:        | r hits received ir<br>r hits received ir<br>RX Buffer Mas<br>RX Buffer Mas | n RX Buffer 0<br>k for Filter 6 b |                                    | -              |                         |       |

## REGISTER 21-13: CIBUFPNT2: ECAN™ FILTER 4-7 BUFFER POINTER REGISTER

| bit 3-0 <b>F4BP&lt;3:0&gt;:</b> RX Buffer Mask for Filter 4 bits (same values as bit 15-12) |
|---------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------------|

#### REGISTER 21-14: CIBUFPNT3: ECAN™ FILTER 8-11 BUFFER POINTER REGISTER

| R/W-0                                 | R/W-0                                                                                                                         | R/W-0                                                                                        | R/W-0                                                           | R/W-0             | R/W-0             | R/W-0             | R/W-0 |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------|-------------------|-------------------|-------|
| F11BP<3:0>                            |                                                                                                                               |                                                                                              |                                                                 | F10B              | P<3:0>            |                   |       |
| bit 15                                |                                                                                                                               |                                                                                              |                                                                 |                   |                   |                   | bit 8 |
|                                       |                                                                                                                               |                                                                                              |                                                                 |                   |                   |                   |       |
| R/W-0                                 | R/W-0                                                                                                                         | R/W-0                                                                                        | R/W-0                                                           | R/W-0             | R/W-0             | R/W-0             | R/W-0 |
|                                       | F9BP                                                                                                                          | <3:0>                                                                                        |                                                                 |                   | F8BF              | <b>°&lt;</b> 3:0> |       |
| bit 7                                 |                                                                                                                               |                                                                                              |                                                                 |                   |                   |                   | bit 0 |
| l                                     |                                                                                                                               |                                                                                              |                                                                 |                   |                   |                   |       |
| Legend: C = Writeable bit, but only ' |                                                                                                                               |                                                                                              |                                                                 | '0' can be writte | en to clear the b | bit               |       |
| R = Readable bit W = Writable bit     |                                                                                                                               |                                                                                              | U = Unimpler                                                    | nented bit, read  | d as '0'          |                   |       |
| -n = Value at POR '1' = Bit is set    |                                                                                                                               |                                                                                              | '0' = Bit is cle                                                | ared              | x = Bit is unkr   | nown              |       |
| bit 15-12                             | 1111 = Filter<br>1110 = Filter<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>• | RX Buffer Ma<br>hits received in<br>hits received in<br>hits received in<br>hits received in | n RX FIFO bu<br>n RX Buffer 1<br>n RX Buffer 1<br>n RX Buffer 0 | iffer<br>4        |                   | 2)                |       |
| bit 11-8                              |                                                                                                                               |                                                                                              |                                                                 | 0 bits (same val  |                   |                   |       |
| bit 7-4                               |                                                                                                                               |                                                                                              |                                                                 | oits (same value  |                   |                   |       |
| bit 3-0                               | F8BP<3:0>:                                                                                                                    | RX Buffer Mas                                                                                | k for Filter 8 k                                                | oits (same value  | s as bit 15-12)   |                   |       |
|                                       |                                                                                                                               |                                                                                              |                                                                 |                   |                   |                   |       |

|                                                 | 1-15. CIDU                          | FFINT4. ECAN                                               |                  | 12-15 DUFFE                        |       | REGISTER           |       |
|-------------------------------------------------|-------------------------------------|------------------------------------------------------------|------------------|------------------------------------|-------|--------------------|-------|
| R/W-0                                           | R/W-0                               | R/W-0                                                      | R/W-0            | R/W-0                              | R/W-0 | R/W-0              | R/W-0 |
|                                                 | F15BP<3:0>                          |                                                            |                  |                                    | F14B  | P<3:0>             |       |
| bit 15                                          |                                     |                                                            |                  |                                    |       |                    | bit 8 |
| R/W-0                                           | R/W-0                               | R/W-0                                                      | R/W-0            | R/W-0                              | R/W-0 | R/W-0              | R/W-0 |
|                                                 | F13BP<3:0>                          |                                                            |                  |                                    | F12B  | P<3:0>             |       |
| bit 7                                           |                                     |                                                            |                  | ·                                  |       |                    | bit 0 |
| Legend:                                         | Legend: C = Writeable bit, but only |                                                            | 0' can be writte | n to clear the l                   | bit   |                    |       |
| R = Readable                                    | bit                                 | W = Writable bit                                           |                  | U = Unimplemented bit, read as '0' |       |                    |       |
| -n = Value at I                                 | POR                                 | '1' = Bit is set                                           |                  | '0' = Bit is cleared               |       | x = Bit is unknown |       |
| bit 15-12                                       | 1111 = Filte                        | RX Buffer Ma<br>er hits received in<br>er hits received in | n RX FIFO bu     | ffer                               |       |                    |       |
|                                                 | •                                   |                                                            |                  |                                    |       |                    |       |
| •<br>0001 = Filter hits received in RX Buffer 1 |                                     |                                                            |                  |                                    |       |                    |       |

### REGISTER 21-15: CiBUFPNT4: ECAN™ FILTER 12-15 BUFFER POINTER REGISTER

|          | 0000 = Filter hits received in RX Buffer 0                               |
|----------|--------------------------------------------------------------------------|
| bit 11-8 | F14BP<3:0>: RX Buffer Mask for Filter 14 bits (same values as bit 15-12) |

| bit 7-4 | F13BP<3:0>: RX Buffer Mask for Filter 13 bits | s (same values as bit 15-12) |
|---------|-----------------------------------------------|------------------------------|

bit 3-0 F12BP<3:0>: RX Buffer Mask for Filter 12 bits (same values as bit 15-12)

|                        | n (n =                     | 0-15)            |                                          |                                        |                   |                    |       |
|------------------------|----------------------------|------------------|------------------------------------------|----------------------------------------|-------------------|--------------------|-------|
| R/W-x                  | R/W-x                      | R/W-x            | R/W-x                                    | R/W-x                                  | R/W-x             | R/W-x              | R/W-x |
| SID10                  | SID9                       | SID8             | SID7                                     | SID6                                   | SID5              | SID4               | SID3  |
| bit 15                 |                            |                  |                                          |                                        |                   |                    | bit 8 |
| <b></b>                |                            |                  |                                          |                                        |                   |                    |       |
| R/W-x                  | R/W-x                      | R/W-x            | U-0                                      | R/W-x                                  | U-0               | R/W-x              | R/W-x |
| SID2                   | SID1                       | SID0             | _                                        | EXIDE                                  | _                 | EID17              | EID16 |
| bit 7                  |                            |                  |                                          |                                        |                   |                    | bit 0 |
|                        |                            |                  |                                          |                                        |                   |                    |       |
| Legend:                |                            | C = Writeable    | bit, but only '                          | 0' can be writte                       | en to clear the b | it                 |       |
| R = Readable bit W = W |                            | W = Writable     | e bit U = Unimplemented bit, read as '0' |                                        |                   |                    |       |
| -n = Value a           | It POR                     | '1' = Bit is set | '0' = Bit is cleared                     |                                        | ared              | x = Bit is unknown |       |
| bit 15-5               | 1 = Message                |                  | 0x must be '1                            | ' to match filter<br>' to match filter |                   |                    |       |
| bit 4                  | Unimplemented: Read as '0' |                  |                                          |                                        |                   |                    |       |
| bit 3                  | EXIDE: Exten               | ded Identifier E | nable bit                                |                                        |                   |                    |       |
|                        | If MIDE = 1 then:          |                  |                                          |                                        |                   |                    |       |

1 = Match only messages with extended identifier addresses 0 = Match only messages with standard identifier addresses

1 = Message address bit EIDx must be '1' to match filter 0 = Message address bit EIDx must be '0' to match filter

If MIDE = 0 then: Ignore EXIDE bit.

Unimplemented: Read as '0'

EID<17:16>: Extended Identifier bits

bit 2

bit 1-0

# **REGISTER 21-16: CIRXFnSID: ECAN™ ACCEPTANCE FILTER STANDARD IDENTIFIER REGISTER**

|        | n (n = | 0-15) |       |       |       |       |       |
|--------|--------|-------|-------|-------|-------|-------|-------|
| R/W-x  | R/W-x  | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x |
| EID15  | EID14  | EID13 | EID12 | EID11 | EID10 | EID9  | EID8  |
| bit 15 |        |       |       |       |       |       | bit 8 |
|        |        |       |       |       |       |       |       |
| R/W-x  | R/W-x  | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x |
| EID7   | EID6   | EID5  | EID4  | EID3  | EID2  | EID1  | EID0  |
| bit 7  |        |       |       |       |       |       | bit 0 |
|        |        |       |       |       |       |       |       |

# REGISTER 21-17: CIRXFnEID: ECAN<sup>™</sup> ACCEPTANCE FILTER EXTENDED IDENTIFIER REGISTER n (n = 0-15)

| Legend:           | C = Writeable bit, but only '0' can be written to clear the bit |                             |                    |  |  |
|-------------------|-----------------------------------------------------------------|-----------------------------|--------------------|--|--|
| R = Readable bit  | W = Writable bit                                                | U = Unimplemented bit, read | d as '0'           |  |  |
| -n = Value at POR | '1' = Bit is set                                                | '0' = Bit is cleared        | x = Bit is unknown |  |  |

bit 15-0

EID<15:0>: Extended Identifier bits

1 = Message address bit EIDx must be '1' to match filter

0 = Message address bit EIDx must be '0' to match filter

#### REGISTER 21-18: CiFMSKSEL1: ECAN™ FILTER 7-0 MASK SELECTION REGISTER

| R/W-0      | R/W-0 | R/W-0 | R/W-0  | R/W-0 | R/W-0  | R/W-0 | R/W-0  |
|------------|-------|-------|--------|-------|--------|-------|--------|
| F7MSK<1:0> |       | F6MSł | <<1:0> | F5MS  | K<1:0> | F4MSł | <<1:0> |
| bit 15     |       |       |        |       |        |       | bit 8  |
|            |       |       |        |       |        |       |        |
| R/W-0      | R/W-0 | R/W-0 | R/W-0  | R/W-0 | R/W-0  | R/W-0 | R/W-0  |
| F3MSK<1:0> |       | F2MSI | <<1:0> | F1MS  | K<1:0> | F0MSł | <<1:0> |
| bit 7      |       |       |        |       |        |       | bit (  |

| Legend:           | C = Writeable bit, but only '0' can be written to clear the bit |                             |                    |  |  |
|-------------------|-----------------------------------------------------------------|-----------------------------|--------------------|--|--|
| R = Readable bit  | W = Writable bit                                                | U = Unimplemented bit, read | d as '0'           |  |  |
| -n = Value at POR | '1' = Bit is set                                                | '0' = Bit is cleared        | x = Bit is unknown |  |  |

| bit 15-14 | <b>F7MSK&lt;1:0&gt;:</b> Mask Source for Filter 7 bits<br>11 = Reserved |
|-----------|-------------------------------------------------------------------------|
|           | 10 = Acceptance Mask 2 registers contain mask                           |
|           | 01 = Acceptance Mask 1 registers contain mask                           |
|           | 00 = Acceptance Mask 0 registers contain mask                           |
| bit 13-12 | F6MSK<1:0>: Mask Source for Filter 6 bits (same values as bit 15-14)    |
| bit 11-10 | F5MSK<1:0>: Mask Source for Filter 5 bits (same values as bit 15-14)    |
| bit 9-8   | F4MSK<1:0>: Mask Source for Filter 4 bits (same values as bit 15-14)    |
| bit 7-6   | F3MSK<1:0>: Mask Source for Filter 3 bits (same values as bit 15-14)    |
| bit 5-4   | F2MSK<1:0>: Mask Source for Filter 2 bits (same values as bit 15-14)    |
| bit 3-2   | F1MSK<1:0>: Mask Source for Filter 1 bits (same values as bit 15-14)    |
| bit 1-0   | F0MSK<1:0>: Mask Source for Filter 0 bits (same values as bit 15-14)    |

| R/W-0            | R/W-0                                        | R/W-0                                                                                | R/W-0                              | R/W-0                              | R/W-0             | R/W-0              | R/W-0   |
|------------------|----------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------|------------------------------------|-------------------|--------------------|---------|
| F15M             | ISK<1:0>                                     | F14MS                                                                                | K<1:0>                             | F13M8                              | F13MSK<1:0>       |                    | SK<1:0> |
| bit 15           |                                              |                                                                                      |                                    |                                    |                   |                    | bit     |
| R/W-0            | R/W-0                                        | R/W-0                                                                                | R/W-0                              | R/W-0                              | R/W-0             | R/W-0              | R/W-0   |
| F11M             | SK<1:0>                                      | F10MS                                                                                | K<1:0>                             | F9MS                               | SK<1:0>           | F8MS               | K<1:0>  |
| bit 7            |                                              |                                                                                      |                                    |                                    |                   |                    | bit (   |
| Legend:          |                                              | C = Writeable                                                                        | e bit but only                     | '0' can be writte                  | en to clear the h | oit                |         |
| R = Readable bit |                                              | W = Writable bit                                                                     |                                    | U = Unimplemented bit, read as '0' |                   |                    |         |
| -n = Value at    | POR                                          | '1' = Bit is set                                                                     |                                    | '0' = Bit is cleared               |                   | x = Bit is unknown |         |
| bit 15-14        | 11 = Reserve<br>10 = Accepta<br>01 = Accepta | <b>0&gt;:</b> Mask Sourc<br>ed<br>ance Mask 2 re<br>ance Mask 1 re<br>ance Mask 0 re | gisters contair<br>gisters contair | n mask<br>n mask                   |                   |                    |         |
| bit 13-12        | F14MSK<1:0                                   | 0>: Mask Sourc                                                                       | e for Filter 14                    | bits (same valu                    | ues as bit 15-14  | 4)                 |         |
| bit 11-10        | F13MSK<1:0                                   | 0>: Mask Sourc                                                                       | e for Filter 13                    | bits (same valu                    | ues as bit 15-14  | 1)                 |         |
| bit 9-8          | F12MSK<1:0                                   | 0>: Mask Sourc                                                                       | e for Filter 12                    | bits (same valu                    | ues as bit 15-14  | 1)                 |         |
| bit 7-6          | F11MSK<1:0                                   | 0>: Mask Sourc                                                                       | e for Filter 11                    | bits (same valu                    | ues as bit 15-14  | l)                 |         |
| bit 5-4          | F10MSK<1:0                                   | 0>: Mask Sourc                                                                       | e for Filter 10                    | bits (same valu                    | ues as bit 15-14  | 4)                 |         |
| bit 3-2          | F9MSK<1:0                                    | >: Mask Source                                                                       | for Filter 9 bi                    | ts (same values                    | s as bit 15-14)   |                    |         |
|                  |                                              |                                                                                      |                                    |                                    |                   |                    |         |

#### REGISTER 21-19: CiFMSKSEL2: ECAN™ FILTER 15-8 MASK SELECTION REGISTER

bit 1-0 **F8MSK<1:0>:** Mask Source for Filter 8 bits (same values as bit 15-14)

| _            | REGIS          | STER n (n = 0                                                 | -2)             |                  |                    |          |                  |
|--------------|----------------|---------------------------------------------------------------|-----------------|------------------|--------------------|----------|------------------|
| R/W-x        | R/W-x          | R/W-x                                                         | R/W-x           | R/W-x            | R/W-x              | R/W-x    | R/W-x            |
| SID10        | SID9           | SID8                                                          | SID7            | SID6             | SID5               | SID4     | SID3             |
| bit 15       |                |                                                               |                 |                  |                    |          | bit 8            |
| R/W-x        | R/W-x          | R/W-x                                                         | U-0             | R/W-x            | U-0                | R/W-x    | R/W-x            |
| SID2         | SID1           | SID0                                                          |                 | MIDE             | 0-0                | EID17    | EID16            |
| bit 7        | 5101           | 5100                                                          |                 | WIDE             |                    |          | bit 0            |
| 5117         |                |                                                               |                 |                  |                    |          | bit o            |
| Legend:      |                | C = Writeable                                                 | bit, but only ' | 0' can be writte | en to clear the b  | pit      |                  |
| R = Readat   | ole bit        | W = Writable                                                  | bit             | U = Unimpler     | mented bit, read   | d as '0' |                  |
| -n = Value a | at POR         | '1' = Bit is set '0' = Bit is cleared                         |                 |                  | x = Bit is unknown |          |                  |
| bit 15-5     | 1 = Include bi | Standard Identifi<br>it SIDx in filter o<br>s don't care in f | comparison      | son              |                    |          |                  |
| bit 4        | Unimplemen     | ted: Read as '                                                | כ'              |                  |                    |          |                  |
| bit 3        | MIDE: Identif  | ier Receive Mo                                                | de bit          |                  |                    |          |                  |
|              | 0 = Match eit  | ly message typ<br>her standard or<br>lter SID) = (Me          | extended ad     | dress message    | e if filters match |          | DE bit in filter |
| bit 2        |                | ted: Read as '                                                | •               |                  | 0                  |          |                  |
| bit 1-0      | EID<17:16>:    | Extended Ident                                                | tifier bits     |                  |                    |          |                  |

# REGISTER 21-20: CIRXMnSID: ECAN<sup>™</sup> ACCEPTANCE FILTER MASK STANDARD IDENTIFIER REGISTER n (n = 0-2)

| bit 1-0 | EID<17:16>: Extended Identifier bits      |
|---------|-------------------------------------------|
|         | 1 = Include bit EIDx in filter comparison |

0 = Bit EIDx is don't care in filter comparison

# REGISTER 21-21: CIRXMnEID: ECAN<sup>™</sup> ACCEPTANCE FILTER MASK EXTENDED IDENTIFIER REGISTER n (n = 0-2)

| R/W-x  | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x |
|--------|-------|-------|-------|-------|-------|-------|-------|
| EID15  | EID14 | EID13 | EID12 | EID11 | EID10 | EID9  | EID8  |
| bit 15 |       |       |       |       |       |       | bit 8 |
|        |       |       |       |       |       |       |       |
| R/W-x  | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x |
| EID7   | EID6  | EID5  | EID4  | EID3  | EID2  | EID1  | EID0  |

| Legend:           | C = Writeable bit, but | only '0' can be written to clear | the bit            |
|-------------------|------------------------|----------------------------------|--------------------|
| R = Readable bit  | W = Writable bit       | U = Unimplemented bit            | , read as '0'      |
| -n = Value at POR | '1' = Bit is set       | '0' = Bit is cleared             | x = Bit is unknown |

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

bit 7

bit 0

| R/C-0   | R/C-0   | R/C-0   | R/C-0   | R/C-0   | R/C-0   | R/C-0  | R/C-0  |
|---------|---------|---------|---------|---------|---------|--------|--------|
| RXFUL15 | RXFUL14 | RXFUL13 | RXFUL12 | RXFUL11 | RXFUL10 | RXFUL9 | RXFUL8 |
| bit 15  |         |         |         |         |         |        | bit 8  |
|         |         |         |         |         |         |        |        |
| R/C-0   | R/C-0   | R/C-0   | R/C-0   | R/C-0   | R/C-0   | R/C-0  | R/C-0  |
| RXFUL7  | RXFUL6  | RXFUL5  | RXFUL4  | RXFUL3  | RXFUL2  | RXFUL1 | RXFUL0 |
| bit 7   |         |         |         |         |         |        | bit 0  |

#### REGISTER 21-22: CIRXFUL1: ECAN™ RECEIVE BUFFER FULL REGISTER 1

| Legend:           | C = Writeable bit, but only '0' can be written to clear the bit |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------|--|--|--|--|--|
| R = Readable bit  | W = Writable bit U = Unimplemented bit, read as '0'             |  |  |  |  |  |
| -n = Value at POR | '1' = Bit is set '0' = Bit is cleared x = Bit is unknown        |  |  |  |  |  |

bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty

#### REGISTER 21-23: CiRXFUL2: ECAN™ RECEIVE BUFFER FULL REGISTER 2

| R/C-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15  |         |         |         |         |         |         | bit 8   |

| R/C-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7   |         |         |         |         |         |         | bit 0   |

| Legend:           | C = Writeable bit, but | C = Writeable bit, but only '0' can be written to clear the bit |                                         |  |  |  |  |
|-------------------|------------------------|-----------------------------------------------------------------|-----------------------------------------|--|--|--|--|
| R = Readable bit  | W = Writable bit       | U = Unimplemented bit                                           | U = Unimplemented bit, read as '0'      |  |  |  |  |
| -n = Value at POR | '1' = Bit is set       | '0' = Bit is cleared                                            | '0' = Bit is cleared x = Bit is unknown |  |  |  |  |

bit 15-0 **RXFUL<31:16>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty

|                                                                      |         |               |                  |                  |                   | OIOTEN I |        |
|----------------------------------------------------------------------|---------|---------------|------------------|------------------|-------------------|----------|--------|
| R/C-0                                                                | R/C-0   | R/C-0         | R/C-0            | R/C-0            | R/C-0             | R/C-0    | R/C-0  |
| RXOVF15                                                              | RXOVF14 | RXOVF13       | RXOVF12          | RXOVF11          | RXOVF10           | RXOVF9   | RXOVF8 |
| bit 15                                                               | -       |               |                  |                  |                   |          | bit 8  |
|                                                                      |         |               |                  |                  |                   |          |        |
| R/C-0                                                                | R/C-0   | R/C-0         | R/C-0            | R/C-0            | R/C-0             | R/C-0    | R/C-0  |
| RXOVF7                                                               | RXOVF6  | RXOVF5        | RXOVF4           | RXOVF3           | RXOVF2            | RXOVF1   | RXOVF0 |
| bit 7                                                                |         |               |                  |                  |                   |          | bit 0  |
|                                                                      |         |               |                  |                  |                   |          |        |
| Legend:                                                              |         | C = Writeable | bit, but only '( | )' can be writte | en to clear the b | it       |        |
| R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' |         |               |                  |                  |                   |          |        |
|                                                                      |         |               |                  |                  |                   |          |        |

'0' = Bit is cleared

x = Bit is unknown

#### **REGISTER 21-24:** CiRXOVF1: ECAN<sup>™</sup> RECEIVE BUFFER OVERFLOW REGISTER 1

bit 15-0

-n = Value at POR

RXOVF<15:0>: Receive Buffer n Overflow bits

'1' = Bit is set

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition

#### **REGISTER 21-25:** CiRXOVF2: ECAN<sup>™</sup> RECEIVE BUFFER OVERFLOW REGISTER 2

| R/C-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF31 | RXOVF30 | RXOVF29 | RXOVF28 | RXOVF27 | RXOVF26 | RXOVF25 | RXOVF24 |
| bit 15  |         |         |         |         |         |         | bit 8   |

| R/C-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF23 | RXOVF22 | RXOVF21 | RXOVF20 | RXOVF19 | RXOVF18 | RXOVF17 | RXOVF16 |
| bit 7   |         |         |         |         |         |         | bit 0   |

| Legend:           | C = Writeable bit, but only '0' can be written to clear the bit |                                    |                    |  |  |
|-------------------|-----------------------------------------------------------------|------------------------------------|--------------------|--|--|
| R = Readable bit  | W = Writable bit                                                | U = Unimplemented bit, read as '0' |                    |  |  |
| -n = Value at POR | '1' = Bit is set                                                | '0' = Bit is cleared               | x = Bit is unknown |  |  |

bit 15-0

RXOVF<31:16>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition

© 2010 Microchip Technology Inc.

| REGISTER 21-26: | CiTRmnCON: ECAN™ Tx/Rx BUFFER m CONTROL REGISTER |  |
|-----------------|--------------------------------------------------|--|
|                 |                                                  |  |

| R/W-0            | R-0                                                                                      | R-0                                                                  | R-0                                                       | R/W-0            | R/W-0                                                            | R/W-0           | R/W-0        |  |  |  |  |  |  |  |
|------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------|------------------|------------------------------------------------------------------|-----------------|--------------|--|--|--|--|--|--|--|
| TXENn            | TXABTn                                                                                   | TXLARBn                                                              | TXERRn                                                    | TXREQn           | RTRENn                                                           | TXnPR           | l<1:0>       |  |  |  |  |  |  |  |
| bit 15           | +                                                                                        |                                                                      | •                                                         |                  | •                                                                |                 | bit          |  |  |  |  |  |  |  |
| R/W-0            | R-0                                                                                      | R-0                                                                  | R-0                                                       | R/W-0            | R/W-0                                                            | R/W-0           | R/W-0        |  |  |  |  |  |  |  |
| TXENm            | TXABTm <sup>(1)</sup>                                                                    | TXmPR                                                                |                                                           |                  |                                                                  |                 |              |  |  |  |  |  |  |  |
| bit 7            |                                                                                          | TXLARBm <sup>(1)</sup>                                               | TXERRm <sup>(1)</sup>                                     | TXREQm           | RTRENm                                                           |                 | bit          |  |  |  |  |  |  |  |
| Legend:          |                                                                                          | C = Writeable                                                        | bit. but only '0                                          | ' can be writte  | en to clear the bi                                               |                 |              |  |  |  |  |  |  |  |
| R = Readable     | e bit                                                                                    | W = Writable                                                         | , ,                                                       |                  | nented bit, read                                                 |                 |              |  |  |  |  |  |  |  |
| -n = Value at    | POR                                                                                      | '1' = Bit is set                                                     |                                                           | '0' = Bit is cle |                                                                  | x = Bit is unkn | own          |  |  |  |  |  |  |  |
|                  |                                                                                          |                                                                      |                                                           |                  |                                                                  |                 |              |  |  |  |  |  |  |  |
| bit 15-8         | See Definitior                                                                           | for Bits 7-0, C                                                      | ontrols Buffer i                                          | า                |                                                                  |                 |              |  |  |  |  |  |  |  |
| bit 7            | TXENm: TX/                                                                               | RX Buffer Selec                                                      | ction bit                                                 |                  |                                                                  |                 |              |  |  |  |  |  |  |  |
|                  | 1 = Buffer TR                                                                            | Bn is a transmi                                                      | t buffer                                                  |                  |                                                                  |                 |              |  |  |  |  |  |  |  |
|                  | 0 = Buffer TR                                                                            | Bn is a receive                                                      | buffer                                                    |                  |                                                                  |                 |              |  |  |  |  |  |  |  |
| bit 6            | TXABTm: Me                                                                               | essage Aborted                                                       | l bit <sup>(1)</sup>                                      |                  |                                                                  |                 |              |  |  |  |  |  |  |  |
|                  | 1 = Message<br>0 = Message                                                               | was aborted<br>completed tran                                        | smission succ                                             | essfully         |                                                                  |                 |              |  |  |  |  |  |  |  |
| bit 5            | TXLARBm: N                                                                               | lessage Lost A                                                       | rbitration bit <sup>(1)</sup>                             |                  |                                                                  |                 |              |  |  |  |  |  |  |  |
|                  | Ų                                                                                        | lost arbitration                                                     | 0                                                         |                  |                                                                  |                 |              |  |  |  |  |  |  |  |
|                  | •                                                                                        | did not lose arl                                                     |                                                           | •                |                                                                  |                 |              |  |  |  |  |  |  |  |
| bit 4            |                                                                                          | ror Detected D                                                       | •                                                         |                  |                                                                  |                 |              |  |  |  |  |  |  |  |
|                  |                                                                                          | or occurred whi                                                      |                                                           |                  |                                                                  |                 |              |  |  |  |  |  |  |  |
|                  |                                                                                          | or did not occu                                                      |                                                           | sage was bei     | ng sent                                                          |                 |              |  |  |  |  |  |  |  |
| bit 3            |                                                                                          | essage Send R                                                        | -                                                         |                  |                                                                  |                 |              |  |  |  |  |  |  |  |
|                  | sent.                                                                                    | C                                                                    |                                                           |                  | ally clears when                                                 | the message is  | s successful |  |  |  |  |  |  |  |
|                  | -                                                                                        | he bit to '0' wh                                                     | -                                                         | -                | abort.                                                           |                 |              |  |  |  |  |  |  |  |
|                  | RTRENm: Auto-Remote Transmit Enable bit                                                  |                                                                      |                                                           |                  |                                                                  |                 |              |  |  |  |  |  |  |  |
| bit 2            | RIRENM: AU                                                                               |                                                                      | 1 = When a remote transmit is received, TXREQ will be set |                  |                                                                  |                 |              |  |  |  |  |  |  |  |
| bit 2            | 1 = When a re                                                                            | emote transmit                                                       | ,                                                         |                  | 0 = When a remote transmit is received, TXREQ will be unaffected |                 |              |  |  |  |  |  |  |  |
|                  | 1 = When a re<br>0 = When a re                                                           | emote transmit<br>emote transmit                                     | is received, TX                                           | (REQ will be u   |                                                                  |                 |              |  |  |  |  |  |  |  |
|                  | 1 = When a re<br>0 = When a re<br><b>TXmPRI&lt;1:0</b>                                   | emote transmit<br>emote transmit<br>>: Message Tra                   | is received, Τλ<br>ansmission Prio                        | (REQ will be u   |                                                                  |                 |              |  |  |  |  |  |  |  |
|                  | 1 = When a re<br>0 = When a re<br><b>TXmPRI&lt;1:0</b><br>11 = Highest                   | emote transmit<br>emote transmit<br>>: Message Tra<br>message priori | is received, T≻<br>ansmission Prio<br>ty                  | (REQ will be u   |                                                                  |                 |              |  |  |  |  |  |  |  |
| bit 2<br>bit 1-0 | 1 = When a re<br>0 = When a re<br><b>TXmPRI&lt;1:0</b><br>11 = Highest<br>10 = High inte | emote transmit<br>emote transmit<br>>: Message Tra                   | is received, TX<br>ansmission Prio<br>ty<br>sage priority | (REQ will be u   |                                                                  |                 |              |  |  |  |  |  |  |  |

Note 1: This bit is cleared when TXREQ is set.

Note: The buffers, SID, EID, DLC, Data Field and Receive Status registers are located in DMA RAM.

### 21.4 ECAN Message Buffers

ECAN Message Buffers are part of DMA RAM Memory. They are not ECAN Special Function Registers. The user application must directly write into the DMA RAM area that is configured for ECAN Message Buffers. The location and size of the buffer area is defined by the user application.

## BUFFER 21-1: ECAN<sup>™</sup> MESSAGE BUFFER WORD 0

| U-0    | U-0 | U-0 | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x |
|--------|-----|-----|-------|-------|-------|-------|-------|
| —      | —   | —   | SID10 | SID9  | SID8  | SID7  | SID6  |
| bit 15 |     |     |       |       |       |       | bit 8 |

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID5  | SID4  | SID3  | SID2  | SID1  | SID0  | SRR   | IDE   |
| bit 7 |       |       |       |       |       |       | bit 0 |

| Legend:           |                  |                                    |                    |  |
|-------------------|------------------|------------------------------------|--------------------|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |

| bit 15-13 | Unimplemented: Read as '0'                                                                                               |
|-----------|--------------------------------------------------------------------------------------------------------------------------|
| bit 12-2  | SID<10:0>: Standard Identifier bits                                                                                      |
| bit 1     | SRR: Substitute Remote Request bit                                                                                       |
|           | <ul><li>1 = Message will request remote transmission</li><li>0 = Normal message</li></ul>                                |
| bit 0     | IDE: Extended Identifier bit                                                                                             |
|           | <ul> <li>1 = Message will transmit extended identifier</li> <li>0 = Message will transmit standard identifier</li> </ul> |

## BUFFER 21-2: ECAN<sup>™</sup> MESSAGE BUFFER WORD 1

| U-0                               | U-0   | U-0          | U-0              | R/W-x    | R/W-x | R/W-x | R/W-x |  |
|-----------------------------------|-------|--------------|------------------|----------|-------|-------|-------|--|
| —                                 | —     |              | _                | EID17    | EID16 | EID15 | EID14 |  |
| bit 15                            |       |              |                  |          |       |       | bit 8 |  |
|                                   |       |              |                  |          |       |       |       |  |
| R/W-x                             | R/W-x | R/W-x        | R/W-x            | R/W-x    | R/W-x | R/W-x | R/W-x |  |
| EID13                             | EID12 | EID11        | EID10            | EID9     | EID8  | EID7  | EID6  |  |
| bit 7                             | bit 7 |              |                  |          |       |       | bit 0 |  |
|                                   |       |              |                  |          |       |       |       |  |
| Legend:                           |       |              |                  |          |       |       |       |  |
| R = Readable bit W = Writable bit |       | U = Unimpler | mented bit, read | l as '0' |       |       |       |  |
|                                   |       |              |                  |          |       |       |       |  |

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |
|-------------------|------------------|------------------------------------|--------------------|--|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

| BUFFER 21-3      |                            | <sup>™</sup> MESSAGE | BUFFER W     | ORD 2                                   |       |       |       |  |  |
|------------------|----------------------------|----------------------|--------------|-----------------------------------------|-------|-------|-------|--|--|
| R/W-x            | R/W-x                      | R/W-x                | R/W-x        | R/W-x                                   | R/W-x | R/W-x | R/W-x |  |  |
| EID5             | EID4                       | EID3                 | EID2         | EID1                                    | EID0  | RTR   | RB1   |  |  |
| bit 15           | bit 15                     |                      |              |                                         |       |       | bit 8 |  |  |
| r                |                            |                      |              |                                         |       |       |       |  |  |
| U-x              | U-x                        | U-x                  | R/W-x        | R/W-x                                   | R/W-x | R/W-x | R/W-x |  |  |
|                  |                            |                      | RB0          | DLC3                                    | DLC2  | DLC1  | DLC0  |  |  |
| bit 7            |                            |                      |              |                                         |       |       | bit 0 |  |  |
| ·                |                            |                      |              |                                         |       |       |       |  |  |
| Legend:          |                            |                      |              |                                         |       |       |       |  |  |
| R = Readable b   | it                         | W = Writable         | bit          | U = Unimplemented bit, read as '0'      |       |       |       |  |  |
| -n = Value at PO | DR                         | '1' = Bit is set     |              | '0' = Bit is cleared x = Bit is unknown |       |       | nown  |  |  |
| bit 15-10        | FID<5:0>: Fx               | tended Identifie     | er bits      |                                         |       |       |       |  |  |
|                  |                            | Transmission         |              |                                         |       |       |       |  |  |
|                  |                            | will request rer     | •            | sion                                    |       |       |       |  |  |
|                  | 0 = Normal m               | •                    |              |                                         |       |       |       |  |  |
| bit 8            | RB1: Reserve               | •                    |              |                                         |       |       |       |  |  |
|                  | User must set              | this bit to '0' p    | er CAN proto | col.                                    |       |       |       |  |  |
|                  |                            | ted: Read as '       | •            |                                         |       |       |       |  |  |
| bit 4            | <b>RB0:</b> Reserved Bit 0 |                      |              |                                         |       |       |       |  |  |
|                  |                            |                      |              |                                         |       |       |       |  |  |

| Lloor must | aat thia | hit to | · ^ ' | nor | CAN | protocol |   |
|------------|----------|--------|-------|-----|-----|----------|---|
| User must  | sections |        | U     | per | CAN | ρισιοσοι | • |

bit 3-0 DLC<3:0>: Data Length Code bits

## BUFFER 21-4: ECAN<sup>™</sup> MESSAGE BUFFER WORD 3

| R/W-x                             | R/W-x                           | R/W-x | R/W-x                | R/W-x                              | R/W-x              | R/W-x | R/W-x |  |
|-----------------------------------|---------------------------------|-------|----------------------|------------------------------------|--------------------|-------|-------|--|
|                                   |                                 |       | Ву                   | rte 1                              |                    |       |       |  |
| bit 15                            |                                 |       |                      |                                    |                    |       | bit 8 |  |
|                                   |                                 |       |                      |                                    |                    |       |       |  |
| R/W-x                             | R/W-x                           | R/W-x | R/W-x                | R/W-x                              | R/W-x              | R/W-x | R/W-x |  |
|                                   |                                 |       | Ву                   | rte 0                              |                    |       |       |  |
| bit 7                             |                                 |       |                      |                                    |                    |       | bit 0 |  |
| Legend:                           |                                 |       |                      |                                    |                    |       |       |  |
| R = Readable bit W = Writable bit |                                 |       | bit                  | U = Unimplemented bit, read as '0' |                    |       |       |  |
| -n = Value at P                   | = Value at POR '1' = Bit is set |       | '0' = Bit is cleared |                                    | x = Bit is unknown |       |       |  |

bit 15-8 **Byte 1<15:8>:** ECAN<sup>™</sup> Message Byte 0

bit 7-0 Byte 0<7:0>: ECAN Message Byte 1

## BUFFER 21-5: ECAN<sup>™</sup> MESSAGE BUFFER WORD 4

| R/W-x                             | R/W-x | R/W-x | R/W-x | R/W-x                              | R/W-x | R/W-x | R/W-x |  |
|-----------------------------------|-------|-------|-------|------------------------------------|-------|-------|-------|--|
|                                   |       |       | Ву    | te 3                               |       |       |       |  |
| bit 15                            |       |       |       |                                    |       |       | bit 8 |  |
|                                   |       |       |       |                                    |       |       |       |  |
| R/W-x                             | R/W-x | R/W-x | R/W-x | R/W-x                              | R/W-x | R/W-x | R/W-x |  |
|                                   |       |       | Ву    | te 2                               |       |       |       |  |
| bit 7                             |       |       |       |                                    |       |       | bit 0 |  |
| Legend:                           |       |       |       |                                    |       |       |       |  |
| R = Readable bit W = Writable bit |       |       | bit   | U = Unimplemented bit, read as '0' |       |       |       |  |
| -n = Value at P                   | •     |       |       | x = Bit is unkr                    | nown  |       |       |  |

bit 15-8 Byte 3<15:8>: ECAN™ Message Byte 3

bit 7-0 Byte 2<7:0>: ECAN Message Byte 2

## BUFFER 21-6: ECAN<sup>™</sup> MESSAGE BUFFER WORD 5

| R/W-x                                                                | R/W-x | R/W-x            | R/W-x | R/W-x            | R/W-x | R/W-x           | R/W-x |
|----------------------------------------------------------------------|-------|------------------|-------|------------------|-------|-----------------|-------|
|                                                                      |       |                  | Ву    | te 5             |       |                 |       |
| bit 15                                                               |       |                  |       |                  |       |                 | bit 8 |
|                                                                      |       |                  |       |                  |       |                 |       |
| R/W-x                                                                | R/W-x | R/W-x            | R/W-x | R/W-x            | R/W-x | R/W-x           | R/W-x |
|                                                                      |       |                  | By    | te 4             |       |                 |       |
| bit 7                                                                |       |                  |       |                  |       |                 | bit 0 |
| Legend:                                                              |       |                  |       |                  |       |                 |       |
| R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' |       |                  |       |                  |       |                 |       |
| -n = Value at P                                                      | OR    | '1' = Bit is set |       | '0' = Bit is cle | ared  | x = Bit is unkr | nown  |

bit 15-8 **Byte 5<15:8>:** ECAN<sup>™</sup> Message Byte 5

bit 7-0 Byte 4<7:0>: ECAN Message Byte 4

| BUFFER 21-7:                      | ECAN                              | I <sup>™</sup> MESSAGE B | UFFER \ | NORD 6                             |       |       |       |  |
|-----------------------------------|-----------------------------------|--------------------------|---------|------------------------------------|-------|-------|-------|--|
| R/W-x                             | R/W-x                             | R/W-x                    | R/W-x   | R/W-x                              | R/W-x | R/W-x | R/W-x |  |
|                                   |                                   |                          | В       | yte 7                              |       |       |       |  |
| bit 15                            |                                   |                          |         |                                    |       |       | bit 8 |  |
| R/W-x                             | R/W-x                             | R/W-x                    | R/W-x   | R/W-x                              | R/W-x | R/W-x | R/W-x |  |
|                                   |                                   |                          | В       | yte 6                              |       |       |       |  |
| bit 7                             |                                   |                          |         |                                    |       |       | bit 0 |  |
| Legend:                           |                                   |                          |         |                                    |       |       |       |  |
| R = Readable bit W = Writable bit |                                   |                          |         | U = Unimplemented bit, read as '0' |       |       |       |  |
| -n = Value at PO                  | n = Value at POR '1' = Bit is set |                          |         | '0' = Bit is cleared x = Bit is un |       |       | own   |  |

Byte 7<15:8>: ECAN™ Message Byte 7 bit 15-8

bit 7-0 Byte 6<7:0>: ECAN Message Byte 6

#### ECAN<sup>™</sup> MESSAGE BUFFER WORD 7 **BUFFER 21-8:**

| U-0             | U-0 | U-0              | R/W-x                         | R/W-x | R/W-x | R/W-x              | R/W-x |  |
|-----------------|-----|------------------|-------------------------------|-------|-------|--------------------|-------|--|
| —               |     | —                |                               |       |       |                    |       |  |
| bit 15          |     |                  |                               |       |       |                    | bit 8 |  |
|                 |     |                  |                               |       |       |                    |       |  |
| U-0             | U-0 | U-0              | U-0                           | U-0   | U-0   | U-0                | U-0   |  |
| _               |     | _                | _                             | _     | —     | —                  | _     |  |
| bit 7           |     |                  |                               |       |       |                    | bit 0 |  |
|                 |     |                  |                               |       |       |                    |       |  |
| Legend:         |     |                  |                               |       |       |                    |       |  |
| R = Readable b  | bit | W = Writable I   | bit U = Unimplemented bit, re |       |       | as '0'             |       |  |
| -n = Value at P | OR  | '1' = Bit is set | t '0' = Bit is cleared        |       |       | x = Bit is unknown |       |  |
|                 |     |                  |                               |       |       |                    |       |  |

bit 15-13 Unimplemented: Read as '0'

FILHIT<4:0>: Filter Hit Code bits<sup>(1)</sup> bit 12-8

Encodes number of filter that resulted in writing this buffer.

bit 7-0 Unimplemented: Read as '0'

Note 1: Only written by module for receive buffers, unused for transmit buffers.

## 22.0 HIGH-SPEED 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- **Note 1:** This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 dsPIC33FJ64GS406/606/608/610 and families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 44. "High-Speed 10-Bit Analog-to-Digital Converter (ADC)" (DS70321) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0** "**Memory Organization**" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices provide high-speed successive approximation Analog-to-Digital conversions to support applications such as AC/DC and DC/DC power converters.

## 22.1 Features Overview

The ADC module incorporates the following features:

- 10-bit resolution
- Unipolar inputs
- Up to two Successive Approximation Registers (SARs)
- Up to 24 external input channels
- Two internal analog inputs
- Dedicated result register for each analog input
- ±1 LSB accuracy at 3.3V
- Single supply operation
- 4 Msps conversion rate at 3.3V (devices with two SARs)
- 2 Msps conversion rate at 3.3V (devices with one SAR)
- Low-power CMOS technology

#### 22.2 Module Description

This ADC module is designed for applications that require low latency between the request for conversion and the resultant output data. Typical applications include:

- AC/DC power supplies
- DC/DC converters
- Power Factor Correction (PFC)

This ADC works with the high-speed PWM module in power control applications that require high-frequency control loops. This module can sample and convert two analog inputs in a 0.5 microsecond when two SARs are used. This small conversion delay reduces the "phase lag" between measurement and control system response.

Up to five inputs may be sampled at a time (four inputs from the dedicated sample and hold circuits and one from the shared sample and hold circuit). If multiple inputs request conversion, the ADC will convert them in a sequential manner, starting with the lowest order input.

This ADC design provides each pair of analog inputs (AN1,AN0), (AN3,AN2),..., the ability to specify its own trigger source out of a maximum of sixteen different trigger sources. This capability allows this ADC to sample and convert analog inputs that are associated with PWM generators operating on independent time bases.

The user application typically requires synchronization between analog data sampling and PWM output to the application circuit. The very high-speed operation of this ADC module allows "data on demand".

In addition, several hardware features have been added to the peripheral interface to improve real-time performance in a typical DSP-based application.

- Result alignment options
- · Automated sampling
- External conversion start control
- Two internal inputs to monitor 1.2V internal reference and EXTREF input signal

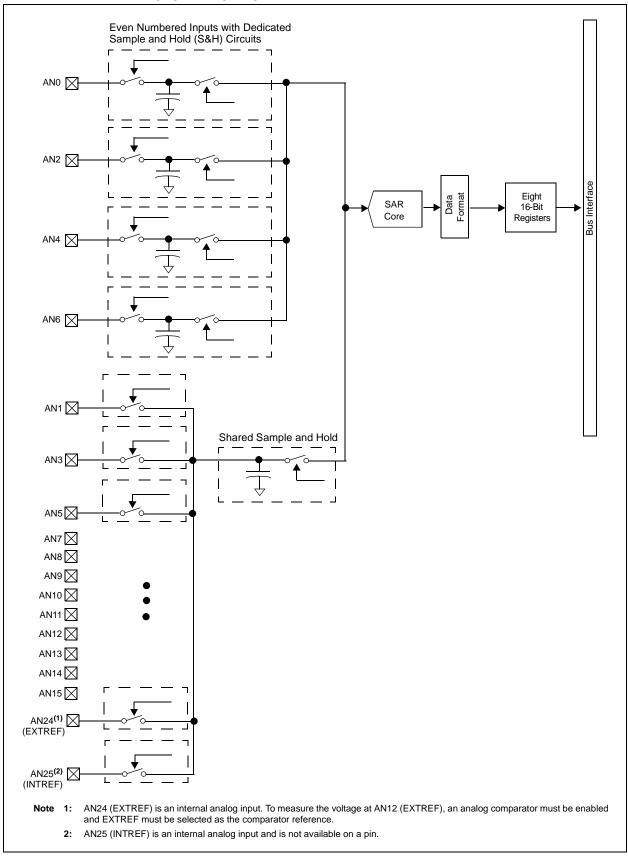
A block diagram of the ADC module is shown in Figure 22-2.

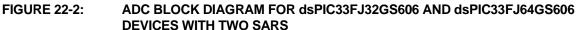
### 22.3 Module Functionality

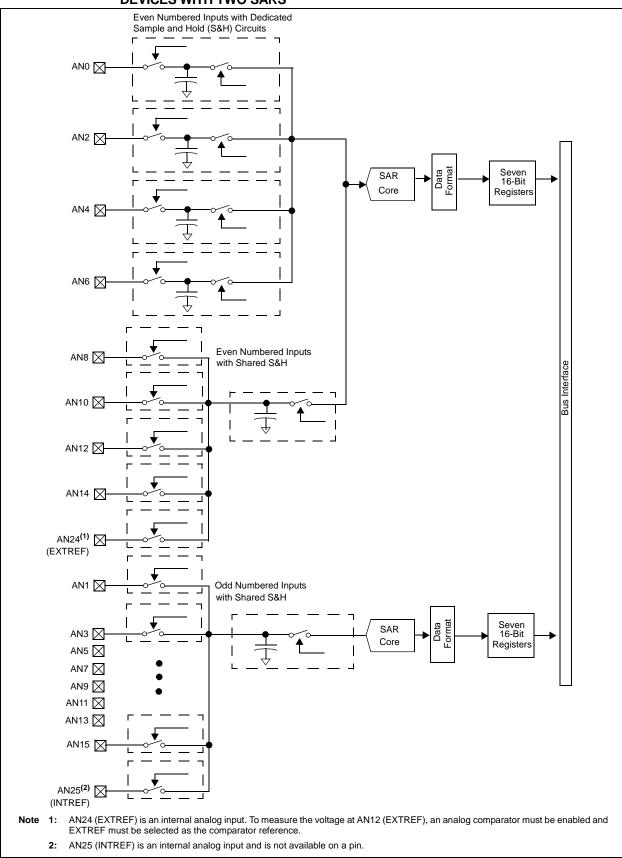
The high-speed 10-bit ADC is designed to support power conversion applications when used with the High-Speed PWM module. The ADC may have one or two SAR modules, depending on the device variant. If two SARs are present on a device, two conversions can be processed at a time, yielding 4 Msps conversion rate. If only one SAR is present on a device, only one conversion can be processed at a time, yielding 2 Msps conversion rate. The high-speed 10-bit ADC produces two 10-bit conversion results in a 0.5 microsecond.

The ADC module supports up to 24 external analog inputs and two internal analog inputs. To monitor reference voltage, two internal inputs, AN24 and AN25, are connected to the EXTREF and internal band gap voltages (1.2V), respectively.

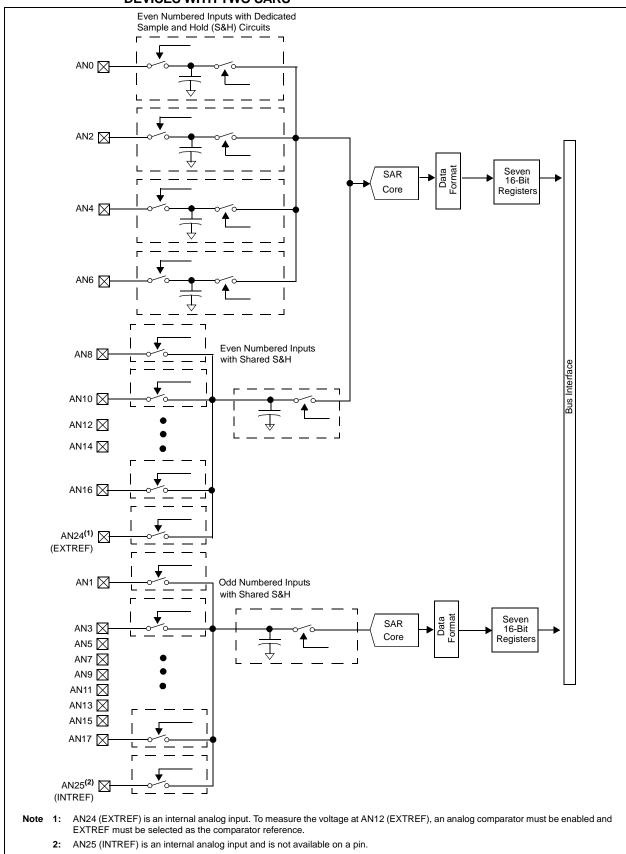
The analog reference voltage is defined as the device supply voltage (AVDD/AVSS).


The ADC module uses the following control and STATUS registers:

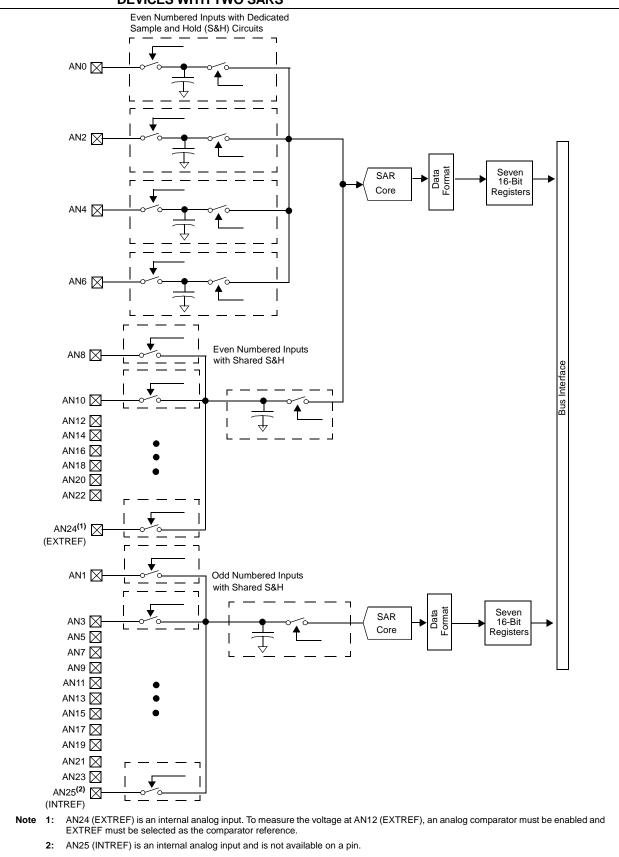

- ADCON: A/D Control Register
- ADSTAT: A/D Status Register
- ADBASE: A/D Base Register
- ADPCFG: A/D Port Configuration Register
- ADPCFG2: A/D Port Configuration Register 2
- ADCPC0: A/D Convert Pair Control Register 0
- ADCPC1: A/D Convert Pair Control Register 1
- ADCPC2: A/D Convert Pair Control Register 2
- ADCPC3: A/D Convert Pair Control Register 3
- ADCPC4: A/D Convert Pair Control Register 4
- ADCPC5: A/D Convert Pair Control Register 5
- ADCPC6: A/D Convert Pair Control Register 6


The ADCON register controls the operation of the ADC module. The ADSTAT register displays the status of the conversion processes. The ADPCFG registers configure the port pins as analog inputs or as digital I/O. The ADCPCx registers control the triggering of the ADC conversions. See Register 22-1 through Register 22-12 for detailed bit configurations.

Note: A unique feature of the ADC module is its ability to sample inputs in an asynchronous manner. Individual sample and hold circuits can be triggered independently of each other.


#### FIGURE 22-1: ADC BLOCK DIAGRAM FOR dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES WITH ONE SAR
















| R/W-0                            | U-0                                                                                                                                                                                                                                                                                                 | R/W-0                                                                                                                                                                                                                                                                                                                                                                                     | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U-0                                                                                                                                                                                                            | R/W-0                                                                                                                                                                       | U-0                                                                                                                                       | R/W-0                                                                                                                  |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| ADON                             | _                                                                                                                                                                                                                                                                                                   | ADSIDL                                                                                                                                                                                                                                                                                                                                                                                    | SLOWCLK <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                              | GSWTRG                                                                                                                                                                      | _                                                                                                                                         | FORM <sup>(1)</sup>                                                                                                    |
| bit 15                           |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                                                                           | bit 8                                                                                                                  |
| R/W-0                            | R/W-0                                                                                                                                                                                                                                                                                               | R/W-0                                                                                                                                                                                                                                                                                                                                                                                     | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U-0                                                                                                                                                                                                            | R/W-0                                                                                                                                                                       | R/W-1                                                                                                                                     | R/W-1                                                                                                                  |
| EIE <sup>(1)</sup>               | ORDER <sup>(1)</sup>                                                                                                                                                                                                                                                                                | SEQSAMP <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                    | ASYNCSAMP <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) _                                                                                                                                                                                                            | l A                                                                                                                                                                         | DCS<2:0> <sup>(1)</sup>                                                                                                                   | )                                                                                                                      |
| bit 7                            |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                                                                           | bit (                                                                                                                  |
| Legend:                          |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                                                                           |                                                                                                                        |
| R = Readab                       | ole bit                                                                                                                                                                                                                                                                                             | W = Writable I                                                                                                                                                                                                                                                                                                                                                                            | bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U = Unimple                                                                                                                                                                                                    | emented bit, rea                                                                                                                                                            | d as '0'                                                                                                                                  |                                                                                                                        |
| -n = Value a                     | at POR                                                                                                                                                                                                                                                                                              | '1' = Bit is set                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | '0' = Bit is c                                                                                                                                                                                                 | leared                                                                                                                                                                      | x = Bit is unl                                                                                                                            | known                                                                                                                  |
| bit 15                           | ADON: A/D                                                                                                                                                                                                                                                                                           | Operating Mode                                                                                                                                                                                                                                                                                                                                                                            | e bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                                                                           |                                                                                                                        |
|                                  |                                                                                                                                                                                                                                                                                                     | nverter module is<br>nverter is off                                                                                                                                                                                                                                                                                                                                                       | operating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                                                                           |                                                                                                                        |
| bit 14                           |                                                                                                                                                                                                                                                                                                     | ented: Read as '                                                                                                                                                                                                                                                                                                                                                                          | 0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                                                                           |                                                                                                                        |
| bit 13                           | -                                                                                                                                                                                                                                                                                                   | top in Idle Mode                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                                                                           |                                                                                                                        |
|                                  |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                           | eration when devid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ce enters Idle                                                                                                                                                                                                 | mode                                                                                                                                                                        |                                                                                                                                           |                                                                                                                        |
| bit 12                           | SLOWCLK                                                                                                                                                                                                                                                                                             | : Enable The Slo                                                                                                                                                                                                                                                                                                                                                                          | w Clock Divider b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <sub>Dit</sub> (1)                                                                                                                                                                                             |                                                                                                                                                                             |                                                                                                                                           |                                                                                                                        |
|                                  |                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                         | auxiliary PLL (ACI<br>mary PLL (Fvco)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LK)                                                                                                                                                                                                            |                                                                                                                                                                             |                                                                                                                                           |                                                                                                                        |
| bit 11                           | Unimpleme                                                                                                                                                                                                                                                                                           | ented: Read as '                                                                                                                                                                                                                                                                                                                                                                          | 0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                                                                           |                                                                                                                        |
| bit 10                           | GSWTRG:                                                                                                                                                                                                                                                                                             | Global Software                                                                                                                                                                                                                                                                                                                                                                           | Trigger bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                                                                           |                                                                                                                        |
|                                  |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                                                                           |                                                                                                                        |
|                                  | ADCPCx re                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                         | iser, it will trigger<br>nust be cleared by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                | •                                                                                                                                                                           |                                                                                                                                           |                                                                                                                        |
| bit 9                            | ADCPCx re<br>bit is not au                                                                                                                                                                                                                                                                          | gisters. This bit r                                                                                                                                                                                                                                                                                                                                                                       | nust be cleared by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                | •                                                                                                                                                                           |                                                                                                                                           |                                                                                                                        |
| bit 9<br>bit 8                   | ADCPCx re<br>bit is not au<br><b>Unimpleme</b>                                                                                                                                                                                                                                                      | gisters. This bit r<br>to-clearing).                                                                                                                                                                                                                                                                                                                                                      | nust be cleared by<br>0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                | •                                                                                                                                                                           |                                                                                                                                           |                                                                                                                        |
|                                  | ADCPCx re<br>bit is not au<br><b>Unimpleme</b><br><b>FORM:</b> Dat<br>1 = Fraction                                                                                                                                                                                                                  | gisters. This bit r<br>to-clearing).<br>ented: Read as '<br>a Output Format<br>nal (DOUT = ddd                                                                                                                                                                                                                                                                                            | nust be cleared by<br>0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | y the user prio                                                                                                                                                                                                | •                                                                                                                                                                           |                                                                                                                                           |                                                                                                                        |
|                                  | ADCPCx re<br>bit is not au<br><b>Unimpleme</b><br><b>FORM:</b> Dat<br>1 = Fraction<br>0 = Integer                                                                                                                                                                                                   | gisters. This bit r<br>to-clearing).<br>ented: Read as '<br>a Output Format<br>nal (DOUT = ddd                                                                                                                                                                                                                                                                                            | nust be cleared by<br>0'<br>: bit <sup>(1)</sup><br>1d dddd dd00 (0<br>00dd dddd dddo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | y the user prio                                                                                                                                                                                                | •                                                                                                                                                                           |                                                                                                                                           |                                                                                                                        |
| bit 8                            | ADCPCx re<br>bit is not au<br><b>Unimpleme</b><br><b>FORM:</b> Dat<br>1 = Fraction<br>0 = Integer<br><b>EIE:</b> Early In<br>1 = Interrup                                                                                                                                                           | gisters. This bit r<br>to-clearing).<br>ented: Read as <sup>6</sup><br>a Output Format<br>nal (DOUT = ddd<br>(DOUT = 0000 (<br>nterrupt Enable of<br>t is generated af                                                                                                                                                                                                                    | nust be cleared by<br>0'<br>: bit <sup>(1)</sup><br>1d dddd dd00 (0<br>00dd dddd dddo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | y the user prio<br>0000)<br>d)<br>n is complete                                                                                                                                                                | r to initiating ano                                                                                                                                                         |                                                                                                                                           |                                                                                                                        |
| bit 8                            | ADCPCx re<br>bit is not au<br><b>Unimpleme</b><br><b>FORM:</b> Dat<br>1 = Fraction<br>0 = Integer<br><b>EIE:</b> Early In<br>1 = Interrup<br>0 = Interrup                                                                                                                                           | gisters. This bit r<br>to-clearing).<br>ented: Read as <sup>6</sup><br>a Output Format<br>nal (DOUT = ddd<br>(DOUT = 0000 (<br>nterrupt Enable of<br>t is generated af                                                                                                                                                                                                                    | nust be cleared by<br>o'<br>bit(1)<br>d ddd dd00 (<br>00dd dddd ddao<br>bit(1)<br>fter first conversio<br>fter second conve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | y the user prio<br>0000)<br>d)<br>n is complete                                                                                                                                                                | r to initiating ano                                                                                                                                                         |                                                                                                                                           |                                                                                                                        |
| bit 8<br>bit 7                   | ADCPCx re<br>bit is not au<br><b>Unimpleme</b><br><b>FORM:</b> Dat<br>1 = Fraction<br>0 = Integer<br><b>EIE:</b> Early Iu<br>1 = Interrup<br>0 = Interrup<br><b>ORDER:</b> Co<br>1 = Odd nu<br>0 = Even nu                                                                                          | gisters. This bit r<br>to-clearing).<br>ented: Read as $^{\circ}$<br>a Output Format<br>hal (DOUT = ddd<br>(DOUT = 0000 c<br>nterrupt Enable 1<br>bit is generated at<br>onversion Order<br>mbered analog i<br>umbered analog                                                                                                                                                             | nust be cleared by<br>o'<br>t bit <sup>(1)</sup><br>d ddd dd00 (0<br>bit <sup>(1)</sup><br>fter first conversio<br>fter second conve<br>bit <sup>(1)</sup><br>nput is converted<br>input is converted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | y the user prio<br>0000)<br>d)<br>n is complete<br>rsion is comp<br>first, followed                                                                                                                            | r to initiating ano<br>d<br>leted<br>by conversion o                                                                                                                        | ther global tri                                                                                                                           | gger (i.e., thi<br>ered input                                                                                          |
| bit 8<br>bit 7                   | ADCPCx re<br>bit is not au<br><b>Unimpleme</b><br><b>FORM:</b> Dat<br>1 = Fraction<br>0 = Integer<br><b>EIE:</b> Early In<br>1 = Interrup<br>0 = Interrup<br><b>ORDER:</b> Co<br>1 = Odd nu<br>0 = Even nu<br><b>SEQSAMP</b><br>1 = Shared<br>ORDEF                                                 | gisters. This bit r<br>to-clearing).<br>ented: Read as $^{\circ}$<br>a Output Format<br>nal (DOUT = ddd<br>(DOUT = 0000 (<br>nterrupt Enable  <br>ot is generated at<br>to is generated at<br>onversion Order<br>mbered analog i<br>umbered analog i<br>Sequential San<br>I Sample and H<br>R = 0. If ORDER                                                                               | nust be cleared by<br>0'<br>bit(1)<br>1d dddd dd00 (0)<br>00dd dddd dddo<br>bit(1)<br>fter first conversio<br>fter second conve<br>bit(1)<br>nput is converted<br>input is converted<br>nple Enable bit <sup>(1)</sup><br>fold (S&H) circui<br>= 1, then the sha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | y the user prio<br>0000)<br>d)<br>n is complete<br>rsion is comp<br>first, followed<br>d first, followed<br>t is sampled<br>ared S&H is sa                                                                     | r to initiating and<br>d<br>leted<br>by conversion o<br>d by conversion<br>at the start of<br>ampled at the sta                                                             | ther global tri<br>of even number<br>of odd number<br>the second<br>art of the first                                                      | gger (i.e., thi<br>ered input<br>ered input<br>conversion<br>conversion.                                               |
| bit 8<br>bit 7<br>bit 6          | ADCPCx re<br>bit is not au<br>Unimpleme<br>FORM: Dat<br>1 = Fraction<br>0 = Integer<br>EIE: Early In<br>1 = Interrup<br>0 = Interrup<br>0 = Interrup<br>0 = Interrup<br>0 = Codd nun<br>0 = Even nu<br>SEQSAMP<br>1 = Shared<br>ORDEF<br>0 = Shared<br>current                                      | gisters. This bit r<br>to-clearing).<br>ented: Read as $^{\circ}$<br>a Output Format<br>nal (DOUT = ddd<br>(DOUT = 0000 (<br>nterrupt Enable )<br>of is generated at<br>to is generated at<br>onversion Order<br>mbered analog i<br>umbered analog i<br>umbered analog i<br>Sequential San<br>Sample and H<br>R = 0. If ORDER<br>I S&H is sampled                                         | nust be cleared by<br>0'<br>bit(1)<br>1d dddd dd00 (0)<br>100dd dddd dddd<br>bit(1)<br>fter first conversio<br>fter second conve<br>bit(1)<br>nput is converted<br>input is converted<br>nple Enable bit <sup>(1)</sup><br>fold (S&H) circui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y the user prio<br>0000)<br>d)<br>n is complete<br>rsion is comp<br>first, followed<br>d first, followed<br>t is sampled<br>ared S&H is sa<br>e the dedicate<br>on process. I                                  | r to initiating and<br>d<br>leted<br>by conversion o<br>d by conversion<br>at the start of<br>ampled at the start<br>of S&H is sample<br>f the shared S8                    | f even number<br>of odd number<br>the second<br>art of the first<br>ad if the share<br>H is busy at                                       | gger (i.e., thi<br>ered input<br>ered input<br>conversion<br>conversion.<br>ed S&H is no                               |
| bit 8<br>bit 7<br>bit 6<br>bit 5 | ADCPCx re<br>bit is not au<br><b>Unimpleme</b><br><b>FORM:</b> Dat<br>1 = Fraction<br>0 = Integer<br><b>EIE:</b> Early It<br>1 = Interrup<br>0 = Interrup<br><b>ORDER:</b> Co<br>1 = Odd nut<br>0 = Even nu<br><b>SEQSAMP:</b><br>1 = Shared<br>ORDEF<br>0 = Shared<br>current<br>dedicat<br>cycle. | gisters. This bit r<br>to-clearing).<br>ented: Read as $^{\circ}$<br>a Output Format<br>hal (DOUT = ddd<br>(DOUT = 0000 (<br>nterrupt Enable)<br>of is generated af<br>to generated af<br>to sgenerated af<br>onversion Order<br>mbered analog i<br>umbered analog<br>: Sequential Sam<br>I Sample and H<br>R = 0. If ORDER<br>S&H is sampled<br>by busy with an<br>ted S&H is sample     | nust be cleared by<br>0'<br>bit(1)<br>1d dddd dd00 (0)<br>10 dd dddd dddo<br>bit(1)<br>fter first conversio<br>fter second conver<br>bit(1)<br>nput is converted<br>input is converted<br>input is converted<br>10 (S&H) circui<br>= 1, then the sha<br>d at the same time<br>existing conversi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | y the user prio<br>0000)<br>d)<br>n is complete<br>rsion is comp<br>first, followed<br>d first, followed<br>t is sampled<br>ared S&H is sa<br>e the dedicate<br>on process. I<br>ared S&H will                 | r to initiating ano<br>d<br>leted<br>by conversion of<br>d by conversion<br>at the start of<br>ampled at the star<br>of S&H is sample<br>f the shared S&<br>sample at the s | f even number<br>of odd number<br>the second<br>art of the first<br>ad if the share<br>H is busy at                                       | gger (i.e., thi<br>ered input<br>ered input<br>conversion<br>conversion.<br>ed S&H is no                               |
| bit 8<br>bit 7<br>bit 6          | ADCPCx re<br>bit is not au<br><b>Unimpleme</b><br><b>FORM:</b> Dat<br>1 = Fraction<br>0 = Integer<br><b>EIE:</b> Early In<br>1 = Interrup<br>0 = Interrup<br><b>ORDER:</b> Co<br>1 = Odd nun<br>0 = Even nu<br><b>SEQSAMP</b><br>1 = Shared<br>ORDEF<br>0 = Shared<br>current<br>dedicat<br>cycle.  | gisters. This bit r<br>to-clearing).<br>ented: Read as $^{\circ}$<br>a Output Format<br>hal (DOUT = ddd<br>(DOUT = 0000 (<br>nterrupt Enable I<br>on terrupt Enable I<br>to is generated at<br>onversion Order<br>mbered analog i<br>umbered analog i<br>umbered analog i<br>Sequential Sam<br>Sample and H<br>R = 0. If ORDER<br>S&H is sampled<br>by busy with an<br>ted S&H is sampled | nust be cleared by<br>0'<br>a bit <sup>(1)</sup><br>1d dddd dd00 (0)<br>100dd dddd dddo<br>bit <sup>(1)</sup><br>fter first conversio<br>fter second conve<br>bit <sup>(1)</sup><br>nput is converted<br>input is conve | y the user prio<br>0000)<br>d)<br>n is complete<br>rsion is comp<br>first, followed<br>d first, followed<br>t is sampled<br>ared S&H is sa<br>e the dedicate<br>on process. I<br>ared S&H will<br>H Sampling E | r to initiating and<br>d<br>leted<br>by conversion o<br>d by conversion<br>at the start of<br>ampled at the star<br>d S&H is sample<br>f the shared S&<br>sample at the s   | ther global tri<br>of even number<br>of odd number<br>the second<br>art of the first<br>ed if the share<br>H is busy at<br>tart of the ne | gger (i.e., thi<br>ered input<br>ered input<br>conversion<br>conversion.<br>ed S&H is no<br>the time th<br>w conversio |

## REGISTER 22-1: ADCON: A/D CONTROL REGISTER

**Note 1:** This control bit can only be changed while the ADC is disabled (ADON = 0).

### REGISTER 22-1: ADCON: A/D CONTROL REGISTER (CONTINUED)

bit 3 Unimplemented: Read as '0'

bit 2-0 ADCS<2:0>: A/D Conversion Clock Divider Select bits<sup>(1)</sup> 111 = FADC/8 110 = FADC/7

110 = FADC/7 101 = FADC/6 100 = FADC/5 011 = FADC/4 (default) 010 = FADC/3 001 = FADC/2 000 = FADC/1

**Note 1:** This control bit can only be changed while the ADC is disabled (ADON = 0).

| U-0             | U-0            | U-0                | R/C-0, HS         | R/C-0, HS        | R/C-0, HS                  | R/C-0, HS       | R/C-0, HS    |
|-----------------|----------------|--------------------|-------------------|------------------|----------------------------|-----------------|--------------|
| —               | _              | —                  | P12RDY            | P11RDY           | P10RDY                     | P9RDY           | P8RDY        |
| pit 15          |                |                    |                   |                  |                            |                 | bit          |
|                 |                |                    |                   |                  |                            |                 |              |
| R/C-0, HS       | R/C-0, HS      | R/C-0, HS          | R/C-0, HS         | R/C-0, HS        | R/C-0, HS                  | R/C-0, HS       | R/C-0, HS    |
| P7RDY           | P6RDY          | P5RDY              | P4RDY             | P3RDY            | P2RDY                      | P1RDY           | P0RDY        |
| bit 7           |                |                    |                   |                  |                            |                 | bit          |
| Legend:         |                |                    |                   |                  |                            |                 |              |
| R = Readable    | bit            | W = Writable b     | it                | U = Unimpler     | mented bit, read           | d as '0'        |              |
| -n = Value at F |                | '1' = Bit is set   |                   | '0' = Bit is cle |                            | x = Bit is unkr | nown         |
| C = Clearable   | -              | HS = Hardware      | e Settable bit    | 0 2000 000       |                            |                 |              |
|                 |                |                    |                   |                  |                            |                 |              |
| bit 15-13       | -              | nted: Read as '0   |                   | <b>.</b> .       |                            |                 |              |
| bit 6           |                | nversion Data fo   |                   | -                |                            | L :4            |              |
|                 |                | en data is ready   |                   |                  | s written to this          | DIT.            |              |
| bit 5           |                | nversion Data fo   | -                 |                  |                            |                 |              |
|                 |                | en data is ready   |                   |                  | written to this            | DIT.            |              |
| bit 4           |                | nversion Data fo   |                   | •                |                            |                 |              |
|                 |                | en data is ready i |                   |                  | s written to this          | DIT.            |              |
| bit 3           |                | version Data for   | •                 |                  |                            | L :4            |              |
|                 |                | en data is ready   |                   |                  | s written to this          | DIT.            |              |
| bit 2           |                | version Data for   | •                 |                  |                            |                 |              |
|                 |                | en data is ready   |                   |                  | written to this            | DIT.            |              |
| bit 1           |                | version Data for   | •                 |                  |                            |                 |              |
|                 |                | en data is ready   |                   |                  | written to this            | Dit.            |              |
| bit 6           |                | version Data for   | •                 |                  |                            |                 |              |
|                 |                | en data is ready   |                   |                  | written to this            | bit.            |              |
| bit 5           |                | version Data for   | •                 |                  |                            |                 |              |
|                 |                | en data is ready   |                   |                  | written to this            | bit.            |              |
| bit 4           |                | version Data for   | ,                 |                  |                            |                 |              |
|                 | Bit is set whe | en data is ready   | in buffer, cleare | ed when a '0' is | written to this            | bit.            |              |
| bit 3           |                | version Data for   | •                 |                  |                            |                 |              |
|                 | Bit is set whe | en data is ready   | in buffer, cleare | ed when a '0' is | written to this            | bit.            |              |
| bit 2           | P2RDY: Con     | version Data for   | Pair 2 Ready b    | bit              |                            |                 |              |
|                 | Bit is set whe | en data is ready   | in buffer, cleare | ed when a '0' is | written to this            | bit.            |              |
| bit 1           | P1RDY: Con     | version Data for   | Pair 1 Ready b    | pit              |                            |                 |              |
|                 | Bit is set whe | en data is ready   | in buffer, cleare | ed when a '0' is | written to this            | bit.            |              |
| bit 0           | PORDY: Con     | version Data for   | Pair 0 Ready b    | pit              |                            |                 |              |
|                 | Bit is set whe | en data is ready   | in buffer, cleare | ed when a '0' is | written to this            | bit.            |              |
|                 |                |                    |                   |                  | <b>F</b> i 00.0 <b>F</b> i |                 |              |
| Note: Not       |                | 's are available o | n all devices is  | ee Figure 22-1   | . Figure 22-2 F            | lidure 22-3 an  | d Figure 22- |

## REGISTER 22-2: ADSTAT: A/D STATUS REGISTER

## REGISTER 22-3: ADBASE: A/D BASE REGISTER<sup>(1,2)</sup>

| R/W-0           | R/W-0 | R/W-0            | R/W-0      | R/W-0                                   | R/W-0           | R/W-0    | R/W-0 |
|-----------------|-------|------------------|------------|-----------------------------------------|-----------------|----------|-------|
|                 |       |                  | ADBA       | SE<15:8>                                |                 |          |       |
| bit 15          |       |                  |            |                                         |                 |          | bit 8 |
| R/W-0           | R/W-0 | R/W-0            | R/W-0      | R/W-0                                   | R/W-0           | R/W-0    | U-0   |
| N/W-0           | N/W-0 |                  |            |                                         | N/W-0           | N/W-0    | 0-0   |
|                 |       |                  | ADBASE<7:1 | >                                       |                 |          | —     |
| bit 7           |       |                  |            |                                         |                 |          | bit 0 |
|                 |       |                  |            |                                         |                 |          |       |
| Legend:         |       |                  |            |                                         |                 |          |       |
| R = Readable    | bit   | W = Writable     | bit        | U = Unimplem                            | nented bit, rea | d as '0' |       |
| -n = Value at P | OR    | '1' = Bit is set |            | '0' = Bit is cleared x = Bit is unknown |                 |          | nown  |

 bit 15-1
 ADBASE<15:1>: This register contains the base address of the user's ADC Interrupt Service Routine jump table. This register, when read, contains the sum of the ADBASE register contents and the encoded value of the PxRDY Status bits.

 The encoder logic provides the bit number of the highest priority PxRDY bits where P0RDY is the highest priority, and P6RDY is the lowest priority.

bit 0 Unimplemented: Read as '0'

- **Note 1:** The encoding results are shifted left two bits so bits 1-0 of the result are always zero.
  - **2:** As an alternative to using the ADBASE Register, the ADCP0-ADCP12 ADC Pair Conversion Complete Interrupts can be used to invoke A to D conversion completion routines for individual ADC input pairs.

| Legend:<br>R = Readable bit W = Writable bit |        |        | hit    | U = Unimplemented bit, read as '0' |        |       |       |  |
|----------------------------------------------|--------|--------|--------|------------------------------------|--------|-------|-------|--|
| Logondi                                      |        |        |        |                                    |        |       |       |  |
| bit 7                                        |        |        |        |                                    |        |       | bit   |  |
| PCFG7                                        | PCFG6  | PCFG5  | PCFG4  | PCFG3                              | PCFG2  | PCFG1 | PCFG0 |  |
| R/W-0                                        | R/W-0  | R/W-0  | R/W-0  | R/W-0                              | R/W-0  | R/W-0 | R/W-0 |  |
| DIL 15                                       |        |        |        |                                    |        |       | DIL   |  |
| bit 15                                       | 101014 | 101010 | 101012 | 101011                             | 101010 | 10103 | bit   |  |
| PCFG15                                       | PCFG14 | PCFG13 | PCFG12 | PCFG11                             | PCFG10 | PCFG9 | PCFG8 |  |
| R/W-0                                        | R/W-0  | R/W-0  | R/W-0  | R/W-0                              | R/W-0  | R/W-0 | R/W   |  |

#### REGISTER 22-4: ADPCFG: A/D PORT CONFIGURATION REGISTER

bit 15-0

bit 7-0

PCFG<15:0>: A/D Port Configuration Control bits

1 = Port pin in Digital mode, port read input enabled, A/D input multiplexor connected to AVss

0 = Port pin in Analog mode, port read input disabled, A/D samples pin voltage

| Note: | Not all PCFGx bits are available on all devices. See Figure 22-1, Figure 22-2, Figure 22-3, and Figure 22-4 |
|-------|-------------------------------------------------------------------------------------------------------------|
|       | for the available analog inputs (PCFGx = ANx, where $x = 0-15$ ).                                           |

#### REGISTER 22-5: ADPCFG2: A/D PORT CONFIGURATION REGISTER

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0   |
|--------|-----|-----|-----|-----|-----|-----|-------|
| —      | —   | —   | —   | —   | —   | —   | —     |
| bit 15 |     |     |     |     |     |     | bit 8 |

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PCFG23 | PCFG22 | PCFG21 | PCFG20 | PCFG19 | PCFG18 | PCFG17 | PCFG16 |
| bit 7  |        |        |        |        |        |        | bit 0  |

| Legend:           |                  |                        |                    |
|-------------------|------------------|------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, | read as '0'        |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared   | x = Bit is unknown |

bit 15-8 Unimplemented: Read as '0'

PCFG<23:16>: A/D Port Configuration Control bits

1 = Port pin in Digital mode, port read input enabled, A/D input multiplexor connected to AVss

0 = Port pin in Analog mode, port read input disabled, A/D samples pin voltage

**Note:** Not all PCFGx bits are available on all devices. See Figure 22-1, Figure 22-2, Figure 22-3, and Figure 22-4 for the available analog inputs (PCFGx = ANx, where x can be 0 through 15).

|               | R/W-0                                                                                                                                                    | R/W-0                                                                                                                                                                                                                                                                          | R/W-0                                                                                                                                                                                                                    | R/W-0                                                                                                                                               | R/W-0                                          | R/W-0             | R/W-0    |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------|----------|
| IRQEN1        | PEND1                                                                                                                                                    | SWTRG1                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                          |                                                                                                                                                     | TRGSRC1<4:0                                    | >                 |          |
| bit 15        |                                                                                                                                                          |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                          |                                                                                                                                                     |                                                |                   | bit      |
| R/W-0         | R/W-0                                                                                                                                                    | R/W-0                                                                                                                                                                                                                                                                          | R/W-0                                                                                                                                                                                                                    | R/W-0                                                                                                                                               | R/W-0                                          | R/W-0             | R/W-0    |
| IRQEN0        | PEND0                                                                                                                                                    | SWTRG0                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                          |                                                                                                                                                     | TRGSRC0<4:0                                    | >                 |          |
| bit 7         | ·                                                                                                                                                        | · · ·                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                          |                                                                                                                                                     |                                                |                   | bit      |
| Legend:       |                                                                                                                                                          |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                          |                                                                                                                                                     |                                                |                   |          |
| R = Readable  | e bit                                                                                                                                                    | W = Writable b                                                                                                                                                                                                                                                                 | oit                                                                                                                                                                                                                      | U = Unimple                                                                                                                                         | emented bit, read                              | as '0'            |          |
| -n = Value at | POR                                                                                                                                                      | '1' = Bit is set                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                          | '0' = Bit is c                                                                                                                                      | leared                                         | x = Bit is unkr   | iown     |
| bit 15        |                                                                                                                                                          |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                          | ed conversior                                                                                                                                       | of channels AN3                                | and AN2 is co     | ompleted |
| bit 14        | 1 = Conversi                                                                                                                                             | ding Conversion<br>on of channels A<br>on is complete                                                                                                                                                                                                                          |                                                                                                                                                                                                                          |                                                                                                                                                     | Set when selected                              | l trigger is asse | erted    |
| bit 13        | <b>SWTRG1:</b> S<br>1 = Start con<br>This bit is au                                                                                                      | oftware Trigger 1<br>version of AN3 a                                                                                                                                                                                                                                          | and AN2 (if s                                                                                                                                                                                                            |                                                                                                                                                     | GSRC bits) <sup>(1)</sup><br>PEND1 bit is set. |                   |          |
|               | 00000 = No<br>00001 = Ind<br>00010 = Glo<br>00011 = PW<br>00100 = PW<br>00101 = PW<br>00111 = PW<br>01000 = PW<br>01001 = PW<br>01001 = PW<br>01011 = PW | er source for con<br>conversion enab<br>ividual software t<br>bal software trig<br>M Special Event<br>M Generator 1 p<br>M Generator 2 p<br>M Generator 3 p<br>M Generator 5 p<br>M Generator 5 p<br>M Generator 7 p<br>M Generator 7 p<br>M Generator 8 p<br>er1 period matcl | bled<br>trigger selected<br>Trigger selected<br>tringer selected<br>trimary trigger<br>trimary trigger<br>trimary trigger<br>trimary trigger<br>trimary trigger<br>trimary trigger<br>trimary trigger<br>trimary trigger | ted<br>ected<br>er selected<br>er selected<br>er selected<br>er selected<br>er selected<br>er selected<br>er selected<br>er selected<br>er selected | Is AN3 and AN2.                                |                   |          |

- 11111 = Timer2 period match
- **Note 1:** The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, the conversion will be performed when the conversion resources are available.

|                                                         | ADCPC0: A/D CONVERT PAIR CONTROL REGISTER 0 (CONTINUED)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 7 IRQ                                               | EN0: Interrupt Request Enable 0 bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                         | Enable IRQ generation when requested conversion of channels AN1 and AN0 is completed<br>IRQ is not generated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| bit 6 PEN                                               | ID0: Pending Conversion Status 0 bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                         | Conversion of channels AN1 and AN0 is pending; set when selected trigger is asserted Conversion is complete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1 =<br>This                                             | <b>TRG0:</b> Software Trigger 0 bit<br>Start conversion of AN1 and AN0 (if selected by TRGSRC bits) <sup>(1)</sup><br>bit is automatically cleared by hardware when the PEND0 bit is set.<br>Conversion is not started.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| bit 4-0 TRC Sele 000 000 000 000 000 001 001 001 001 00 | SSRC0-4:0>: Trigger 0 Source Selection bits<br>acts trigger source for conversion of analog channels AN1 and AN0.<br>00 = No conversion enabled<br>01 = Individual software trigger selected<br>10 = Global software trigger selected<br>11 = PWM Special Event Trigger selected<br>00 = PWM Generator 1 primary trigger selected<br>10 = PWM Generator 2 primary trigger selected<br>10 = PWM Generator 3 primary trigger selected<br>10 = PWM Generator 4 primary trigger selected<br>10 = PWM Generator 5 primary trigger selected<br>10 = PWM Generator 7 primary trigger selected<br>10 = PWM Generator 6 primary trigger selected<br>10 = PWM Generator 7 primary trigger selected<br>10 = PWM Generator 7 primary trigger selected<br>10 = PWM Generator 8 primary trigger selected<br>10 = PWM Generator 8 primary trigger selected<br>10 = PWM Generator 8 primary trigger selected<br>10 = PWM Generator 1 secondary trigger selected<br>10 = PWM Generator 3 secondary trigger selected<br>10 = PWM Generator 3 secondary trigger selected<br>11 = PWM Generator 3 secondary trigger selected<br>10 = PWM Generator 3 secondary trigger selected<br>10 = PWM Generator 5 secondary trigger selected<br>11 = PWM Generator 8 secondary trigger selected<br>11 = PWM Generator 9 secondary trigger selected<br>11 = PWM Generator 9 secondary trigger selected<br>11 = PWM Generator 1 current-limit ADC trigger<br>10 = PWM Generator 3 current-limit ADC trigger<br>11 = PWM Generator 3 current-limit ADC trigger<br>11 = PWM Generator 5 current-limit ADC trigger<br>12 = PWM Generator 6 current-limit ADC trigger<br>13 = PWM Generator 7 current-limit ADC trigger<br>14 = PWM Generator 8 current-limit ADC trigger<br>15 = PWM Generator 8 current-limit ADC trigger<br>16 = PWM Generator 8 current-limit ADC trigger<br>17 = PWM Generator 8 current-limit ADC trigger<br>18 = PWM Generator 8 current-limit ADC trigger<br>19 = PWM Generator 8 current-limit ADC trigger<br>10 = PWM Generator 8 current-limit ADC trigger<br>11 = Timer2 period match |

#### REGISTER 22-7: ADCPC1: A/D CONVERT PAIR CONTROL REGISTER 1

| R/W-0         | R/W-0                                                                                                    | R/W-0                                                 | R/W-0                                                 | R/W-0                        | R/W-0            | R/W-0              | R/W-0    |  |  |
|---------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------|------------------|--------------------|----------|--|--|
| IRQEN3        | PEND3                                                                                                    | SWTRG3                                                |                                                       |                              | TRGSRC3<4:       | )>                 |          |  |  |
| bit 15        |                                                                                                          |                                                       |                                                       |                              |                  |                    | bit 8    |  |  |
| R/W-0         | R/W-0                                                                                                    | R/W-0                                                 | R/W-0                                                 | R/W-0                        | R/W-0            | R/W-0              | R/W-0    |  |  |
| IRQEN2        | PEND2                                                                                                    | SWTRG2                                                |                                                       |                              | TRGSRC2<4:       |                    |          |  |  |
| bit 7         |                                                                                                          |                                                       |                                                       |                              |                  | -                  | bit (    |  |  |
|               |                                                                                                          |                                                       |                                                       |                              |                  |                    |          |  |  |
| Legend:       |                                                                                                          |                                                       |                                                       |                              |                  |                    |          |  |  |
| R = Readable  |                                                                                                          | W = Writable I                                        | oit                                                   | -                            | emented bit, rea |                    |          |  |  |
| -n = Value at | POR                                                                                                      | '1' = Bit is set                                      |                                                       | '0' = Bit is cl              | eared            | x = Bit is unkr    | nown     |  |  |
| bit 15        | IRQEN3: Inte                                                                                             | errupt Request E                                      | Enable 3 bit                                          |                              |                  |                    |          |  |  |
|               |                                                                                                          |                                                       | when request                                          | ed conversion                | of channels AN   | 7 and AN6 is co    | ompleted |  |  |
|               | 0 = IRQ is no                                                                                            | -                                                     |                                                       |                              |                  |                    |          |  |  |
| bit 14        |                                                                                                          | ding Conversior                                       |                                                       |                              |                  |                    |          |  |  |
|               |                                                                                                          |                                                       | AN7 and AN6                                           | s is pending. S              | Set when selecte | ed trigger is asso | erted    |  |  |
| bit 13        |                                                                                                          | on is complete<br>oftware Trigger :                   | 3 hit                                                 |                              |                  |                    |          |  |  |
| bit 15        |                                                                                                          | version of AN7                                        |                                                       | elected in TR(               | GSRC hits)(1)    |                    |          |  |  |
|               |                                                                                                          |                                                       |                                                       |                              | PEND3 bit is se  | t.                 |          |  |  |
|               |                                                                                                          | on is not started                                     | •                                                     |                              |                  |                    |          |  |  |
| bit 12-8      | TRGSRC3<4                                                                                                | 1:0>: Trigger 3 8                                     | Source Select                                         | tion bits <sup>(1)</sup>     |                  |                    |          |  |  |
|               | Selects trigger source for conversion of analog channels AN7 and AN6.                                    |                                                       |                                                       |                              |                  |                    |          |  |  |
|               | 00000 = No conversion enabled                                                                            |                                                       |                                                       |                              |                  |                    |          |  |  |
|               | 00001 = Individual software trigger selected<br>00010 = Global software trigger selected                 |                                                       |                                                       |                              |                  |                    |          |  |  |
|               | 00011 = PWM Special Event Trigger selected                                                               |                                                       |                                                       |                              |                  |                    |          |  |  |
|               | 00100 = PWM Generator 1 primary trigger selected                                                         |                                                       |                                                       |                              |                  |                    |          |  |  |
|               |                                                                                                          | M Generator 2                                         |                                                       |                              |                  |                    |          |  |  |
|               |                                                                                                          | M Generator 3  <br>M Generator 4                      |                                                       |                              |                  |                    |          |  |  |
|               | 00111 = PWM Generator 4 primary trigger selected<br>01000 = PWM Generator 5 primary trigger selected     |                                                       |                                                       |                              |                  |                    |          |  |  |
|               | 01001 = PWM Generator 6 primary trigger selected                                                         |                                                       |                                                       |                              |                  |                    |          |  |  |
|               | 01010 = PWM Generator 7 primary trigger selected<br>01011 = PWM Generator 8 primary trigger selected     |                                                       |                                                       |                              |                  |                    |          |  |  |
|               |                                                                                                          | er1 period mate                                       |                                                       | el Selecteu                  |                  |                    |          |  |  |
|               | 01101 = PW                                                                                               | M secondary sp                                        | ecial event ti                                        |                              |                  |                    |          |  |  |
|               | 01110 = PWM Generator 1 secondary trigger selected                                                       |                                                       |                                                       |                              |                  |                    |          |  |  |
|               | 01111 = PWM Generator 2 secondary trigger selected                                                       |                                                       |                                                       |                              |                  |                    |          |  |  |
|               | 10000 = PWM Generator 3 secondary trigger selected<br>10001 = PWM Generator 4 secondary trigger selected |                                                       |                                                       |                              |                  |                    |          |  |  |
|               | 10001 = PWM Generator 5 secondary trigger selected                                                       |                                                       |                                                       |                              |                  |                    |          |  |  |
|               | 10011 = PWM Generator 6 secondary trigger selected                                                       |                                                       |                                                       |                              |                  |                    |          |  |  |
|               | 10100 = PWM Generator 7 secondary trigger selected<br>10101 = PWM Generator 8 secondary trigger selected |                                                       |                                                       |                              |                  |                    |          |  |  |
|               |                                                                                                          | M Generator 8 :                                       |                                                       |                              |                  |                    |          |  |  |
|               |                                                                                                          | M Generator 1                                         |                                                       |                              |                  |                    |          |  |  |
|               | 11000 = PW                                                                                               | M Generator 2                                         | current-limit A                                       | ADC trigger                  |                  |                    |          |  |  |
|               |                                                                                                          | M Generator 3                                         |                                                       |                              |                  |                    |          |  |  |
|               |                                                                                                          | M Generator 4                                         |                                                       |                              |                  |                    |          |  |  |
|               |                                                                                                          | M Generator 5                                         | current-limit 4                                       | ()()())())())()))))))))))))) |                  |                    |          |  |  |
|               | 11100 = PW                                                                                               | M Generator 5 (<br>M Generator 6 (                    |                                                       |                              |                  |                    |          |  |  |
|               |                                                                                                          | M Generator 5 (<br>M Generator 6 (<br>M Generator 7 ( | current-limit A                                       | ADC trigger                  |                  |                    |          |  |  |
|               | 11101 = PW<br>11110 = PW                                                                                 | M Generator 6                                         | current-limit A<br>current-limit A<br>current-limit A | ADC trigger                  |                  |                    |          |  |  |

## REGISTER 22-7: ADCPC1: A/D CONVERT PAIR CONTROL REGISTER 1 (CONTINUED)

| bit 7   | IRQEN2: Interrupt Request Enable 2 bit                                                                                                         |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------|
|         | <ul> <li>1 = Enable IRQ generation when requested conversion of channels AN5 and AN4 is completed</li> <li>0 = IRQ is not generated</li> </ul> |
| bit 6   | PEND2: Pending Conversion Status 2 bit                                                                                                         |
|         | 1 = Conversion of channels AN5 and AN4 is pending; set when selected trigger is asserted.                                                      |
|         | 0 = Conversion is complete                                                                                                                     |
| bit 5   | SWTRG2: Software Trigger 2 bit                                                                                                                 |
|         | 1 = Start conversion of AN5 and AN4 (if selected by TRGSRC bits) <sup>(1)</sup>                                                                |
|         | This bit is automatically cleared by hardware when the PEND2 bit is set.                                                                       |
|         | 0 = Conversion is not started                                                                                                                  |
| bit 4-0 | TRGSRC2<4:0>: Trigger 2 Source Selection bits                                                                                                  |
|         | Selects trigger source for conversion of analog channels AN5 and AN4.                                                                          |
|         | 00000 = No conversion enabled                                                                                                                  |
|         | 00001 = Individual software trigger selected                                                                                                   |
|         | 00010 = Global software trigger selected                                                                                                       |
|         | 00011 = PWM Special Event Trigger selected                                                                                                     |
|         | 00100 = PWM Generator 1 primary trigger selected                                                                                               |
|         | 00101 = PWM Generator 2 primary trigger selected                                                                                               |
|         | 00110 = PWM Generator 3 primary trigger selected                                                                                               |
|         | 00111 = PWM Generator 4 primary trigger selected<br>01000 = PWM Generator 5 primary trigger selected                                           |
|         | 01000 = PWM Generator 6 primary trigger selected                                                                                               |
|         | 01001 = PWM Generator 7 primary trigger selected                                                                                               |
|         | 01011 = PWM Generator 8 primary trigger selected                                                                                               |
|         | 01100 = Timer1 period match                                                                                                                    |
|         | 01101 = PWM secondary special event trigger selected                                                                                           |
|         | 01110 = PWM Generator 1 secondary trigger selected                                                                                             |
|         | 01111 = PWM Generator 2 secondary trigger selected                                                                                             |
|         | 10000 = PWM Generator 3 secondary trigger selected                                                                                             |
|         | 10001 = PWM Generator 4 secondary trigger selected                                                                                             |
|         | 10010 = PWM Generator 5 secondary trigger selected                                                                                             |
|         | 10011 = PWM Generator 6 secondary trigger selected                                                                                             |
|         | 10100 = PWM Generator 7 secondary trigger selected                                                                                             |
|         | 10101 = PWM Generator 8 secondary trigger selected                                                                                             |
|         | 10110 = PWM Generator 9 secondary trigger selected<br>10111 = PWM Generator 1 current-limit ADC trigger                                        |
|         | 1000 = PWM Generator 2 current-limit ADC trigger                                                                                               |
|         | 11000 = PWM Generator 2 current-limit ADC trigger                                                                                              |
|         | 11010 = PWM Generator 4 current-limit ADC trigger                                                                                              |
|         | 11011 = PWM Generator 5 current-limit ADC trigger                                                                                              |
|         | 11100 = PWM Generator 6 current-limit ADC trigger                                                                                              |
|         | 11101 = PWM Generator 7 current-limit ADC trigger                                                                                              |
|         | 11110 = PWM Generator 8 current-limit ADC trigger                                                                                              |
|         | 11111 = Timer2 period match                                                                                                                    |

#### REGISTER 22-8: ADCPC2: A/D CONVERT PAIR CONTROL REGISTER 2

| bit<br>R/W-0<br>bit                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| R/W-0                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
| bit                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
| DIL                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
| nown                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| completed                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| completed                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
| sserted                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
| 1 = Start conversion of AN11 and AN10 (if selected in TRGSRC bits) <sup>(1)</sup><br>This bit is automatically cleared by hardware when the PEND5 bit is set.<br>0 = Conversion is not started |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
| TRGSRC5<4:0>: Trigger 5 Source Selection bits                                                                                                                                                  |  |  |  |  |  |  |  |  |
| Selects trigger source for conversion of analog channels AN11 and AN10.<br>00000 = No conversion enabled                                                                                       |  |  |  |  |  |  |  |  |
| 00000 = No conversion enabled<br>00001 = Individual software trigger selected                                                                                                                  |  |  |  |  |  |  |  |  |
| 00010 = Global software trigger selected                                                                                                                                                       |  |  |  |  |  |  |  |  |
| 00011 = PWM Special Event Trigger selected<br>00100 = PWM Generator 1 primary trigger selected                                                                                                 |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
| 01001 = PWM Generator 6 primary trigger selected<br>01010 = PWM Generator 7 primary trigger selected                                                                                           |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
| 01111 = PWM Generator 2 secondary trigger selected<br>10000 = PWM Generator 3 secondary trigger selected                                                                                       |  |  |  |  |  |  |  |  |
| 10001 = PWM Generator 4 secondary trigger selected                                                                                                                                             |  |  |  |  |  |  |  |  |
| 10010 = PWM Generator 5 secondary trigger selected                                                                                                                                             |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
| 10100 = PWM Generator 7 secondary trigger selected<br>10101 = PWM Generator 8 secondary trigger selected                                                                                       |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
| 10110 = PWM Generator 9 secondary trigger selected<br>10111 = PWM Generator 1 current-limit ADC trigger                                                                                        |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |  |  |  |  |  |  |  |  |

## REGISTER 22-8: ADCPC2: A/D CONVERT PAIR CONTROL REGISTER 2 (CONTINUED)

| bit 7   | IRQEN4: Interrupt Request Enable 4 bit                                                                 |
|---------|--------------------------------------------------------------------------------------------------------|
|         | 1 = Enable IRQ generation when requested conversion of channels AN9 and AN8 is completed               |
|         | 0 = IRQ is not generated                                                                               |
| bit 6   | PEND4: Pending Conversion Status 4 bit                                                                 |
|         | 1 = Conversion of channels AN9 and AN8 is pending; set when selected trigger is asserted               |
|         | 0 = Conversion is complete                                                                             |
| bit 5   | SWTRG4: Software Trigger4 bit                                                                          |
|         | 1 = Start conversion of AN9 and AN8 (if selected by TRGSRC bits) <sup>(1)</sup>                        |
|         | This bit is automatically cleared by hardware when the PEND4 bit is set.                               |
|         | 0 = Conversion is not started                                                                          |
| bit 4-0 | TRGSRC4<4:0>: Trigger 4 Source Selection bits                                                          |
|         | Selects trigger source for conversion of analog channels AN9 and AN8.                                  |
|         | 00000 = No conversion enabled                                                                          |
|         | 00001 = Individual software trigger selected                                                           |
|         | 00010 = Global software trigger selected                                                               |
|         | 00011 = PWM Special Event Trigger selected                                                             |
|         | 00100 = PWM Generator 1 primary trigger selected                                                       |
|         | 00101 = PWM Generator 2 primary trigger selected                                                       |
|         | 00110 = PWM Generator 3 primary trigger selected<br>00111 = PWM Generator 4 primary trigger selected   |
|         | 01000 = PWM Generator 5 primary trigger selected                                                       |
|         | 01000 = PWM Generator 6 primary trigger selected                                                       |
|         | 01010 = PWM Generator 7 primary trigger selected                                                       |
|         | 01011 = PWM Generator 8 primary trigger selected                                                       |
|         | 01100 = Timer1 period match                                                                            |
|         | 01101 = Secondary special event trigger selected                                                       |
|         | 01110 = PWM Generator 1 secondary trigger selected                                                     |
|         | 01111 = PWM Generator 2 secondary trigger selected                                                     |
|         | 10000 = PWM Generator 3 secondary trigger selected                                                     |
|         | 10001 = PWM Generator 4 secondary trigger selected                                                     |
|         | 10010 = PWM Generator 5 secondary trigger selected                                                     |
|         | 10011 = PWM Generator 6 secondary trigger selected                                                     |
|         | 10100 = PWM Generator 7 secondary trigger selected                                                     |
|         | 10101 = PWM Generator 8 secondary trigger selected                                                     |
|         | 10110 = PWM Generator 9 secondary trigger selected                                                     |
|         | 10111 = PWM Generator 1 current-limit ADC trigger                                                      |
|         | 11000 = PWM Generator 2 current-limit ADC trigger                                                      |
|         | 11001 = PWM Generator 3 current-limit ADC trigger<br>11010 = PWM Generator 4 current-limit ADC trigger |
|         | 11010 = PWM Generator 5 current-limit ADC trigger                                                      |
|         | 11100 = PWM Generator 6 current-limit ADC trigger                                                      |
|         | 11100 = PWM Generator 7 current-limit ADC trigger                                                      |
|         | 11110 = PWM Generator 8 current-limit ADC trigger                                                      |
|         | 11111 = Timer2 period match                                                                            |
|         | Priva                                                                                                  |

#### REGISTER 22-9: ADCPC3: A/D CONVERT PAIR CONTROL REGISTER 3

| R/W-0         | R/W-0                                                                                                                               | R/W-0                                                                                                     | R/W-0           | R/W-0          | R/W-0             | R/W-0              | R/W-0     |  |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------|----------------|-------------------|--------------------|-----------|--|--|--|
| IRQEN7        | PEND7                                                                                                                               | SWTRG7                                                                                                    |                 |                | TRGSRC7<4         | :0>                |           |  |  |  |
| bit 15        |                                                                                                                                     |                                                                                                           |                 |                |                   |                    | bit       |  |  |  |
| R/W-0         | R/W-0                                                                                                                               | R/W-0                                                                                                     | R/W-0           | R/W-0          | R/W-0             | R/W-0              | R/W-0     |  |  |  |
| IRQEN6        | PEND6                                                                                                                               | SWTRG6                                                                                                    |                 |                | TRGSRC6<4         |                    |           |  |  |  |
| bit 7         |                                                                                                                                     |                                                                                                           |                 |                |                   |                    | bit       |  |  |  |
| Legend:       |                                                                                                                                     |                                                                                                           |                 |                |                   |                    |           |  |  |  |
| R = Readable  | e bit                                                                                                                               | W = Writable                                                                                              | bit             | U = Unimpl     | emented bit, rea  | ad as '0'          |           |  |  |  |
| -n = Value at |                                                                                                                                     | '1' = Bit is set                                                                                          |                 | '0' = Bit is c |                   | x = Bit is unkr    | nown      |  |  |  |
|               |                                                                                                                                     |                                                                                                           |                 |                |                   |                    |           |  |  |  |
| bit 15        |                                                                                                                                     | errupt Request                                                                                            |                 | ad appuaraio   | a of obconcilo Al | 115 and ANI14 is   | acmulated |  |  |  |
|               |                                                                                                                                     | ot generated                                                                                              | when request    |                | n of channels Al  | N15 and AN14 is    | completed |  |  |  |
| bit 14        |                                                                                                                                     | nding Conversio                                                                                           | n Status 7 bit  |                |                   |                    |           |  |  |  |
|               |                                                                                                                                     |                                                                                                           |                 |                | g; set when sele  | cted trigger is as | sserted   |  |  |  |
|               |                                                                                                                                     | ion is complete                                                                                           |                 |                |                   |                    |           |  |  |  |
| bit 13        |                                                                                                                                     | Software Trigger                                                                                          |                 | 6 l (          |                   | )                  |           |  |  |  |
|               |                                                                                                                                     | nversion of AN1                                                                                           |                 |                |                   |                    |           |  |  |  |
|               |                                                                                                                                     | This bit is automatically cleared by hardware when the PEND7 bit is set.<br>0 = Conversion is not started |                 |                |                   |                    |           |  |  |  |
| bit 12-8      |                                                                                                                                     |                                                                                                           |                 | tion bits      |                   |                    |           |  |  |  |
|               | <b>TRGSRC7&lt;4:0&gt;:</b> Trigger 7 Source Selection bits<br>Selects trigger source for conversion of analog channels AN15 and 14. |                                                                                                           |                 |                |                   |                    |           |  |  |  |
|               | 00000 = No conversion enabled                                                                                                       |                                                                                                           |                 |                |                   |                    |           |  |  |  |
|               | 00001 = Individual software trigger selected                                                                                        |                                                                                                           |                 |                |                   |                    |           |  |  |  |
|               | 00010 = Global software trigger selected<br>00011 = PWM Special Event Trigger selected                                              |                                                                                                           |                 |                |                   |                    |           |  |  |  |
|               | 00011 = PWM Special Event Higger selected<br>00100 = PWM Generator 1 primary trigger selected                                       |                                                                                                           |                 |                |                   |                    |           |  |  |  |
|               |                                                                                                                                     | VM Generator 2                                                                                            |                 |                |                   |                    |           |  |  |  |
|               |                                                                                                                                     | VM Generator 3                                                                                            |                 |                |                   |                    |           |  |  |  |
|               |                                                                                                                                     | VM Generator 4<br>VM Generator 5                                                                          |                 |                |                   |                    |           |  |  |  |
|               |                                                                                                                                     |                                                                                                           |                 |                |                   |                    |           |  |  |  |
|               | 01001 = PWM Generator 6 primary trigger selected<br>01010 = PWM Generator 7 primary trigger selected                                |                                                                                                           |                 |                |                   |                    |           |  |  |  |
|               | 01011 = PWM Generator 8 primary trigger selected                                                                                    |                                                                                                           |                 |                |                   |                    |           |  |  |  |
|               |                                                                                                                                     | ner1 period mate                                                                                          |                 | coloctod       |                   |                    |           |  |  |  |
|               | 01101 = Secondary special event trigger selected<br>01110 = PWM Generator 1 secondary trigger selected                              |                                                                                                           |                 |                |                   |                    |           |  |  |  |
|               | 01110 = PWM Generator 1 secondary trigger selected<br>01111 = PWM Generator 2 secondary trigger selected                            |                                                                                                           |                 |                |                   |                    |           |  |  |  |
|               | 10000 = PWM Generator 3 secondary trigger selected                                                                                  |                                                                                                           |                 |                |                   |                    |           |  |  |  |
|               |                                                                                                                                     | 10001 = PWM Generator 4 secondary trigger selected<br>10010 = PWM Generator 5 secondary trigger selected  |                 |                |                   |                    |           |  |  |  |
|               |                                                                                                                                     |                                                                                                           | •               |                |                   |                    |           |  |  |  |
|               | 10011 = PWM Generator 6 secondary trigger selected<br>10100 = PWM Generator 7 secondary trigger selected                            |                                                                                                           |                 |                |                   |                    |           |  |  |  |
|               |                                                                                                                                     | 10100 = PWM Generator 7 secondary trigger selected<br>10101 = PWM Generator 8 secondary trigger selected  |                 |                |                   |                    |           |  |  |  |
|               |                                                                                                                                     | VM Generator 9                                                                                            | •               |                | 1                 |                    |           |  |  |  |
|               |                                                                                                                                     | VM Generator 1                                                                                            |                 |                |                   |                    |           |  |  |  |
|               |                                                                                                                                     | VM Generator 2<br>VM Generator 3                                                                          |                 |                |                   |                    |           |  |  |  |
|               |                                                                                                                                     | VM Generator 4                                                                                            |                 |                |                   |                    |           |  |  |  |
|               | 11011 = PV                                                                                                                          | VM Generator 5                                                                                            | current-limit A | ADC trigger    |                   |                    |           |  |  |  |
|               |                                                                                                                                     | VM Generator 6                                                                                            |                 |                |                   |                    |           |  |  |  |
|               |                                                                                                                                     | VM Generator 7                                                                                            |                 |                |                   |                    |           |  |  |  |
|               |                                                                                                                                     | VM Generator 8<br>ner2 period mate                                                                        |                 | ADC trigger    |                   |                    |           |  |  |  |
|               | <u> </u>                                                                                                                            | nerz perioù mau                                                                                           |                 |                |                   |                    |           |  |  |  |

## REGISTER 22-9: ADCPC3: A/D CONVERT PAIR CONTROL REGISTER 3 (CONTINUED)

| bit 7   | IRQEN6: Interrupt Request Enable 6 bit                                                                                                           |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|         | <ul> <li>1 = Enable IRQ generation when requested conversion of channels AN13 and AN12 is completed</li> <li>0 = IRQ is not generated</li> </ul> |
| bit 6   | PEND6: Pending Conversion Status 6 bit                                                                                                           |
|         | 1 = Conversion of channels AN13 and AN12 is pending; set when selected trigger is asserted                                                       |
|         | 0 = Conversion is complete                                                                                                                       |
| bit 5   | SWTRG6: Software Trigger 6 bit                                                                                                                   |
|         | 1 = Start conversion of AN13 and AN12 (if selected by TRGSRC bits) <sup>(1)</sup>                                                                |
|         | This bit is automatically cleared by hardware when the PEND6 bit is set.                                                                         |
|         | 0 = Conversion is not started                                                                                                                    |
| bit 4-0 | TRGSRC6<4:0>: Trigger 6 Source Selection bits                                                                                                    |
|         | Selects trigger source for conversion of analog channels AN13 and AN12.                                                                          |
|         | 00000 = No conversion enabled                                                                                                                    |
|         | 00001 = Individual software trigger selected                                                                                                     |
|         | 00010 = Global software trigger selected                                                                                                         |
|         | 00011 = PWM Special Event Trigger selected                                                                                                       |
|         | 00100 = PWM Generator 1 primary trigger selected                                                                                                 |
|         | 00101 = PWM Generator 2 primary trigger selected<br>00110 = PWM Generator 3 primary trigger selected                                             |
|         | 00111 = PWM Generator 4 primary trigger selected                                                                                                 |
|         | 01000 = PWM Generator 5 primary trigger selected                                                                                                 |
|         | 01001 = PWM Generator 6 primary trigger selected                                                                                                 |
|         | 01010 = PWM Generator 7 primary trigger selected                                                                                                 |
|         | 01011 = PWM Generator 8 primary trigger selected                                                                                                 |
|         | 01100 = Timer1 period match                                                                                                                      |
|         | 01101 = Secondary special event trigger selected                                                                                                 |
|         | 01110 = PWM Generator 1 secondary trigger selected                                                                                               |
|         | 01111 = PWM Generator 2 secondary trigger selected                                                                                               |
|         | 10000 = PWM Generator 3 secondary trigger selected                                                                                               |
|         | 10001 = PWM Generator 4 secondary trigger selected                                                                                               |
|         | 10010 = PWM Generator 5 secondary trigger selected<br>10011 = PWM Generator 6 secondary trigger selected                                         |
|         | 10100 = PWM Generator 7 secondary trigger selected                                                                                               |
|         | 10101 = PWM Generator 8 secondary trigger selected                                                                                               |
|         | 10110 = PWM Generator 9 secondary trigger selected                                                                                               |
|         | 10111 = PWM Generator 1 current-limit ADC trigger                                                                                                |
|         | 11000 = PWM Generator 2 current-limit ADC trigger                                                                                                |
|         | 11001 = PWM Generator 3 current-limit ADC trigger                                                                                                |
|         | 11010 = PWM Generator 4 current-limit ADC trigger                                                                                                |
|         | 11011 = PWM Generator 5 current-limit ADC trigger                                                                                                |
|         | 11100 = PWM Generator 6 current-limit ADC trigger                                                                                                |
|         | 11101 = PWM Generator 7 current-limit ADC trigger                                                                                                |
|         | 11110 = PWM Generator 8 current-limit ADC trigger                                                                                                |
|         | 11111 = Timer2 period match                                                                                                                      |

#### REGISTER 22-10: ADCPC4: A/D CONVERT PAIR CONTROL REGISTER 4

| R/W-0           | R/W-0                                                                                                    | R/W-0                            | R/W-0           | R/W-0          | R/W-0            | R/W-0              | R/W-0     |  |  |
|-----------------|----------------------------------------------------------------------------------------------------------|----------------------------------|-----------------|----------------|------------------|--------------------|-----------|--|--|
| IRQEN9          | PEND9                                                                                                    | SWTRG9                           |                 |                | TRGSRC9<4        | :0>                |           |  |  |
| bit 15          |                                                                                                          |                                  |                 |                |                  |                    | bit 8     |  |  |
| R/W-0           | R/W-0                                                                                                    | R/W-0                            | R/W-0           | R/W-0          | R/W-0            | R/W-0              | R/W-0     |  |  |
| IRQEN8          | PEND8                                                                                                    | SWTRG8                           | 10/00-0         | 10,00-0        | TRGSRC8<4        |                    | 17/00-0   |  |  |
| bit 7           | T ENDO                                                                                                   | owneed                           |                 |                |                  | .02                | bit       |  |  |
|                 |                                                                                                          |                                  |                 |                |                  |                    |           |  |  |
| Legend:         |                                                                                                          |                                  |                 |                |                  |                    |           |  |  |
| R = Readable    | bit                                                                                                      | W = Writable                     | bit             | U = Unimple    | emented bit, rea | id as '0'          |           |  |  |
| -n = Value at I | POR                                                                                                      | '1' = Bit is set                 |                 | '0' = Bit is c | leared           | x = Bit is unkr    | nown      |  |  |
| hit 15          |                                                                                                          |                                  | Enable 0 bit    |                |                  |                    |           |  |  |
| bit 15          |                                                                                                          | errupt Request I                 |                 | ed conversion  | of channels AN   | 19 and AN18 is     | completed |  |  |
|                 | 0 = IRQ is no                                                                                            | -                                | mennequest      |                |                  |                    | compicted |  |  |
| bit 14          |                                                                                                          | ding Conversion                  | n Status 9 bit  |                |                  |                    |           |  |  |
|                 |                                                                                                          |                                  |                 | 118 is pending | g; set when sele | cted trigger is as | sserted   |  |  |
|                 | 0 = Conversi                                                                                             | on is complete                   |                 |                |                  |                    |           |  |  |
| bit 13          |                                                                                                          | oftware Trigger                  |                 |                |                  |                    |           |  |  |
|                 |                                                                                                          | version of AN19                  |                 |                |                  |                    |           |  |  |
|                 |                                                                                                          | tomatically clea                 | -               | are when the   | PEND9 bit is se  | et.                |           |  |  |
| hit 10 0        |                                                                                                          | on is not started                |                 | ion hito       |                  |                    |           |  |  |
| bit 12-8        |                                                                                                          | 1:0>: Trigger 9 S                |                 |                | a ANI10 and AN   | 14 0               |           |  |  |
|                 | Selects trigger source for conversion of analog channels AN19 and AN18.<br>00000 = No conversion enabled |                                  |                 |                |                  |                    |           |  |  |
|                 | 00000 = Individual software trigger selected                                                             |                                  |                 |                |                  |                    |           |  |  |
|                 | 00010 = Global software trigger selected                                                                 |                                  |                 |                |                  |                    |           |  |  |
|                 | 00011 = PWM Special Event Trigger selected<br>00100 = PWM Generator 1 primary trigger selected           |                                  |                 |                |                  |                    |           |  |  |
|                 |                                                                                                          | M Generator 1<br>M Generator 2   |                 |                |                  |                    |           |  |  |
|                 |                                                                                                          | M Generator 3                    |                 |                |                  |                    |           |  |  |
|                 |                                                                                                          | M Generator 4                    |                 |                |                  |                    |           |  |  |
|                 |                                                                                                          | M Generator 5                    |                 |                |                  |                    |           |  |  |
|                 |                                                                                                          | M Generator 6                    |                 |                |                  |                    |           |  |  |
|                 | 01010 = PWM Generator 7 primary trigger selected                                                         |                                  |                 |                |                  |                    |           |  |  |
|                 | 01011 = PWM Generator 8 primary trigger selected<br>01100 = Timer1 period match                          |                                  |                 |                |                  |                    |           |  |  |
|                 | 01100 = PWM secondary special event trigger selected                                                     |                                  |                 |                |                  |                    |           |  |  |
|                 | 01110 = PWM Generator 1 secondary trigger selected                                                       |                                  |                 |                |                  |                    |           |  |  |
|                 | 01111 = PWM Generator 2 secondary trigger selected                                                       |                                  |                 |                |                  |                    |           |  |  |
|                 | 10000 = PWM Generator 3 secondary trigger selected                                                       |                                  |                 |                |                  |                    |           |  |  |
|                 | 10001 = PWM Generator 4 secondary trigger selected                                                       |                                  |                 |                |                  |                    |           |  |  |
|                 | 10010 = PWM Generator 5 secondary trigger selected<br>10011 = PWM Generator 6 secondary trigger selected |                                  |                 |                |                  |                    |           |  |  |
|                 | 10011 = PWM Generator 7 secondary trigger selected                                                       |                                  |                 |                |                  |                    |           |  |  |
|                 | 10101 = PWM Generator 8 secondary trigger selected                                                       |                                  |                 |                |                  |                    |           |  |  |
|                 | 10110 = PWM Generator 9 secondary trigger selected<br>10111 = PWM Generator 1 current-limit ADC trigger  |                                  |                 |                |                  |                    |           |  |  |
|                 |                                                                                                          |                                  |                 |                |                  |                    |           |  |  |
|                 |                                                                                                          | M Generator 2<br>M Generator 3   |                 |                |                  |                    |           |  |  |
|                 |                                                                                                          | M Generator 4                    |                 |                |                  |                    |           |  |  |
|                 | 11011 = PW                                                                                               | M Generator 5                    | current-limit A | DC trigger     |                  |                    |           |  |  |
|                 |                                                                                                          | M Generator 6                    |                 |                |                  |                    |           |  |  |
|                 |                                                                                                          | M Generator 7                    |                 |                |                  |                    |           |  |  |
|                 |                                                                                                          |                                  |                 | UC trigger     |                  |                    |           |  |  |
|                 |                                                                                                          | M Generator 8<br>er2 period mate |                 | NDC trigger    |                  |                    |           |  |  |

## REGISTER 22-10: ADCPC4: A/D CONVERT PAIR CONTROL REGISTER 4 (CONTINUED)

| bit 7   | IRQEN8: Interrupt Request Enable 8 bit                                                                 |
|---------|--------------------------------------------------------------------------------------------------------|
|         | 1 = Enable IRQ generation when requested conversion of channels AN17 and AN16 is completed             |
|         | 0 = IRQ is not generated                                                                               |
| bit 6   | PEND8: Pending Conversion Status 8 bit                                                                 |
|         | 1 = Conversion of channels AN17 and AN16 is pending; set when selected trigger is asserted             |
|         | 0 = Conversion is complete                                                                             |
| bit 5   | SWTRG8: Software Trigger 8 bit                                                                         |
|         | 1 = Start conversion of AN17 and AN16 (if selected by TRGSRC bits) <sup>(1)</sup>                      |
|         | This bit is automatically cleared by hardware when the PEND8 bit is set.                               |
|         | 0 = Conversion is not started                                                                          |
| bit 4-0 | TRGSRC8<4:0>: Trigger 8 Source Selection bits                                                          |
|         | Selects trigger source for conversion of analog channels AN17 and AN16.                                |
|         | 00000 = No conversion enabled                                                                          |
|         | 00001 = Individual software trigger selected                                                           |
|         | 00010 = Global software trigger selected                                                               |
|         | 00011 = PWM Special Event Trigger selected                                                             |
|         | 00100 = PWM Generator 1 primary trigger selected                                                       |
|         | 00101 = PWM Generator 2 primary trigger selected                                                       |
|         | 00110 = PWM Generator 3 primary trigger selected                                                       |
|         | 00111 = PWM Generator 4 primary trigger selected                                                       |
|         | 01000 = PWM Generator 5 primary trigger selected                                                       |
|         | 01001 = PWM Generator 6 primary trigger selected<br>01010 = PWM Generator 7 primary trigger selected   |
|         | 01011 = PWM Generator 8 primary trigger selected                                                       |
|         | 01100 = Timer1 period match                                                                            |
|         | 01101 = PWM secondary special event trigger selected                                                   |
|         | 01110 = PWM Generator 1 secondary trigger selected                                                     |
|         | 01111 = PWM Generator 2 secondary trigger selected                                                     |
|         | 10000 = PWM Generator 3 secondary trigger selected                                                     |
|         | 10001 = PWM Generator 4 secondary trigger selected                                                     |
|         | 10010 = PWM Generator 5 secondary trigger selected                                                     |
|         | 10011 = PWM Generator 6 secondary trigger selected                                                     |
|         | 10100 = PWM Generator 7 secondary trigger selected                                                     |
|         | 10101 = PWM Generator 8 secondary trigger selected                                                     |
|         | 10110 = PWM Generator 9 secondary trigger selected                                                     |
|         | 10111 = PWM Generator 1 current-limit ADC trigger                                                      |
|         | 11000 = PWM Generator 2 current-limit ADC trigger                                                      |
|         | 11001 = PWM Generator 3 current-limit ADC trigger                                                      |
|         | 11010 = PWM Generator 4 current-limit ADC trigger                                                      |
|         | 11011 = PWM Generator 5 current-limit ADC trigger<br>11100 = PWM Generator 6 current-limit ADC trigger |
|         | 11100 = PWM Generator 7 current-limit ADC trigger                                                      |
|         | 11110 = PWM Generator 8 current-limit ADC trigger                                                      |
|         | 11111 = Timer2 period match                                                                            |
|         |                                                                                                        |

#### REGISTER 22-11: ADCPC5: A/D CONVERT PAIR CONTROL REGISTER 5

| R/W-0            | R/W-0                                                                   | R/W-0                                                                    | R/W-0                                                                                                          | R/W-0                                                                                  | R/W-0            | R/W-0                           | R/W-0        |  |  |
|------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------|---------------------------------|--------------|--|--|
| IRQEN11          | PEND11                                                                  | SWTRG11                                                                  |                                                                                                                |                                                                                        | TRGSRC11<4       | :0>                             |              |  |  |
| bit 15           |                                                                         |                                                                          |                                                                                                                |                                                                                        |                  |                                 | bit 8        |  |  |
| D M A            | DAM 0                                                                   | DAALO                                                                    |                                                                                                                | DAAL O                                                                                 | DALO             | DAALO                           |              |  |  |
| R/W-0<br>IRQEN10 | R/W-0                                                                   | R/W-0                                                                    | R/W-0                                                                                                          | R/W-0                                                                                  | R/W-0            | R/W-0                           | R/W-0        |  |  |
| bit 7            | PEND10                                                                  | SWTRG10                                                                  |                                                                                                                |                                                                                        | TRGSRC10<4       | .0>                             | bit          |  |  |
|                  |                                                                         |                                                                          |                                                                                                                |                                                                                        |                  |                                 | bit          |  |  |
| Legend:          |                                                                         |                                                                          |                                                                                                                |                                                                                        |                  |                                 |              |  |  |
| R = Readable     | e bit                                                                   | W = Writable b                                                           | oit                                                                                                            | U = Unimpl                                                                             | emented bit, rea | d as '0'                        |              |  |  |
| -n = Value at I  | POR                                                                     | '1' = Bit is set                                                         |                                                                                                                | '0' = Bit is c                                                                         |                  | x = Bit is unkı                 | nown         |  |  |
|                  |                                                                         |                                                                          |                                                                                                                |                                                                                        |                  |                                 |              |  |  |
| bit 15           |                                                                         | terrupt Request                                                          |                                                                                                                |                                                                                        |                  |                                 |              |  |  |
|                  |                                                                         |                                                                          | hen request                                                                                                    | ed conversior                                                                          | n of channels AN | I23 and AN22 is                 | s completed  |  |  |
|                  | 0 = IRQ is no                                                           | -                                                                        |                                                                                                                |                                                                                        |                  |                                 |              |  |  |
| bit 14           |                                                                         | nding Conversio                                                          |                                                                                                                |                                                                                        | a oot when only  | atad trigger in a               | o o art o d  |  |  |
|                  |                                                                         | on is complete                                                           | ANZS and AN                                                                                                    | azz is pending                                                                         | g; set when sele | cled ingger is a                | sseried      |  |  |
| bit 13           |                                                                         | Software Trigger                                                         | 11 hit                                                                                                         |                                                                                        |                  |                                 |              |  |  |
| bit 15           | 1 = Start cor                                                           | nversion of AN2                                                          | 23 and AN22                                                                                                    | 2 (if selected                                                                         | in TRGSRC bits   | s) <sup>(1)</sup> . This bit is | automaticall |  |  |
|                  |                                                                         | by hardware wh                                                           |                                                                                                                |                                                                                        |                  | ,                               | datematical  |  |  |
|                  |                                                                         | on is not started                                                        |                                                                                                                |                                                                                        |                  |                                 |              |  |  |
| bit 12-8         | TRGSRC11<                                                               | :4:0>: Trigger 11                                                        | Source Sele                                                                                                    | ection bits                                                                            |                  |                                 |              |  |  |
|                  | Selects trigger source for conversion of analog channels AN23 and AN22. |                                                                          |                                                                                                                |                                                                                        |                  |                                 |              |  |  |
|                  |                                                                         | conversion enab                                                          |                                                                                                                |                                                                                        |                  |                                 |              |  |  |
|                  |                                                                         | vidual software                                                          |                                                                                                                | ed                                                                                     |                  |                                 |              |  |  |
|                  |                                                                         | bal software trig<br>M Special Even                                      |                                                                                                                | ected                                                                                  |                  |                                 |              |  |  |
|                  |                                                                         | M Generator 1 p                                                          |                                                                                                                |                                                                                        |                  |                                 |              |  |  |
|                  | 00101 = PW                                                              | M Generator 2                                                            | primary trigge                                                                                                 | er selected                                                                            |                  |                                 |              |  |  |
|                  |                                                                         | M Generator 3 p                                                          |                                                                                                                |                                                                                        |                  |                                 |              |  |  |
|                  |                                                                         | M Generator 4 p<br>M Generator 5 p                                       |                                                                                                                |                                                                                        |                  |                                 |              |  |  |
|                  |                                                                         | M Generator 6 p                                                          |                                                                                                                |                                                                                        |                  |                                 |              |  |  |
|                  |                                                                         | M Generator 7 p                                                          |                                                                                                                |                                                                                        |                  |                                 |              |  |  |
|                  | 01011 = PW                                                              | M Generator 8                                                            | primary trigge                                                                                                 |                                                                                        |                  |                                 |              |  |  |
|                  |                                                                         | er1 period matc                                                          |                                                                                                                |                                                                                        |                  |                                 |              |  |  |
|                  |                                                                         | M secondary sp                                                           |                                                                                                                |                                                                                        |                  |                                 |              |  |  |
|                  |                                                                         | M Generator 1 s<br>M Generator 2 s                                       |                                                                                                                |                                                                                        |                  |                                 |              |  |  |
|                  |                                                                         | M Generator 3                                                            |                                                                                                                |                                                                                        |                  |                                 |              |  |  |
|                  |                                                                         | M Generator 4                                                            |                                                                                                                |                                                                                        |                  |                                 |              |  |  |
|                  |                                                                         | M Generator 5 s                                                          |                                                                                                                |                                                                                        |                  |                                 |              |  |  |
|                  |                                                                         | M Generator 6 s                                                          |                                                                                                                |                                                                                        |                  |                                 |              |  |  |
|                  |                                                                         | M Generator 7 s<br>M Generator 8 s                                       |                                                                                                                |                                                                                        |                  |                                 |              |  |  |
|                  |                                                                         | M Generator 9 s                                                          |                                                                                                                |                                                                                        |                  |                                 |              |  |  |
|                  |                                                                         | M Generator 1 o                                                          |                                                                                                                |                                                                                        |                  |                                 |              |  |  |
|                  |                                                                         |                                                                          |                                                                                                                | CO linggoi                                                                             |                  |                                 |              |  |  |
|                  |                                                                         | M Generator 2 of                                                         | current-limit A                                                                                                | ADC trigger                                                                            |                  |                                 |              |  |  |
|                  |                                                                         | M Generator 3 of                                                         | current-limit A<br>current-limit A                                                                             | ADC trigger                                                                            |                  |                                 |              |  |  |
|                  | 11010 = PW                                                              | M Generator 3 o<br>M Generator 4 o                                       | current-limit A<br>current-limit A<br>current-limit A                                                          | ADC trigger<br>ADC trigger<br>ADC trigger                                              |                  |                                 |              |  |  |
|                  | 11010 = PW<br>11011 = PW                                                | M Generator 3 o<br>M Generator 4 o<br>M Generator 5 o                    | current-limit A<br>current-limit A<br>current-limit A<br>current-limit A                                       | ADC trigger<br>ADC trigger<br>ADC trigger<br>ADC trigger                               |                  |                                 |              |  |  |
|                  | 11010 = PW<br>11011 = PW<br>11100 = PW                                  | M Generator 3 o<br>M Generator 4 o<br>M Generator 5 o<br>M Generator 6 o | current-limit A<br>current-limit A<br>current-limit A<br>current-limit A<br>current-limit A                    | ADC trigger<br>ADC trigger<br>ADC trigger<br>ADC trigger<br>ADC trigger                |                  |                                 |              |  |  |
|                  | 11010 = PW<br>11011 = PW<br>11100 = PW<br>11101 = PW                    | M Generator 3 o<br>M Generator 4 o<br>M Generator 5 o                    | current-limit /<br>current-limit /<br>current-limit /<br>current-limit /<br>current-limit /<br>current-limit / | ADC trigger<br>ADC trigger<br>ADC trigger<br>ADC trigger<br>ADC trigger<br>ADC trigger |                  |                                 |              |  |  |

# REGISTER 22-11: ADCPC5: A/D CONVERT PAIR CONTROL REGISTER 5 (CONTINUED)

| bit 7   | IRQEN10: Interrupt Request Enable 10 bit                                                                                                         |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|         | <ul> <li>1 = Enable IRQ generation when requested conversion of channels AN21 and AN20 is completed</li> <li>0 = IRQ is not generated</li> </ul> |
| bit 6   | PEND10: Pending Conversion Status 10 bit                                                                                                         |
|         | 1 = Conversion of channels AN21 and AN20 is pending; set when selected trigger is asserted                                                       |
|         | 0 = Conversion is complete                                                                                                                       |
| bit 5   | SWTRG10: Software Trigger 10 bit                                                                                                                 |
| bit o   | 1 = Start conversion of AN21 and AN20 (if selected by TRGSRC bits) <sup>(1)</sup> . This bit is automatically                                    |
|         | cleared by hardware when the PEND10 bit is set.                                                                                                  |
|         | 0 = Conversion is not started                                                                                                                    |
| bit 4-0 | TRGSRC10<4:0>: Trigger 10 Source Selection bits                                                                                                  |
|         | Selects trigger source for conversion of analog channels AN21 and AN20.                                                                          |
|         | 00000 = No conversion enabled                                                                                                                    |
|         | 00001 = Individual software trigger selected                                                                                                     |
|         | 00010 = Global software trigger selected                                                                                                         |
|         | 00011 = PWM Special Event Trigger selected                                                                                                       |
|         | 00100 = PWM Generator 1 primary trigger selected                                                                                                 |
|         | 00101 = PWM Generator 2 primary trigger selected                                                                                                 |
|         | 00110 = PWM Generator 3 primary trigger selected                                                                                                 |
|         | 00111 = PWM Generator 4 primary trigger selected                                                                                                 |
|         | 01000 = PWM Generator 5 primary trigger selected                                                                                                 |
|         | 01001 = PWM Generator 6 primary trigger selected                                                                                                 |
|         | 01010 = PWM Generator 7 primary trigger selected                                                                                                 |
|         | 01011 = PWM Generator 8 primary trigger selected                                                                                                 |
|         | 01100 = Timer1 period match<br>01101 = PWM secondary special event trigger selected                                                              |
|         | 01110 = PWM Generator 1 secondary trigger selected                                                                                               |
|         | 01111 = PWM Generator 2 secondary trigger selected                                                                                               |
|         | 10000 = PWM Generator 3 secondary trigger selected                                                                                               |
|         | 10001 = PWM Generator 4 secondary trigger selected                                                                                               |
|         | 10010 = PWM Generator 5 secondary trigger selected                                                                                               |
|         | 10011 = PWM Generator 6 secondary trigger selected                                                                                               |
|         | 10100 = PWM Generator 7 secondary trigger selected                                                                                               |
|         | 10101 = PWM Generator 8 secondary trigger selected                                                                                               |
|         | 10110 = PWM Generator 9 secondary trigger selected                                                                                               |
|         | 10111 = PWM Generator 1 current-limit ADC trigger                                                                                                |
|         | 11000 = PWM Generator 2 current-limit ADC trigger                                                                                                |
|         | 11001 = PWM Generator 3 current-limit ADC trigger                                                                                                |
|         | 11010 = PWM Generator 4 current-limit ADC trigger                                                                                                |
|         | 11011 = PWM Generator 5 current-limit ADC trigger                                                                                                |
|         | 11100 = PWM Generator 6 current-limit ADC trigger                                                                                                |
|         | 11101 = PWM Generator 7 current-limit ADC trigger                                                                                                |
|         | 11110 = PWM Generator 8 current-limit ADC trigger                                                                                                |
|         | 11111 = Timer2 period match                                                                                                                      |

# dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

| U-0           | U-0                           | U-0                                                 | U-0                            | U-0              |           | U-0        |       | U-0           | U-0                 |
|---------------|-------------------------------|-----------------------------------------------------|--------------------------------|------------------|-----------|------------|-------|---------------|---------------------|
|               | —                             | —                                                   | _                              | _                |           |            |       |               | —                   |
| bit 15        |                               |                                                     |                                |                  |           |            |       |               | bit 8               |
| R/W-0         | R/W-0                         | R/W-0                                               | R/W-0                          | R/W-0            |           | R/W-0      |       | R/W-0         | R/W-0               |
| IRQEN12       | PEND12                        | SWTRG12                                             |                                |                  | TRGS      | SRC12<     | 4:0>  |               |                     |
| bit 7         |                               |                                                     |                                |                  |           |            |       |               | bit C               |
| Legend:       |                               |                                                     |                                |                  |           |            |       |               |                     |
| R = Readable  | e bit                         | W = Writable                                        | bit                            | U = Unimp        | lemente   | ed bit, re | ad as | ʻ0'           |                     |
| -n = Value at | POR                           | '1' = Bit is se                                     | t                              | '0' = Bit is o   |           |            |       | = Bit is unkr | nown                |
| bit 15-8      | Unimpleme                     | nted: Read as                                       | 'O'                            |                  |           |            |       |               |                     |
| bit 7         | -                             | nterrupt Reques                                     |                                | bit              |           |            |       |               |                     |
|               | 1 = Enable I<br>0 = IRQ is no | RQ generation ot generated                          | when reque                     | sted conversio   | n of cha  | annels A   | N25 a | and AN24 is   | completed           |
| bit 6         | <b>PEND12:</b> Pe             | ending Convers                                      |                                |                  |           |            |       |               |                     |
|               |                               | ion of channels<br>ion is complete                  |                                | N24 is pendin    | ng; set w | hen sel    | ected | trigger is as | sserted             |
| oit 5         |                               | Software Trigge                                     |                                |                  |           |            |       |               |                     |
|               |                               | version of AN2                                      |                                |                  |           |            |       | TRGSRC b      | oits <sup>(1)</sup> |
|               |                               | itomatically cleation is not starte                 | •                              | ware when the    | PEND      | 12 bit is  | set.  |               |                     |
| oit 4-0       |                               | <4:0>: Trigger                                      |                                | election bits    |           |            |       |               |                     |
|               | Selects trigg                 | er source for co                                    | onversion of                   |                  | els AN2   | 5 and A    | N24.  |               |                     |
|               |                               | conversion ena<br>ividual software                  |                                | cted             |           |            |       |               |                     |
|               | 00010 = Glo                   | bal software tri                                    | gger selecte                   | d                |           |            |       |               |                     |
|               |                               | /M Special Eve<br>/M Generator 1                    |                                |                  |           |            |       |               |                     |
|               |                               | /M Generator 2                                      |                                |                  |           |            |       |               |                     |
|               | 00110 = PW                    | /M Generator 3                                      | primary trig                   | ger selected     |           |            |       |               |                     |
|               |                               | /M Generator 4<br>/M Generator 5                    |                                |                  |           |            |       |               |                     |
|               | 01001 = PW                    | /M Generator 6                                      | primary trig                   | ger selected     |           |            |       |               |                     |
|               |                               | /M Generator 7<br>/M Generator 8                    |                                |                  |           |            |       |               |                     |
|               |                               | ner1 period mat                                     |                                | ger selected     |           |            |       |               |                     |
|               | 01101 = PW                    | /M secondary s                                      | pecial event                   |                  |           |            |       |               |                     |
|               |                               | /M Generator 1<br>/M Generator 2                    |                                | 00               |           |            |       |               |                     |
|               | 10000 = PW                    | /M Generator 3                                      | secondary t                    | trigger selected | d         |            |       |               |                     |
|               |                               | /M Generator 4<br>/M Generator 5                    |                                |                  |           |            |       |               |                     |
|               |                               | /M Generator 6                                      |                                |                  |           |            |       |               |                     |
|               |                               | /M Generator 7                                      |                                |                  |           |            |       |               |                     |
|               |                               | /M Generator 8<br>/M Generator 9                    |                                |                  |           |            |       |               |                     |
|               | 10111 <b>= P</b> W            | /M Generator 1                                      | current-limit                  | t ADC trigger    |           |            |       |               |                     |
|               |                               | /M Generator 2<br>/M Generator 3                    |                                |                  |           |            |       |               |                     |
|               |                               | /M Generator 4                                      |                                |                  |           |            |       |               |                     |
|               | 11011 <b>= P</b> W            | /M Generator 5                                      | current-limit                  | t ADC trigger    |           |            |       |               |                     |
|               | 11100 = PW                    | /M Generator 6                                      | current-limit                  | (IAI)            |           |            |       |               |                     |
|               | 11101 <b>= P\</b>             |                                                     |                                |                  |           |            |       |               |                     |
|               | 11110 <b>= P</b> W            | /M Generator 7<br>/M Generator 8<br>her2 period mat | current-limit<br>current-limit | t ADC trigger    |           |            |       |               |                     |

## 23.0 HIGH-SPEED ANALOG COMPARATOR

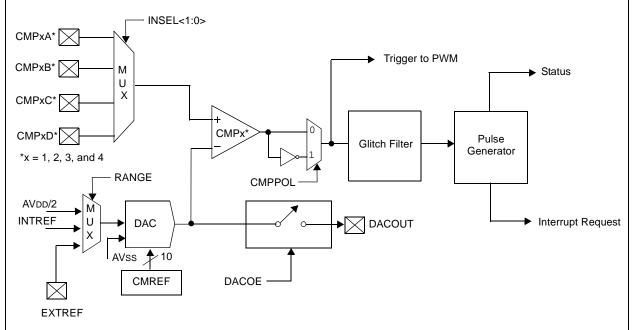
- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 45. "High-Speed Analog Comparator" (DS70296) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33F SMPS Comparator module monitors current and/or voltage transients that may be too fast for the CPU and ADC to capture.

### 23.1 Features Overview

The SMPS comparator module offers the following major features:

- 16 selectable comparator inputs
- Up to four analog comparators
- 10-bit DAC for each analog comparator
- Programmable output polarity


- Interrupt generation capability
- DACOUT pin to provide DAC output
- DAC has three ranges of operation:
  - AVDD/2
  - Internal Reference 1.2V, 1%
  - External Reference < (AVDD 1.6V)
- · ADC sample and convert trigger capability
- Disable capability reduces power consumption
- Functional support for PWM module:
  - PWM duty cycle control
  - PWM period control
  - PWM Fault detect

#### 23.2 Module Description

Figure 23-1 shows a functional block diagram of one analog comparator from the SMPS comparator module. The analog comparator provides high-speed operation with a typical delay of 20 ns. The comparator has a typical offset voltage of  $\pm 5$  mV. The negative input of the comparator is always connected to the DAC circuit. The positive input of the comparator is connected to an analog multiplexer that selects the desired source pin.

The analog comparator input pins are typically shared with pins used by the Analog-to-Digital Converter (ADC) module. Both the comparator and the ADC can use the same pins at the same time. This capability enables a user to measure an input voltage with the ADC and detect voltage transients with the comparator.





### 23.3 Module Applications

This module provides a means for the SMPS dsPIC DSC devices to monitor voltage and currents in a power conversion application. The ability to detect transient conditions and stimulate the dsPIC DSC processor and/or peripherals, without requiring the processor and ADC to constantly monitor voltages or currents, frees the dsPIC DSC to perform other tasks.

The comparator module has a high-speed comparator and an associated 10-bit DAC that provides a programmable reference voltage to the inverting input of the comparator. The polarity of the comparator output is user-programmable. The output of the module can be used in the following modes:

- Generate an Interrupt
- Trigger an ADC Sample and Convert Process
- Truncate the PWM Signal (current limit)
- Truncate the PWM Period (current minimum)
- Disable the PWM Outputs (Fault latch)

The output of the comparator module may be used in multiple modes at the same time, such as: (1) generate an interrupt, (2) have the ADC take a sample and convert it, and (3) truncate the PWM output in response to a voltage being detected beyond its expected value.

The comparator module can also be used to wake-up the system from Sleep or Idle mode when the analog input voltage exceeds the programmed threshold voltage.

## 23.4 DAC

The range of the DAC is controlled via an analog multiplexer that selects either AVDD/2, internal 1.2V, 1% reference, or an external reference source, EXTREF. The full range of the DAC (AVDD/2) will typically be used when the chosen input source pin is shared with the ADC. The reduced range option (INTREF) will likely be used when monitoring current levels using a current sense resistor. Usually, the measured voltages in such applications are small (<1.25V); therefore the option of using a reduced reference range for the comparator extends the available DAC resolution in these applications. The use of an external reference enables the user to connect to a reference that better suits their application.

DACOUT, shown in Figure 23-1, can only be associated with a single comparator at a given time.

Note: It should be ensured in software that multiple DACOE bits are not set. The output on the DACOUT pin will be indeterminate if multiple comparators enable the DAC output.

#### 23.5 Interaction with I/O Buffers

If the comparator module is enabled and a pin has been selected as the source for the comparator, then the chosen I/O pad must disable the digital input buffer associated with the pad to prevent excessive currents in the digital buffer due to analog input voltages.

## 23.6 Digital Logic

The CMPCONx register (see Register 23-1) provides the control logic that configures the comparator module. The digital logic provides a glitch filter for the comparator output to mask transient signals in less than two instruction cycles. In Sleep or Idle mode, the glitch filter is bypassed to enable an asynchronous path from the comparator to the interrupt controller. This asynchronous path can be used to wake-up the processor from Sleep or Idle mode.

The comparator can be disabled while in Idle mode if the CMPSIDL bit is set. If a device has multiple comparators, if any CMPSIDL bit is set, then the entire group of comparators will be disabled while in Idle mode. This behavior reduces complexity in the design of the clock control logic for this module.

The digital logic also provides a one TCY width pulse generator for triggering the ADC and generating interrupt requests.

The CMPDACx (see Register 23-2) register provides the digital input value to the reference DAC.

If the module is disabled, the DAC and comparator are disabled to reduce power consumption.

## 23.7 Comparator Input Range

The comparator has a limitation for the input Common Mode Range (CMR) of (AVDD - 1.5V), typical. This means that both inputs should not exceed this range. As long as one of the inputs is within the Common Mode Range, the comparator output will be correct. However, any input exceeding the CMR limitation will cause the comparator input to be saturated.

If both inputs exceed the CMR, the comparator output will be indeterminate.

#### 23.8 DAC Output Range

The DAC has a limitation for the maximum reference voltage input of (AVDD - 1.6) volts. An external reference voltage input should not exceed this value or the reference DAC output will become indeterminate.

#### 23.9 Comparator Registers

The comparator module is controlled by the following registers:

- CMPCONx: Comparator Control Register
- CMPDACx: Comparator DAC Control Register

|                 | 23-1: CMPC                     |                                                                          |                | ONTROL REC                              | JUICK           |                  |                |
|-----------------|--------------------------------|--------------------------------------------------------------------------|----------------|-----------------------------------------|-----------------|------------------|----------------|
| R/W-0           | U-0                            | R/W-0                                                                    | U-0            | U-0                                     | U-0             | U-0              | R/W-0          |
| CMPON           | —                              | CMPSIDL                                                                  | —              | —                                       | _               | —                | DACOE          |
| bit 15          |                                |                                                                          |                |                                         |                 |                  | bit 8          |
| R/W-0           | R/W-0                          | R/W-0                                                                    | U-0            | R/W-0                                   | U-0             | R/W-0            | R/W-0          |
| INSE            | L<1:0>                         | EXTREF                                                                   | _              | CMPSTAT                                 | _               | CMPPOL           | RANGE          |
| bit 7           |                                |                                                                          |                |                                         |                 |                  | bit            |
| Legend:         |                                |                                                                          |                |                                         |                 |                  |                |
| R = Readable    | bit                            | W = Writable I                                                           | bit            | U = Unimplen                            | nented bit, rea | ad as '0'        |                |
| -n = Value at I | POR                            | '1' = Bit is set                                                         |                | '0' = Bit is clea                       | ared            | x = Bit is unkr  | nown           |
| bit 15          | CMPON: Cor                     | nparator Opera                                                           | ting Mode bi   | t                                       |                 |                  |                |
|                 |                                | ator module is e                                                         |                | uces power con                          | sumption)       |                  |                |
| bit 14          | •                              | ted: Read as '(                                                          | •              |                                         |                 |                  |                |
| bit 13          | -                              | top in Idle Mode                                                         |                |                                         |                 |                  |                |
|                 | 0 = Continue                   | e module opera                                                           | tion in Idle m |                                         |                 | oles ALL compa   | rators while i |
| bit 12-9        | Reserved: R                    | ead as '0'                                                               |                |                                         |                 |                  |                |
| bit 8           | DACOE: DAG                     | C Output Enable                                                          | Э              |                                         |                 |                  |                |
|                 |                                | log voltage is ou<br>log voltage is no                                   |                | OUT pin <sup>(1)</sup><br>to DACOUT pir | า               |                  |                |
| bit 7-6         |                                | Input Source S                                                           |                | •                                       |                 |                  |                |
|                 | 01 = Select C<br>10 = Select C | CMPxA input pir<br>CMPxB input pir<br>CMPxC input pir<br>CMPxD input pir | ו<br>ו         |                                         |                 |                  |                |
| bit 5           | EXTREF: Ena                    | able External R                                                          | eference bit   |                                         |                 |                  |                |
|                 | voltage s<br>0 = Internal      | source)<br>reference sourc                                               |                |                                         |                 | bltage determine |                |
| bit 4           | Reserved: R                    | bit setting)                                                             |                |                                         |                 |                  |                |
| bit 3           |                                |                                                                          | Comparator     | Output Including                        |                 | election bit     |                |
| bit 2           | Reserved: R                    |                                                                          | Comparator     | ouput moluang                           |                 |                  |                |
| bit 1           |                                | omparator Outp                                                           | ut Polarity C  | ontrol bit                              |                 |                  |                |
|                 | 1 = Output is<br>0 = Output is | inverted                                                                 |                |                                         |                 |                  |                |
| 1.14.0          | -                              |                                                                          |                |                                         |                 |                  |                |
| bit 0           |                                | ects DAC Outpu                                                           | it Voltage Ra  | ange bit                                |                 |                  |                |

## REGISTER 23-1: CMPCONX: COMPARATOR CONTROL REGISTER

**Note 1:** DACOUT can be associated only with a single comparator at any given time. The software must ensure that multiple comparators do not enable the DAC output by setting their respective DACOE bit.

|                   |             |                  | -            |                      |                 |                    |             |
|-------------------|-------------|------------------|--------------|----------------------|-----------------|--------------------|-------------|
| U-0               | U-0         | U-0              | U-0          | U-0                  | U-0             | R/W-0              | R/W-0       |
| _                 |             | —                | _            | —                    | _               | CMRE               | F<9:8>      |
| bit 15            |             |                  |              |                      |                 |                    | bit 8       |
| R/W-0             | R/W-0       | R/W-0            | R/W-0        | R/W-0                | R/W-0           | R/W-0              | R/W-0       |
|                   |             |                  | CMR          | EF<7:0>              |                 |                    |             |
| bit 7             |             |                  |              |                      |                 |                    | bit 0       |
|                   |             |                  |              |                      |                 |                    |             |
| Legend:           |             |                  |              |                      |                 |                    |             |
| R = Readab        | le bit      | W = Writable I   | bit          | U = Unimplen         | nented bit, rea | d as '0'           |             |
| -n = Value at POR |             | '1' = Bit is set |              | '0' = Bit is cleared |                 | x = Bit is unknown |             |
| bit 15-10         | Reserved: F | Read as '0'      |              |                      |                 |                    |             |
| bit 9-0           | CMREF<9:0   | >: Comparator F  | Reference Vo | ltage Select bits    | 3               |                    |             |
|                   |             | 1 = (CMREF * II  | NTREF/1024   | •                    | (AVDD/2)/1024   | ) volts dependi    | ng on RANGE |
|                   | •           |                  |              |                      |                 |                    |             |
|                   | •           |                  |              |                      |                 |                    |             |

.

000000000 = 0.0 volts

## 24.0 SPECIAL FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest "dsPIC33F/PIC24H Family Reference Manual" sections.
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/606/608/610 devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard<sup>™</sup> Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>)
- In-Circuit Emulation
- Brown-out Reset (BOR)

## 24.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The individual Configuration bit descriptions for the Configuration registers are shown in Table 24-2.

Note that address, 0xF80000, is beyond the user program memory space. It belongs to the configuration memory space (0x800000-0xFFFFFF), which can only be accessed using table reads and table writes.

The device Configuration register map is shown in Table 24-1.

| TABLE 24-1: D | EVICE CONFIGURATION REGISTER MAP |
|---------------|----------------------------------|
|---------------|----------------------------------|

| Address  | Name     | Bit 7                   | Bit 6                   | Bit 5                  | Bit 4  | Bit 3                | Bit 2                  | Bit 1   | Bit 0                |
|----------|----------|-------------------------|-------------------------|------------------------|--------|----------------------|------------------------|---------|----------------------|
| 0xF80000 | FBS      | —                       | _                       | —                      | _      |                      | BSS<2:0>               |         | BWRP                 |
| 0xF80002 | RESERVED | —                       | -                       | —                      | —      | —                    | —                      | —       | —                    |
| 0xF80004 | FGS      | —                       | -                       | —                      | —      | —                    | GSS<1:                 | 0>      | GWRP                 |
| 0xF80006 | FOSCSEL  | IESO                    | _                       | —                      | -      | _                    | FNOS                   | SC<2:0> |                      |
| 0xF80008 | FOSC     | FCKS                    | <b>/</b> <1:0>          | —                      | _      | _                    | OSCIOFNC               | POSCM   | D<1:0>               |
| 0xF8000A | FWDT     | FWDTEN                  | WINDIS                  | —                      | WDTPRE |                      | WDTPOST<               | 3:0>    |                      |
| 0xF8000C | FPOR     | —                       | ALTQIO                  | ALTSS1                 | —      | _                    | FPW                    | RT<2:0> |                      |
| 0xF8000E | FICD     | Reserved <sup>(1)</sup> | Reserved <sup>(1)</sup> | JTAGEN                 | _      | _                    | —                      | ICS<    | 1:0>                 |
| 0xF80010 | FCMP     | —                       |                         | CMPPOL1 <sup>(2)</sup> | HYST1- | <1:0> <sup>(2)</sup> | CMPPOL0 <sup>(2)</sup> | HYST0-  | <1:0> <sup>(2)</sup> |

**Legend:** — = unimplemented bit, read as '0'.

Note 1: These bits are reserved for use by development tools and must be programmed as '1'.

2: These bits are reserved on dsPIC33FJXXXGS406 devices and always read as '1'.

| Bit Field   | Register | Description                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BWRP        | FBS      | Boot Segment Program Flash Write Protection bit<br>1 = Boot segment can be written<br>0 = Boot segment is write-protected                                                                                                                                                                                                                                                                           |
| BSS<2:0>    | FBS      | Boot Segment Program Flash Code Protection Size bits<br>X11 = No boot program Flash segment                                                                                                                                                                                                                                                                                                         |
|             |          | Boot space is 256 instruction words (except interrupt vectors)<br>110 = Standard security; boot program Flash segment ends at<br>0x0003FE<br>010 = High security; boot program Flash segment ends at 0x0003FE                                                                                                                                                                                       |
|             |          | Boot space is 768 instruction words (except interrupt vectors)<br>101 = Standard security; boot program Flash segment ends at<br>0x0007FE                                                                                                                                                                                                                                                           |
|             |          | 001 = High security; boot program Flash segment ends at 0x0007FE                                                                                                                                                                                                                                                                                                                                    |
|             |          | Boot space is 1792 instruction words (except interrupt vectors)<br>100 = Standard security; boot program Flash segment ends at<br>0x000FFE                                                                                                                                                                                                                                                          |
|             |          | 000 = High security; boot program Flash segment ends at 0x000FFE                                                                                                                                                                                                                                                                                                                                    |
| GSS<1:0>    | FGS      | General Segment Code-Protect bits<br>11 = User program memory is not code-protected<br>10 = Standard security<br>0x = High security                                                                                                                                                                                                                                                                 |
| GWRP        | FGS      | General Segment Write-Protect bit                                                                                                                                                                                                                                                                                                                                                                   |
|             |          | <ul><li>1 = User program memory is not write-protected</li><li>0 = User program memory is write-protected</li></ul>                                                                                                                                                                                                                                                                                 |
| IESO        | FOSCSEL  | <ul> <li>Two-speed Oscillator Start-up Enable bit</li> <li>1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready</li> <li>0 = Start-up device with user-selected oscillator source</li> </ul>                                                                                                                                                   |
| FNOSC<2:0>  | FOSCSEL  | Initial Oscillator Source Selection bits<br>111 = Internal Fast RC (FRC) oscillator with postscaler<br>110 = Internal Fast RC (FRC) oscillator with divide-by-16<br>101 = LPRC oscillator<br>100 = Secondary (LP) oscillator<br>011 = Primary (XT, HS, EC) oscillator with PLL<br>010 = Primary (XT, HS, EC) oscillator<br>001 = Internal Fast RC (FRC) oscillator with PLL<br>000 = FRC oscillator |
| FCKSM<1:0>  | FOSC     | Clock Switching Mode bits<br>1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled<br>01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled<br>00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled                                                                                                                                                   |
| OSCIOFNC    | FOSC     | OSC2 Pin Function bit (except in XT and HS modes)<br>1 = OSC2 is clock output<br>0 = OSC2 is general purpose digital I/O pin                                                                                                                                                                                                                                                                        |
| POSCMD<1:0> | FOSC     | Primary Oscillator Mode Select bits<br>11 = Primary oscillator disabled<br>10 = HS Crystal Oscillator mode<br>01 = XT Crystal Oscillator mode<br>00 = EC (External Clock) mode                                                                                                                                                                                                                      |

## TABLE 24-2: dsPIC33F CONFIGURATION BITS DESCRIPTION

| Bit Field    | Register | Description                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|--------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| FWDTEN       | FWDT     | <ul> <li>Watchdog Timer Enable bit</li> <li>1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled; clearing the SWDTEN bit in the RCON register will have no effect)</li> <li>0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)</li> </ul> |  |  |  |  |
| WINDIS       | FWDT     | Watchdog Timer Window Enable bit<br>1 = Watchdog Timer in Non-Window mode<br>0 = Watchdog Timer in Window mode                                                                                                                                                                                                                       |  |  |  |  |
| WDTPRE       | FWDT     | Watchdog Timer Prescaler bit<br>1 = 1:128<br>0 = 1:32                                                                                                                                                                                                                                                                                |  |  |  |  |
| WDTPOST<3:0> | FWDT     | Watchdog Timer Postscaler bits<br>1111 = 1:32,768<br>1110 = 1:16,384<br>•<br>•<br>•<br>0001 = 1:2<br>0000 = 1:1                                                                                                                                                                                                                      |  |  |  |  |
| FPWRT<2:0>   | FPOR     | Power-on Reset Timer Value Select bits<br>111 = PWRT = 128 ms<br>110 = PWRT = 64 ms<br>101 = PWRT = 32 ms<br>100 = PWRT = 16 ms<br>011 = PWRT = 8 ms<br>010 = PWRT = 4 ms<br>001 = PWRT = 2 ms<br>000 = PWRT = Disabled                                                                                                              |  |  |  |  |
| JTAGEN       | FICD     | JTAG Enable bit<br>1 = JTAG is enabled<br>0 = JTAG is disabled                                                                                                                                                                                                                                                                       |  |  |  |  |
| ICS<1:0>     | FICD     | ICD Communication Channel Select Enable bits<br>11 = Communicate on PGEC1 and PGED1<br>10 = Communicate on PGEC2 and PGED2<br>01 = Communicate on PGEC3 and PGED3<br>00 = Reserved, do not use.                                                                                                                                      |  |  |  |  |
| ALTQIO       | FPOR     | Enable Alternate QEI1 pin bit<br>1 = QEA1, QEB1 and INDX1 are selected as inputs to QEI1<br>0 = AQEA1, AQEB1 and AINDX1 are selected as inputs to QEI1                                                                                                                                                                               |  |  |  |  |
| ALTSS1       | FPOR     | Enable Alternate $\overline{SS1}$ pin bit<br>1 = $\overline{ASS1}$ is selected as the I/O pin for SPI1<br>0 = $\overline{SS1}$ is selected as the I/O pin for SPI1                                                                                                                                                                   |  |  |  |  |
| CMPPOL0      | FCMP     | Comparator Hysteresis Polarity (for even numbered comparators)<br>1 = Hysteresis is applied to falling edge<br>0 = Hysteresis is applied to rising edge                                                                                                                                                                              |  |  |  |  |
| HYST0<1:0>   | FCMP     | Comparator Hysteresis Select<br>11 = 45 mV Hysteresis<br>10 = 30 mV Hysteresis<br>01 = 15 mV Hysteresis<br>00 = No Hysteresis                                                                                                                                                                                                        |  |  |  |  |

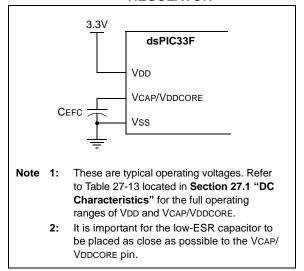
#### TABLE 24-2: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)

| Bit Field  | Register | Description                                                                                                                                            |
|------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| CMPPOL1    | FCMP     | Comparator Hysteresis Polarity (for odd numbered comparators)<br>1 = Hysteresis is applied to falling edge<br>0 = Hysteresis is applied to rising edge |
| HYST1<1:0> | FCMP     | Comparator Hysteresis Select<br>11 = 45 mV Hysteresis<br>10 = 30 mV Hysteresis<br>01 = 15 mV Hysteresis<br>00 = No Hysteresis                          |

| TABLE 24-2: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONT |
|-----------------------------------------------------------|
|-----------------------------------------------------------|

## 24.2 On-Chip Voltage Regulator

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/606/608/610 devices power their core digital logic at a nominal 2.5V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families incorporate an on-chip regulator that allows the device to run its core logic from VDD.


The regulator provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR (less than 5 ohms) capacitor (such as tantalum or ceramic) must be connected to the VCAP/VDDCORE pin (Figure 24-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 27-13 located in **Section 27.1 "DC Characteristics"**.

| Note: | It is important for the low-ESR capacitor to |  |  |  |  |  |  |  |  |
|-------|----------------------------------------------|--|--|--|--|--|--|--|--|
|       | be placed as close as possible to the        |  |  |  |  |  |  |  |  |
|       | VCAP/VDDCORE pin.                            |  |  |  |  |  |  |  |  |

On a POR, it takes approximately 20  $\mu$ s for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

# FIGURE 24-1:

#### CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR<sup>(1,2)</sup>



### 24.3 BOR: Brown-Out Reset

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage VCAP/VDDCORE. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines, or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR Status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

## 24.4 Watchdog Timer (WDT)

For dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

#### 24.4.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32.767 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32.767 kHz input, the prescaler yields a nominal WDT time-out period (TwDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>) which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved. The WDT, prescaler and postscaler are reset:

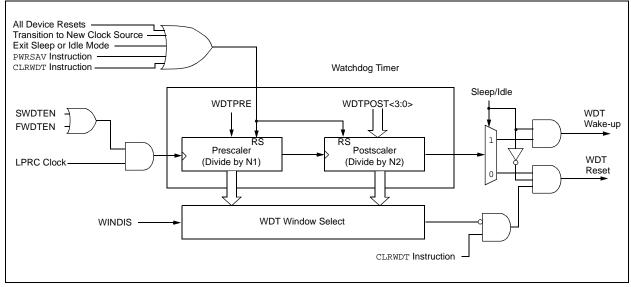
- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

#### 24.4.2 SLEEP AND IDLE MODES

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the WDT will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3:2>) will need to be cleared in software after the device wakes up.

#### 24.4.3 ENABLING WDT


The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note: If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

#### FIGURE 24-2: WDT BLOCK DIAGRAM



#### 24.5 JTAG Interface

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices implement a JTAG interface, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on this interface will be provided in future revisions of the document.

#### 24.6 In-Circuit Serial Programming

dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 family digital signal controllers can be serially programmed while in the end application circuit. This is done with two lines for clock and data and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33F/PIC24H Flash Programming Specification" (DS70152) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

#### 24.7 In-Circuit Debugger

When MPLAB<sup>®</sup> ICD 2 is selected as a debugger, the incircuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the EMUCx (Emulation/Debug Clock) and EMUDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to  $\overline{MCLR}$ , VDD, VSS, PGC, PGD and the EMUDx/EMUCx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

# 24.8 Code Protection and CodeGuard<sup>™</sup> Security

The dsPIC33FJ32GS406/608/610 and dsPIC33FJ64GS406/606/608/610 devices offer the intermediate implementation of CodeGuard<sup>™</sup> Security. CodeGuard Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property in collaborative system designs.

When coupled with software encryption libraries, CodeGuard<sup>™</sup> Security can be used to securely update Flash even when multiple IPs reside on a single chip.

The code protection features are controlled by the Configuration registers: FBS and FGS.

Secure segment and RAM protection is not implemented in dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices.

**Note:** Refer to the *"CodeGuard Security Reference Manual"* (DS70180) for further information on usage, configuration and operation of CodeGuard Security.

## TABLE 24-3: CODE FLASH SECURITY SEGMENT SIZES FOR 64K BYTE DEVICES

| BSS<2:0> = x11 0K                        | BSS<2:0> = x10 1K                                                                               | BSS<2:0> = x01 4K                                                                                               | BSS<2:0> = x00 8K                                                                                     |  |  |
|------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|
| VS = 256 IW 00000h<br>0001FEh<br>000200h | VS = 256 IW         000000h           0001FEh         000200h           0007FEh         000800h | VS = 256 IW         000000h<br>0001FEh           BS = 3840 IW         000200h           001FFEh         002000h | VS = 256 IW         000000h           BS = 7936 IW         000200h           003FFEh         0004000h |  |  |
| GS = 21760 IW                            | GS = 20992 IW                                                                                   | GS = 17920 IW                                                                                                   | GS = 13824 IW                                                                                         |  |  |
| 00ABFEh                                  | 00ABFEh                                                                                         | 00ABFEh                                                                                                         | 00ABFEh                                                                                               |  |  |

#### TABLE 24-4: CODE FLASH SECURITY SEGMENT SIZES FOR 32K BYTE DEVICES

| BSS<2:0> = x11 0K                        | BSS<2:0> = x10 1K                                                                                                                     | BSS<2:0> = x01 4K                                                                                     | BSS<2:0> = x00 8K                                                  |  |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
| VS = 256 IW 00000h<br>0001FEh<br>000200h | VS = 256 IW         000000h           0001FEh         000200h           BS = 768 IW         0007FEh           000800h         000800h | VS = 256 IW         000000h           BS = 3840 IW         000200h           0001FEh         0001FFEh | VS = 256 IW         000000h           BS = 7936 IW         000200h |  |
| GS = 11008 IW 0057FEh                    | GS = 10240 IW 0057FEh                                                                                                                 | GS = 7168 IW 0057FEh                                                                                  | 003FFEh<br>004000h<br>0057FEh                                      |  |
| 00ABFEh                                  | 00ABFEh                                                                                                                               | 00ABFEh                                                                                               | 00ABFEh                                                            |  |

NOTES:

## 25.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site for the (www.microchip.com) latest "dsPIC33F/PIC24H Family Reference Manual" sections.

The dsPIC33F instruction set is identical to that of the dsPIC30F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- DSP operations
- · Control operations

Table 25-1 shows the general symbols used in describing the instructions.

The dsPIC33F instruction set summary in Table 25-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value, 'f'
- The destination, which could be either the file register, 'f', or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- The accumulator write-back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register, 'Wn', or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the table read and table write instructions

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

| Note: | For more details on the instruction set, |
|-------|------------------------------------------|
|       | refer to the "16-bit MCU and DSC         |
|       | Programmer's Reference Manual"           |
|       | (DS70157).                               |

| Field           | Description                                                                          |
|-----------------|--------------------------------------------------------------------------------------|
| #text           | Means literal defined by "text"                                                      |
| (text)          | Means "content of text"                                                              |
| [text]          | Means "the location addressed by text"                                               |
| { }             | Optional field or operation                                                          |
| <n:m></n:m>     | Register bit field                                                                   |
| .b              | Byte mode selection                                                                  |
| .d              | Double-Word mode selection                                                           |
| .S              | Shadow register select                                                               |
| .W              | Word mode selection (default)                                                        |
| Acc             | One of two accumulators {A, B}                                                       |
| AWB             | Accumulator Write-Back Destination Address register ∈ {W13, [W13]+ = 2}              |
| bit4            | 4-bit bit selection field (used in word-addressed instructions) $\in \{015\}$        |
| C, DC, N, OV, Z | MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero                 |
| Expr            | Absolute address, label or expression (resolved by the linker)                       |
| f               | File register address ∈ {0x00000x1FFF}                                               |
| lit1            | 1-bit unsigned literal ∈ {0,1}                                                       |
| lit4            | 4-bit unsigned literal ∈ {015}                                                       |
| lit5            | 5-bit unsigned literal ∈ {031}                                                       |
| lit8            | 8-bit unsigned literal ∈ {0255}                                                      |
| lit10           | 10-bit unsigned literal $\in$ {0255} for Byte mode, {0:1023} for Word mode           |
| lit14           | 14-bit unsigned literal ∈ {016384}                                                   |
| lit16           | 16-bit unsigned literal ∈ {065535}                                                   |
| lit23           | 23-bit unsigned literal ∈ {08388608}; LSb must be '0'                                |
| None            | Field does not require an entry, can be blank                                        |
| OA, OB, SA, SB  | DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate          |
| PC              | Program Counter                                                                      |
| Slit10          | 10-bit signed literal ∈ {-512511}                                                    |
| Slit16          | 16-bit signed literal ∈ {-3276832767}                                                |
| Slit6           | 6-bit signed literal ∈ {-1616}                                                       |
| Wb              | Base W register ∈ {W0W15}                                                            |
| Wd              | Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }                    |
| Wdo             | Destination W register ∈<br>{ Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] } |
| Wm,Wn           | Dividend, Divisor Working register pair (Direct Addressing)                          |

TABLE 25-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

| Field | Description                                                                                                                                                                                                                                                          |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wm*Wm | Multiplicand and Multiplier Working register pair for Square instructions ∈<br>{W4 * W4,W5 * W5,W6 * W6,W7 * W7}                                                                                                                                                     |
| Wm*Wn | Multiplicand and Multiplier Working register pair for DSP instructions $\in$ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}                                                                                                                                       |
| Wn    | One of 16 Working registers ∈ {W0W15}                                                                                                                                                                                                                                |
| Wnd   | One of 16 Destination Working registers ∈ {W0W15}                                                                                                                                                                                                                    |
| Wns   | One of 16 Source Working registers ∈ {W0W15}                                                                                                                                                                                                                         |
| WREG  | W0 (Working register used in file register instructions)                                                                                                                                                                                                             |
| Ws    | Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }                                                                                                                                                                                                         |
| Wso   | Source W register ∈<br>{ Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }                                                                                                                                                                                      |
| Wx    | X Data Space Prefetch Address register for DSP instructions<br>∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2,<br>[W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2,<br>[W9 + W12], none}                |
| Wxd   | X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}                                                                                                                                                                                             |
| Wy    | Y Data Space Prefetch Address register for DSP instructions<br>∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2,<br>[W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2,<br>[W11 + W12], none} |
| Wyd   | Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}                                                                                                                                                                                             |

## TABLE 25-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

| Base<br>Instr<br># | Assembly<br>Mnemonic |       | Assembly Syntax     | Description                              | # of<br>Words | # of<br>Cycles | Status Flags<br>Affected |
|--------------------|----------------------|-------|---------------------|------------------------------------------|---------------|----------------|--------------------------|
| 1                  | ADD                  | ADD   | Acc                 | Add Accumulators                         | 1             | 1              | OA,OB,SA,SB              |
|                    |                      | ADD   | f                   | f = f + WREG                             | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | ADD   | f,WREG              | WREG = f + WREG                          | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | ADD   | #lit10,Wn           | Wd = lit10 + Wd                          | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | ADD   | Wb,Ws,Wd            | Wd = Wb + Ws                             | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | ADD   | Wb,#lit5,Wd         | Wd = Wb + lit5                           | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | ADD   | Wso,#Slit4,Acc      | 16-Bit Signed Add to Accumulator         | 1             | 1              | OA,OB,SA,SB              |
| 2                  | ADDC                 | ADDC  | f                   | f = f + WREG + (C)                       | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | ADDC  | f,WREG              | WREG = f + WREG + (C)                    | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | ADDC  | #lit10,Wn           | Wd = lit10 + Wd + (C)                    | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | ADDC  | Wb,Ws,Wd            | Wd = Wb + Ws + (C)                       | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | ADDC  | Wb,#lit5,Wd         | Wd = Wb + lit5 + (C)                     | 1             | 1              | C,DC,N,OV,Z              |
| 3                  | AND                  | AND   | f                   | f = f .AND. WREG                         | 1             | 1              | N,Z                      |
|                    |                      | AND   | f,WREG              | WREG = f .AND. WREG                      | 1             | 1              | N,Z                      |
|                    |                      | AND   | #lit10,Wn           | Wd = lit10 .AND. Wd                      | 1             | 1              | N,Z                      |
|                    |                      | AND   | Wb,Ws,Wd            | Wd = Wb .AND. Ws                         | 1             | 1              | N,Z                      |
|                    |                      | AND   | Wb,#lit5,Wd         | Wd = Wb .AND. lit5                       | 1             | 1              | N,Z                      |
| 4                  | ASR                  | ASR   | f                   | f = Arithmetic Right Shift f             | 1             | 1              | C,N,OV,Z                 |
|                    |                      | ASR   | f,WREG              | WREG = Arithmetic Right Shift f          | 1             | 1              | C,N,OV,Z                 |
|                    |                      | ASR   | Ws,Wd               | Wd = Arithmetic Right Shift Ws           | 1             | 1              | C,N,OV,Z                 |
|                    |                      | ASR   | Wb,Wns,Wnd          | Wnd = Arithmetic Right Shift Wb by Wns   | 1             | 1              | N,Z                      |
|                    |                      | ASR   | Wb,#lit5,Wnd        | Wnd = Arithmetic Right Shift Wb by lit5  | 1             | 1              | N,Z                      |
| 5                  | BCLR                 | BCLR  | f,#bit4             | Bit Clear f                              | 1             | 1              | None                     |
|                    |                      | BCLR  | Ws,#bit4            | Bit Clear Ws                             | 1             | 1              | None                     |
| 6                  | BRA                  | BRA   | C,Expr              | Branch if Carry                          | 1             | 1 (2)          | None                     |
|                    |                      | BRA   | GE, Expr            | Branch if Greater Than or Equal          | 1             | 1 (2)          | None                     |
|                    |                      | BRA   | GEU, Expr           | Branch if Unsigned Greater Than or Equal | 1             | 1 (2)          | None                     |
|                    |                      | BRA   | GT,Expr             | Branch if Greater Than                   | 1             | 1 (2)          | None                     |
|                    |                      | BRA   | GTU, Expr           | Branch if Unsigned Greater Than          | 1             | 1 (2)          | None                     |
|                    |                      | BRA   | LE, Expr            | Branch if Less Than or Equal             | 1             | 1 (2)          | None                     |
|                    |                      | BRA   | LEU, Expr           | Branch if Unsigned Less Than or Equal    | 1             | 1 (2)          | None                     |
|                    |                      | BRA   | LT,Expr             | Branch if Less Than                      | 1             | 1 (2)          | None                     |
|                    |                      | BRA   | LTU, Expr           | Branch if Unsigned Less Than             | 1             | 1 (2)          | None                     |
|                    |                      | BRA   |                     | Branch if Negative                       | 1             | 1 (2)          | None                     |
|                    |                      | BRA   | N, Expr<br>NC, Expr | Branch if Not Carry                      | 1             | 1 (2)          | None                     |
|                    |                      | BRA   | NN, Expr            | Branch if Not Negative                   | 1             | 1 (2)          | None                     |
|                    |                      | BRA   | NOV, Expr           | Branch if Not Overflow                   | 1             | 1 (2)          | None                     |
|                    |                      | BRA   |                     | Branch if Not Zero                       | 1             | 1 (2)          | None                     |
|                    |                      |       | NZ,Expr             | Branch if Accumulator A Overflow         | 1             | 1 (2)          | None                     |
|                    |                      | BRA   | OA,Expr             | Branch if Accumulator B Overflow         | 1             |                | None                     |
|                    |                      | BRA   | OB, Expr            | Branch if Overflow                       | 1             | 1 (2)          |                          |
|                    |                      | BRA   | OV,Expr             | Branch if Accumulator A Saturated        |               | 1 (2)          | None                     |
|                    |                      | BRA   | SA,Expr             |                                          | 1             | 1 (2)          | None                     |
|                    |                      | BRA   | SB,Expr             | Branch if Accumulator B Saturated        | 1             | 1 (2)          | None                     |
|                    |                      | BRA   | Expr                | Branch Unconditionally                   | 1             | 2              | None                     |
|                    |                      | BRA   | Z, Expr             | Branch if Zero                           | 1             | 1 (2)          | None                     |
| 7                  | DOFT                 | BRA   | Wn                  | Computed Branch                          | 1             | 2              | None                     |
| 7                  | BSET                 | BSET  | f,#bit4             | Bit Set f                                | 1             | 1              | None                     |
| 0                  | DOV                  | BSET  | Ws,#bit4            | Bit Set Ws                               | 1             | 1              | None                     |
| 8                  | BSW                  | BSW.C | Ws,Wb               | Write C bit to Ws <wb></wb>              | 1             | 1              | None                     |
| 0                  |                      | BSW.Z | Ws,Wb               | Write Z bit to Ws <wb></wb>              | 1             | 1              | None                     |
| 9                  | BTG                  | BTG   | f,#bit4             | Bit Toggle f                             | 1             | 1              | None                     |
|                    |                      | BTG   | Ws,#bit4            | Bit Toggle Ws                            | 1             | 1              | None                     |

## TABLE 25-2: INSTRUCTION SET OVERVIEW

| IADL               | E 25-2:              |            | JCTION SET OVERVIE            |                                                                              |               | <b></b>        |                            |
|--------------------|----------------------|------------|-------------------------------|------------------------------------------------------------------------------|---------------|----------------|----------------------------|
| Base<br>Instr<br># | Assembly<br>Mnemonic |            | Assembly Syntax               | Description                                                                  | # of<br>Words | # of<br>Cycles | Status Flags<br>Affected   |
| 10                 | BTSC                 | BTSC       | f,#bit4                       | Bit Test f, Skip if Clear                                                    | 1             | 1<br>(2 or 3)  | None                       |
|                    |                      | BTSC       | Ws,#bit4                      | Bit Test Ws, Skip if Clear                                                   | 1             | 1<br>(2 or 3)  | None                       |
| 11                 | BTSS                 | BTSS       | f,#bit4                       | Bit Test f, Skip if Set                                                      | 1             | 1<br>(2 or 3)  | None                       |
|                    |                      | BTSS       | Ws,#bit4                      | Bit Test Ws, Skip if Set                                                     | 1             | 1<br>(2 or 3)  | None                       |
| 12                 | BTST                 | BTST       | f,#bit4                       | Bit Test f                                                                   | 1             | 1              | Z                          |
|                    |                      | BTST.C     | Ws,#bit4                      | Bit Test Ws to C                                                             | 1             | 1              | С                          |
|                    |                      | BTST.Z     | Ws,#bit4                      | Bit Test Ws to Z                                                             | 1             | 1              | Z                          |
|                    |                      | BTST.C     | Ws,Wb                         | Bit Test Ws <wb> to C</wb>                                                   | 1             | 1              | С                          |
|                    |                      | BTST.Z     | Ws,Wb                         | Bit Test Ws <wb> to Z</wb>                                                   | 1             | 1              | Z                          |
| 13                 | BTSTS                | BTSTS      | f,#bit4                       | Bit Test then Set f                                                          | 1             | 1              | Z                          |
|                    |                      | BTSTS.C    | Ws,#bit4                      | Bit Test Ws to C, then Set                                                   | 1             | 1              | С                          |
|                    |                      | BTSTS.Z    | Ws,#bit4                      | Bit Test Ws to Z, then Set                                                   | 1             | 1              | Z                          |
| 14                 | CALL                 | CALL       | lit23                         | Call Subroutine                                                              | 2             | 2              | None                       |
|                    |                      | CALL       | Wn                            | Call Indirect Subroutine                                                     | 1             | 2              | None                       |
| 15                 | CLR                  | CLR        | f                             | $f = 0 \times 0000$                                                          | 1             | 1              | None                       |
|                    |                      | CLR        | WREG                          | WREG = 0x0000                                                                | 1             | 1              | None                       |
|                    |                      | CLR        | Ws                            | Ws = 0x0000                                                                  | 1             | 1              | None                       |
|                    |                      | CLR        | Acc, Wx, Wxd, Wy, Wyd, AWB    | Clear Accumulator                                                            | 1             | 1              | OA,OB,SA,SB                |
| 16                 | CLRWDT               | CLRWDT     | 1100 / 111 / 1112 / 112 / 112 | Clear Watchdog Timer                                                         | 1             | 1              | WDTO,Sleep                 |
| 17                 | COM                  | COM        | f                             | $f = \overline{f}$                                                           | 1             | 1              | N,Z                        |
|                    | 0011                 | СОМ        | f,WREG                        | WREG = $\overline{f}$                                                        | 1             | 1              | N,Z                        |
|                    |                      |            |                               | W(LG = 1)<br>$Wd = \overline{Ws}$                                            |               |                |                            |
| 40                 |                      | COM        | Ws,Wd                         |                                                                              | 1             | 1              | N,Z                        |
| 18                 | CP                   | CP         | f                             | Compare f with WREG                                                          | 1             | 1              | C,DC,N,OV,Z                |
|                    |                      | CP         | Wb,#lit5                      | Compare Wb with lit5                                                         | 1             | 1              | C,DC,N,OV,Z                |
|                    |                      | CP         | Wb,Ws                         | Compare Wb with Ws (Wb – Ws)                                                 | 1             | 1              | C,DC,N,OV,Z                |
| 19                 | CPO                  | CP0        | f                             | Compare f with 0x0000                                                        | 1             | 1              | C,DC,N,OV,Z                |
|                    |                      | CP0        | Ws                            | Compare Ws with 0x0000                                                       | 1             | 1              | C,DC,N,OV,Z                |
| 20                 | CPB                  | CPB        | f                             | Compare f with WREG, with Borrow                                             | 1             | 1              | C,DC,N,OV,Z                |
|                    |                      | CPB<br>CPB | Wb,#lit5<br>Wb,Ws             | Compare Wb with lit5, with Borrow<br>Compare Wb <u>w</u> ith Ws, with Borrow | 1             | 1              | C,DC,N,OV,Z<br>C,DC,N,OV,Z |
| 21                 | CPSEQ                | CPSEQ      | Wb, Wn                        | (Wb – Ws – C)<br>Compare Wb with Wn, Skip if =                               | 1             | 1              | None                       |
| 22                 | CPSGT                | CPSGT      | Wb, Wn                        | Compare Wb with Wn, Skip if >                                                | 1             | (2 or 3)       | None                       |
| 23                 | CPSLT                | CPSLT      | Wb, Wn                        | Compare Wb with Wn, Skip if <                                                | 1             | (2 or 3)       | None                       |
| 24                 | CPSNE                | CPSNE      | Wb, Wn                        | Compare Wb with Wn, Skip if ≠                                                | 1             | (2 or 3)<br>1  | None                       |
| 25                 | DAV                  | DAV        | 7.7                           | Min - Dooimal Adjust Min                                                     | 4             | (2 or 3)       |                            |
| 25                 | DAW                  | DAW        | Wn                            | Wn = Decimal Adjust Wn                                                       | 1             | 1              |                            |
| 26                 | DEC                  | DEC        | f                             | f = f - 1                                                                    | 1             | 1              | C,DC,N,OV,Z                |
|                    |                      | DEC        | f,WREG                        | WREG = f - 1                                                                 | 1             | 1              | C,DC,N,OV,Z                |
|                    |                      | DEC        | Ws,Wd                         | Wd = Ws - 1                                                                  | 1             | 1              | C,DC,N,OV,Z                |
| 27                 | DEC2                 | DEC2       | f                             | f = f - 2                                                                    | 1             | 1              | C,DC,N,OV,Z                |
|                    |                      | DEC2       | f,WREG                        | WREG = f - 2                                                                 | 1             | 1              | C,DC,N,OV,Z                |
|                    |                      | DEC2       | Ws,Wd                         | Wd = Ws - 2                                                                  | 1             | 1              | C,DC,N,OV,Z                |
| 28                 | DISI                 | DISI       | #lit14                        | Disable Interrupts for k Instruction Cycles                                  | 1             | 1              | None                       |

| TABLE 25-2: | INSTRUCTION SET OVERVIEW | (CONTINUED) |
|-------------|--------------------------|-------------|
|             |                          |             |

| IABL               | E 25-2:              | INSTRU | UCTION SET OVERVIE                  | W (CONTINUED)                          |               |                |                          |
|--------------------|----------------------|--------|-------------------------------------|----------------------------------------|---------------|----------------|--------------------------|
| Base<br>Instr<br># | Assembly<br>Mnemonic |        | Assembly Syntax                     | Description                            | # of<br>Words | # of<br>Cycles | Status Flags<br>Affected |
| 29                 | DIV                  | DIV.S  | Wm,Wn                               | Signed 16/16-bit Integer Divide        | 1             | 18             | N,Z,C,OV                 |
|                    |                      | DIV.SD | Wm , Wn                             | Signed 32/16-bit Integer Divide        | 1             | 18             | N,Z,C,OV                 |
|                    |                      | DIV.U  | Wm , Wn                             | Unsigned 16/16-bit Integer Divide      | 1             | 18             | N,Z,C,OV                 |
|                    |                      | DIV.UD | Wm , Wn                             | Unsigned 32/16-bit Integer Divide      | 1             | 18             | N,Z,C,OV                 |
| 30                 | DIVF                 | DIVF   | Wm,Wn                               | Signed 16/16-bit Fractional Divide     | 1             | 18             | N,Z,C,OV                 |
| 31                 | DO                   | DO     | <pre>#lit14,Expr</pre>              | Do code to PC + Expr, lit14 + 1 times  | 2             | 2              | None                     |
|                    |                      | DO     | Wn,Expr                             | Do code to PC + Expr, (Wn) + 1 times   | 2             | 2              | None                     |
| 32                 | ED                   | ED     | Wm*Wm,Acc,Wx,Wy,Wxd                 | Euclidean Distance (no accumulate)     | 1             | 1              | OA,OB,OAB,<br>SA,SB,SAB  |
| 33                 | EDAC                 | EDAC   | Wm*Wm,Acc,Wx,Wy,Wxd                 | Euclidean Distance                     | 1             | 1              | OA,OB,OAB,<br>SA,SB,SAB  |
| 34                 | EXCH                 | EXCH   | Wns,Wnd                             | Swap Wns with Wnd                      | 1             | 1              | None                     |
| 35                 | FBCL                 | FBCL   | Ws,Wnd                              | Find Bit Change from Left (MSb) Side   | 1             | 1              | С                        |
| 36                 | FF1L                 | FF1L   | Ws,Wnd                              | Find First One from Left (MSb) Side    | 1             | 1              | С                        |
| 37                 | FF1R                 | FF1R   | Ws,Wnd                              | Find First One from Right (LSb) Side   | 1             | 1              | С                        |
| 38                 | GOTO                 | GOTO   | Expr                                | Go to Address                          | 2             | 2              | None                     |
|                    |                      | GOTO   | Wn                                  | Go to Indirect                         | 1             | 2              | None                     |
| 39                 | INC                  | INC    | f                                   | f = f + 1                              | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | INC    | f,WREG                              | WREG = f + 1                           | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | INC    | Ws,Wd                               | Wd = Ws + 1                            | 1             | 1              | C,DC,N,OV,Z              |
| 40                 | INC2                 | INC2   | f                                   | f = f + 2                              | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | INC2   | f,WREG                              | WREG = f + 2                           | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | INC2   | Ws,Wd                               | Wd = Ws + 2                            | 1             | 1              | C,DC,N,OV,Z              |
| 41                 | IOR                  | IOR    | f                                   | f = f .IOR. WREG                       | 1             | 1              | N,Z                      |
|                    |                      | IOR    | f,WREG                              | WREG = f .IOR. WREG                    | 1             | 1              | N,Z                      |
|                    |                      | IOR    | #lit10,Wn                           | Wd = lit10 .IOR. Wd                    | 1             | 1              | N,Z                      |
|                    |                      | IOR    | Wb,Ws,Wd                            | Wd = Wb .IOR. Ws                       | 1             | 1              | N,Z                      |
|                    |                      | IOR    | Wb,#lit5,Wd                         | Wd = Wb .IOR. lit5                     | 1             | 1              | N,Z                      |
| 42                 | LAC                  | LAC    | Wso,#Slit4,Acc                      | Load Accumulator                       | 1             | 1              | OA,OB,OAB,<br>SA,SB,SAB  |
| 43                 | LNK                  | LNK    | #lit14                              | Link Frame Pointer                     | 1             | 1              | None                     |
| 44                 | LSR                  | LSR    | f                                   | f = Logical Right Shift f              | 1             | 1              | C,N,OV,Z                 |
|                    |                      | LSR    | f,WREG                              | WREG = Logical Right Shift f           | 1             | 1              | C,N,OV,Z                 |
|                    |                      | LSR    | Ws,Wd                               | Wd = Logical Right Shift Ws            | 1             | 1              | C,N,OV,Z                 |
|                    |                      | LSR    | Wb,Wns,Wnd                          | Wnd = Logical Right Shift Wb by Wns    | 1             | 1              | N,Z                      |
|                    |                      | LSR    | Wb,#lit5,Wnd                        | Wnd = Logical Right Shift Wb by lit5   | 1             | 1              | N,Z                      |
| 45                 | MAC                  | MAC    | Wm*Wn,Acc,Wx,Wxd,Wy,Wyd<br>,<br>AWB | Multiply and Accumulate                | 1             | 1              | OA,OB,OAB,<br>SA,SB,SAB  |
|                    |                      | MAC    | Wm*Wm,Acc,Wx,Wxd,Wy,Wyd             | Square and Accumulate                  | 1             | 1              | OA,OB,OAB,<br>SA,SB,SAB  |
| 46                 | MOV                  | MOV    | f,Wn                                | Move f to Wn                           | 1             | 1              | None                     |
|                    |                      | MOV    | f                                   | Move f to f                            | 1             | 1              | N,Z                      |
|                    |                      | MOV    | f,WREG                              | Move f to WREG                         | 1             | 1              | N,Z                      |
|                    |                      | MOV    | #lit16,Wn                           | Move 16-Bit Literal to Wn              | 1             | 1              | None                     |
|                    |                      | MOV.b  | #lit8,Wn                            | Move 8-Bit Literal to Wn               | 1             | 1              | None                     |
|                    |                      | MOV    | Wn,f                                | Move Wn to f                           | 1             | 1              | None                     |
|                    |                      | MOV    | Wso,Wdo                             | Move Ws to Wd                          | 1             | 1              | None                     |
|                    |                      | MOV    | WREG, f                             | Move WREG to f                         | 1             | 1              | N,Z                      |
|                    |                      | MOV.D  | Wns,Wd                              | Move Double from W(ns):W(ns + 1) to Wd | 1             | 2              | None                     |
|                    |                      | MOV.D  | Ws,Wnd                              | Move Double from Ws to W(nd + 1):W(nd) | 1             | 2              | None                     |
| 47                 | MOVSAC               | MOVSAC | Acc,Wx,Wxd,Wy,Wyd,AWB               | Prefetch and Store Accumulator         | 1             | 1              | None                     |

## TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)

| Base<br>Instr<br># | Assembly<br>Mnemonic |                   | Assembly Syntax                     | Description                                                               | # of<br>Words | # of<br>Cycles | Status Flags<br>Affected |
|--------------------|----------------------|-------------------|-------------------------------------|---------------------------------------------------------------------------|---------------|----------------|--------------------------|
| 48                 | MPY                  | MPY<br>Wm*Wn,Ac   | cc,Wx,Wxd,Wy,Wyd                    | Multiply Wm by Wn to Accumulator                                          | 1             | 1              | OA,OB,OAB,<br>SA,SB,SAB  |
|                    |                      | MPY<br>Wm*Wm,Ac   | cc,Wx,Wxd,Wy,Wyd                    | Square Wm to Accumulator                                                  | 1             | 1              | OA,OB,OAB,<br>SA,SB,SAB  |
| 49                 | MPY.N                | MPY.N<br>Wm*Wn,Ac | cc,Wx,Wxd,Wy,Wyd                    | -(Multiply Wm by Wn) to Accumulator                                       | 1             | 1              | None                     |
| 50                 | MSC                  | MSC               | Wm*Wm,Acc,Wx,Wxd,Wy,Wyd<br>,<br>AWB | Multiply and Subtract from Accumulator                                    | 1             | 1              | OA,OB,OAB,<br>SA,SB,SAB  |
| 51                 | MUL                  | MUL.SS            | Wb,Ws,Wnd                           | {Wnd + 1, Wnd} = signed(Wb) * signed(Ws)                                  | 1             | 1              | None                     |
|                    |                      | MUL.SU            | Wb,Ws,Wnd                           | {Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)                                | 1             | 1              | None                     |
|                    |                      | MUL.US            | Wb,Ws,Wnd                           | {Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)                                | 1             | 1              | None                     |
|                    |                      | MUL.UU            | Wb,Ws,Wnd                           | {Wnd + 1, Wnd} = unsigned(Wb) *<br>unsigned(Ws)                           | 1             | 1              | None                     |
|                    |                      | MUL.SU            | Wb,#lit5,Wnd                        | {Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)                              | 1             | 1              | None                     |
|                    |                      | MUL.UU            | Wb,#lit5,Wnd                        | {Wnd + 1, Wnd} = unsigned(Wb) *<br>unsigned(lit5)                         | 1             | 1              | None                     |
|                    |                      | MUL               | f                                   | W3:W2 = f * WREG                                                          | 1             | 1              | None                     |
| 52                 | NEG                  | NEG               | Acc                                 | Negate Accumulator                                                        | 1             | 1              | OA,OB,OAB,<br>SA,SB,SAB  |
|                    |                      | NEG               | f                                   | $f = \overline{f} + 1$                                                    | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | NEG               | f,WREG                              | WREG = $\overline{f}$ + 1                                                 | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | NEG               | Ws,Wd                               | $Wd = \overline{Ws} + 1$                                                  | 1             | 1              | C,DC,N,OV,Z              |
| 53                 | NOP                  | NOP               |                                     | No Operation                                                              | 1             | 1              | None                     |
|                    |                      | NOPR              |                                     | No Operation                                                              | 1             | 1              | None                     |
| 54                 | POP                  | POP               | f                                   | Pop f from Top-of-Stack (TOS)                                             | 1             | 1              | None                     |
|                    |                      | POP               | Wdo                                 | Pop from Top-of-Stack (TOS) to Wdo                                        | 1             | 1              | None                     |
|                    |                      | POP.D             | Wnd                                 | Pop from Top-of-Stack (TOS) to<br>W(nd):W(nd + 1)                         | 1             | 2              | None                     |
|                    |                      | POP.S             |                                     | Pop Shadow Registers                                                      | 1             | 1              | All                      |
| 55                 | PUSH                 | PUSH              | f                                   | Push f to Top-of-Stack (TOS)                                              | 1             | 1              | None                     |
|                    |                      | PUSH              | Wso                                 | Push Wso to Top-of-Stack (TOS)                                            | 1             | 1              | None                     |
|                    |                      | PUSH.D            | Wns                                 | Push W(ns):W(ns + 1) to Top-of-Stack (TOS)                                | 1             | 2              | None                     |
|                    |                      | PUSH.S            |                                     | Push Shadow Registers                                                     | 1             | 1              | None                     |
| 56                 | PWRSAV               | PWRSAV            | #lit1                               | Go into Sleep or Idle mode                                                | 1             | 1              | WDTO,Sleep               |
| 57                 | RCALL                | RCALL             | Expr                                | Relative Call                                                             | 1             | 2              | None                     |
|                    |                      | RCALL             | Wn                                  | Computed Call                                                             | 1             | 2              | None                     |
| 58                 | REPEAT               | REPEAT            | #lit14                              | Repeat Next Instruction lit14 + 1 times                                   | 1             | 1              | None                     |
|                    |                      | REPEAT            | Wn                                  | Repeat Next Instruction (Wn) + 1 times                                    | 1             | 1              | None                     |
| 59                 | RESET                | RESET             |                                     | Software Device Reset                                                     | 1             | 1              | None                     |
| 60                 | RETFIE               | RETFIE            |                                     | Return from interrupt                                                     | 1             | 3 (2)          | None                     |
| 61                 | RETLW                | RETLW             | #lit10,Wn                           | Return with Literal in Wn                                                 | 1             | 3 (2)          | None                     |
| 62                 | RETURN               | RETURN            |                                     | Return from Subroutine                                                    | 1             | 3 (2)          | None                     |
| 63                 | RLC                  | RLC               | f                                   | f = Rotate Left through Carry f                                           | 1             | 1              | C,N,Z                    |
|                    |                      | RLC               | f,WREG                              | WREG = Rotate Left through Carry f                                        | 1             | 1              | C,N,Z                    |
| 64                 | DING                 | RLC               | Ws,Wd                               | Wd = Rotate Left through Carry Ws                                         | 1             | 1              | C,N,Z                    |
| 64                 | RLNC                 | RLNC              | f                                   | f = Rotate Left (No Carry) f                                              | 1             | 1              | N,Z                      |
|                    |                      | RLNC              | f,WREG                              | WREG = Rotate Left (No Carry) f                                           | 1             | 1              | N,Z                      |
| 65                 | DDG                  | RLNC              | Ws,Wd                               | Wd = Rotate Left (No Carry) Ws                                            | 1             | 1              | N,Z                      |
| 65                 | RRC                  | RRC               | f                                   | f = Rotate Right through Carry f                                          | 1             | 1              | C,N,Z                    |
|                    |                      | RRC<br>RRC        | f,WREG<br>Ws,Wd                     | WREG = Rotate Right through Carry f<br>Wd = Rotate Right through Carry Ws | 1             | 1              | C,N,Z<br>C,N,Z           |

| TABLE 25-2: | INSTRUCTION SET OVERVIEW ( | (CONTINUED) |
|-------------|----------------------------|-------------|
|             |                            |             |

|                    | E 25-2:              |                 | UCTION SET OVER         |                                             |               |                |                          |
|--------------------|----------------------|-----------------|-------------------------|---------------------------------------------|---------------|----------------|--------------------------|
| Base<br>Instr<br># | Assembly<br>Mnemonic |                 |                         | Description                                 | # of<br>Words | # of<br>Cycles | Status Flags<br>Affected |
| 66                 | RRNC                 | RRNC            | f                       | f = Rotate Right (No Carry) f               | 1             | 1              | N,Z                      |
|                    |                      | RRNC            | f,WREG                  | WREG = Rotate Right (No Carry) f            | 1             | 1              | N,Z                      |
|                    |                      | RRNC            | Ws,Wd                   | Wd = Rotate Right (No Carry) Ws             | 1             | 1              | N,Z                      |
| 67                 | SAC                  | SAC             | Acc,#Slit4,Wdo          | Store Accumulator                           | 1             | 1              | None                     |
|                    |                      | SAC.R           | Acc,#Slit4,Wdo          | Store Rounded Accumulator                   | 1             | 1              | None                     |
| 68                 | SE                   | SE              | Ws,Wnd                  | Wnd = Sign-Extended Ws                      | 1             | 1              | C,N,Z                    |
| 69                 | SETM                 | SETM            | f                       | f = 0xFFFF                                  | 1             | 1              | None                     |
|                    |                      | SETM            | WREG                    | WREG = 0xFFFF                               | 1             | 1              | None                     |
|                    |                      | SETM            | Ws                      | Ws = 0xFFFF                                 | 1             | 1              | None                     |
| 70                 | SFTAC                | SFTAC           | Acc,Wn                  | Arithmetic Shift Accumulator by (Wn)        | 1             | 1              | OA,OB,OAB<br>SA,SB,SAB   |
|                    |                      | SFTAC           | Acc,#Slit6              | Arithmetic Shift Accumulator by Slit6       | 1             | 1              | OA,OB,OAB<br>SA,SB,SAB   |
| 71                 | SL                   | SL              | f                       | f = Left Shift f                            | 1             | 1              | C,N,OV,Z                 |
|                    |                      | SL              | f,WREG                  | WREG = Left Shift f                         | 1             | 1              | C,N,OV,Z                 |
|                    |                      | SL              | Ws,Wd                   | Wd = Left Shift Ws                          | 1             | 1              | C,N,OV,Z                 |
|                    |                      | SL              | Wb,Wns,Wnd              | Wnd = Left Shift Wb by Wns                  | 1             | 1              | N,Z                      |
|                    |                      | SL              | Wb,#lit5,Wnd            | Wnd = Left Shift Wb by lit5                 | 1             | 1              | N,Z                      |
| 72                 | SUB                  | SUB             | Acc                     | Subtract Accumulators                       | 1             | 1              | OA,OB,OAB<br>SA,SB,SAB   |
|                    |                      | SUB             | f                       | f = f - WREG                                | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | SUB             | f,WREG                  | WREG = f – WREG                             | 1             | 1              | C,DC,N,OV,2              |
|                    |                      | SUB             | #lit10,Wn               | Wn = Wn - Iit10                             | 1             | 1              | C,DC,N,OV,2              |
|                    |                      | SUB             | Wb,Ws,Wd                | Wd = Wb – Ws                                | 1             | 1              | C,DC,N,OV,2              |
|                    |                      | SUB             | Wb,#lit5,Wd             | Wd = Wb - lit5                              | 1             | 1              | C,DC,N,OV,Z              |
| 73                 | SUBB                 | SUBB            | f                       | $f = f - WREG - (\overline{C})$             | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | SUBB            | f,WREG                  | WREG = f – WREG – $(\overline{C})$          | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | SUBB            | #lit10,Wn               | $Wn = Wn - lit10 - (\overline{C})$          | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | SUBB            | Wb,Ws,Wd                | $Wd = Wb - Ws - (\overline{C})$             | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | SUBB            | Wb,#lit5,Wd             | $Wd = Wb - lit5 - (\overline{C})$           | 1             | 1              | C,DC,N,OV,2              |
| 74                 | SUBR                 | SUBR            | f                       | f = WREG - f                                | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | SUBR            | f,WREG                  | WREG = WREG – f                             | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | SUBR            | Wb,Ws,Wd                | Wd = Ws - Wb                                | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | SUBR            | Wb,#lit5,Wd             | Wd = lit5 – Wb                              | 1             | 1              | C,DC,N,OV,Z              |
| 75                 | SUBBR                | SUBBR           | f                       | $f = WREG - f - (\overline{C})$             | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | SUBBR           | f,WREG                  | WREG = WREG – f – $(\overline{C})$          | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | SUBBR           | Wb,Ws,Wd                | $Wd = Ws - Wb - (\overline{C})$             | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | SUBBR           | Wb,#lit5,Wd             | $Wd = lit5 - Wb - (\overline{C})$           | 1             | 1              | C,DC,N,OV,Z              |
| 76                 | SWAP                 | SUBBR<br>SWAP.b | WD,#1105,Wd<br>Wn       | Wu = h(S - Wb - (C))<br>Wn = Nibble Swap Wn | 1             | 1              | None                     |
| 70                 | SWAP                 | SWAP.D<br>SWAP  | Wn                      | Wn = Byte Swap Wn                           | 1             | 1              | None                     |
| 77                 | TBLRDH               | TBLRDH          | Ws,Wd                   | Read Prog<23:16> to Wd<7:0>                 | 1             | 2              | None                     |
| 78                 | TBLRDL               | TBLRDL          | Ws,Wd                   | Read Prog<15:0> to Wd                       | 1             | 2              | None                     |
| 79                 | TBLWTH               | TBLWTH          | Ws,Wd                   | Write Ws<7:0> to Prog<23:16>                | 1             | 2              | None                     |
| 80                 | TBLWIN               | TBLWIN          | WS,Wd<br>WS,Wd          | Write Ws to Prog<15:0>                      | 1             | 2              | None                     |
| 81                 | ULNK                 | ULNK            |                         | Unlink Frame Pointer                        | 1             | 1              | None                     |
| 82                 | XOR                  | XOR             | f                       | f = f .XOR. WREG                            | 1             | 1              | N,Z                      |
| 52                 | AUN                  | XOR             | f,WREG                  | WREG = f .XOR. WREG                         | 1             | 1              | N,Z                      |
|                    |                      | XOR             | #lit10,Wn               | Wd = lit10 .XOR. Wd                         | 1             | 1              | N,Z                      |
|                    |                      | XOR             | Wb,Ws,Wd                | Wd = Wb .XOR. Ws                            | 1             | 1              | N,Z                      |
|                    |                      | XOR             | WD,WS,Wa<br>Wb,#lit5,Wd | Wd = Wb .XOR. Its                           | 1             | 1              | N,Z                      |
| 83                 | ZE                   | ZE              | Ws,Wnd                  | Wnd = Zero-Extend Ws                        | 1             | 1              | C,Z,N                    |
|                    | 22                   | 22              | 110, MILC               | WING - ZOIO EXICING WS                      |               |                | J, 2, 1 1                |

### TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)

## 26.0 DEVELOPMENT SUPPORT

The PIC<sup>®</sup> microcontrollers and dsPIC<sup>®</sup> digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
  - MPLAB<sup>®</sup> IDE Software
- Compilers/Assemblers/Linkers
  - MPLAB C Compiler for Various Device Families
  - HI-TECH C for Various Device Families
  - MPASM<sup>™</sup> Assembler
  - MPLINK<sup>™</sup> Object Linker/ MPLIB<sup>™</sup> Object Librarian
  - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
  - MPLAB SIM Software Simulator
- Emulators
- MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
  - MPLAB ICD 3
  - PICkit<sup>™</sup> 3 Debug Express
- Device Programmers
  - PICkit™ 2 Programmer
  - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

## 26.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows<sup>®</sup> operating system-based application that contains:

- A single graphical interface to all debugging tools
  - Simulator
  - Programmer (sold separately)
  - In-Circuit Emulator (sold separately)
  - In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Mouse over variable inspection
- Drag and drop variables from source to watch windows
- Extensive on-line help
- Integration of select third-party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
  - Source files (C or assembly)
  - Mixed C and assembly
  - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

#### 26.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

### 26.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

## 26.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel<sup>®</sup> standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline
   assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

## 26.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

## 26.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

#### 26.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC<sup>®</sup> DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

#### 26.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC<sup>®</sup> Flash MCUs and dsPIC<sup>®</sup> Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

#### 26.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC<sup>®</sup> Flash microcontrollers and dsPIC<sup>®</sup> DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

### 26.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC<sup>®</sup> and dsPIC<sup>®</sup> Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming<sup>™</sup>.

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

#### 26.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit<sup>™</sup> 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows<sup>®</sup> programming interface supports baseline PIC16F5xx), (PIC10F, PIC12F5xx, midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit<sup>™</sup> 2 enables in-circuit debugging on most PIC® microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

### 26.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

### 26.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM<sup>™</sup> and dsPICDEM<sup>™</sup> demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ<sup>®</sup> security ICs, CAN, IrDA<sup>®</sup>, PowerSmart battery management, SEEVAL<sup>®</sup> evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

## 27.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

## Absolute Maximum Ratings<sup>(1)</sup>

| Ambient temperature under bias                                                 | 40°C to +125°C       |
|--------------------------------------------------------------------------------|----------------------|
| Storage temperature                                                            | 65°C to +150°C       |
| Voltage on VDD with respect to Vss                                             | -0.3V to +4.0V       |
| Voltage on any pin that is not 5V tolerant, with respect to Vss <sup>(4)</sup> | 0.3V to (VDD + 0.3V) |
| Voltage on any 5V tolerant pin with respect to Vss, when Vdd $\geq 3.0V^{(4)}$ | -0.3V to +5.6V       |
| Voltage on any 5V tolerant pin with respect to Vss, when $VDD < 3.0V^{(4)}$    | 0.3V to (VDD + 0.3V) |
| Voltage on VCAP/VDDCORE with respect to VSS                                    | 2.25V to 2.75V       |
| Maximum current out of Vss pin                                                 |                      |
| Maximum current into VDD pin <sup>(2)</sup>                                    |                      |
| Maximum output current sunk by any I/O pin <sup>(3)</sup>                      | 4 mA                 |
| Maximum output current sourced by any I/O pin <sup>(3)</sup>                   | 4 mA                 |
| Maximum current sunk by all ports                                              |                      |
| Maximum current sourced by all ports <sup>(2)</sup>                            |                      |
| Maximum output current sunk by non-remappable PWM pins                         |                      |
| Maximum output current sourced by non-remappable PWM pins                      | 16 mA                |

**Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

- 2: Maximum allowable current is a function of device maximum power dissipation (see Table 27-2).
- 3: Exceptions are PWMxL, and PWMxH, which are able to sink/source 16 mA, and digital pins, which are able to sink/source 8 mA.
- 4: See the "Pin Diagrams" section for 5V tolerant pins.

### 27.1 DC Characteristics

|                | Voo Bongo               | Tomp Bongo            | Max MIPS                                                         |
|----------------|-------------------------|-----------------------|------------------------------------------------------------------|
| Characteristic | VDD Range<br>(in Volts) | Temp Range<br>(in °C) | dsPIC33FJ32GS406/606/608/610 and<br>dsPIC33FJ64GS406/606/608/610 |
|                | 3.0-3.6V                | -40°C to +85°C        | 40                                                               |
|                | 3.0-3.6V                | -40°C to +125°C       | 40                                                               |

#### TABLE 27-1: OPERATING MIPS VS. VOLTAGE

#### TABLE 27-2: THERMAL OPERATING CONDITIONS

| Rating                                                                                                                                                                        | Symbol              | Min         | Тур | Max  | Unit |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------|-----|------|------|
| Industrial Temperature Devices                                                                                                                                                |                     |             |     |      |      |
| Operating Junction Temperature Range                                                                                                                                          | TJ                  | -40         | —   | +125 | °C   |
| Operating Ambient Temperature Range                                                                                                                                           | TA                  | -40         | —   | +85  | °C   |
| Extended Temperature Devices                                                                                                                                                  |                     |             |     |      |      |
| Operating Junction Temperature Range                                                                                                                                          | TJ                  | -40         | —   | +140 | °C   |
| Operating Ambient Temperature Range                                                                                                                                           | TA                  | -40         | —   | +125 | °C   |
| Power Dissipation:<br>Internal chip power dissipation:<br>$PINT = VDD x (IDD - \Sigma IOH)$<br>I/O Pin Power Dissipation:<br>$U(D - \Sigma (VDD - VDD) + \Sigma (VDD - VDD))$ | PD                  | Pint + Pi/o |     |      | w    |
| $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$<br>Maximum Allowed Power Dissipation                                                                                | PDMAX (TJ – TA)/θJA |             |     |      | W    |

#### TABLE 27-3: THERMAL PACKAGING CHARACTERISTICS

| Characteristic                                        | Symbol | Тур  | Max | Unit | Notes |
|-------------------------------------------------------|--------|------|-----|------|-------|
| Package Thermal Resistance, 64-Pin QFN (9x9x0.9 mm)   | θJA    | 28   |     | °C/W | 1     |
| Package Thermal Resistance, 64-Pin TQFP (10x10x1 mm)  | θја    | 39   |     | °C/W | 1     |
| Package Thermal Resistance, 80-Pin TQFP (12x12x1 mm)  | θја    | 53.1 |     | °C/W | 1     |
| Package Thermal Resistance, 100-Pin TQFP (12x12x1 mm) | θJA    | 43   | _   | °C/W | 1     |
| Package Thermal Resistance, 100-Pin TQFP (14x14x1 mm) | θJA    | 43   | _   | °C/W | 1     |

**Note 1:** Junction to ambient thermal resistance, Theta-JA ( $\theta$ JA) numbers are achieved by package simulations.

| IADLE        | <u>~, ~, </u> | JC TEMPERATURE AND VOL                                                                |                                                                                                                                                                                                      |                    |      |       |                                                         |  |
|--------------|---------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------|-------|---------------------------------------------------------|--|
| DC CHA       | RACTER        | ISTICS                                                                                | Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |                    |      |       |                                                         |  |
| Param<br>No. | Symbol        | Characteristic                                                                        | Min                                                                                                                                                                                                  | Typ <sup>(1)</sup> | Max  | Units | Conditions                                              |  |
| Operati      | ng Voltag     | e                                                                                     |                                                                                                                                                                                                      |                    |      |       |                                                         |  |
|              | Supply V      | /oltage                                                                               |                                                                                                                                                                                                      |                    |      |       |                                                         |  |
| DC10         | Vdd           |                                                                                       | 3.0                                                                                                                                                                                                  | —                  | 3.6  | V     | Industrial and extended                                 |  |
| DC12         | Vdr           | RAM Data Retention Voltage <sup>(2)</sup>                                             | 1.8                                                                                                                                                                                                  | —                  | —    | V     |                                                         |  |
| DC16         | VPOR          | <b>VDD Start Voltage<sup>(4)</sup></b><br>to Ensure Internal<br>Power-on Reset Signal | _                                                                                                                                                                                                    | —                  | Vss  | V     |                                                         |  |
| DC17         | SVDD          | <b>VDD Rise Rate<sup>(3)</sup></b><br>to Ensure Internal<br>Power-on Reset Signal     | 0.03                                                                                                                                                                                                 | _                  |      | V/ms  | 0-3.0V in 0.1s                                          |  |
| DC18         | VCORE         | VDD Core<br>Internal Regulator Voltage                                                | 2.25                                                                                                                                                                                                 | —                  | 2.75 | V     | Voltage is dependent on<br>load, temperature and<br>VDD |  |

## TABLE 27-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

**2:** This is the limit to which VDD may be lowered without losing RAM data.

3: These parameters are characterized but not tested in manufacturing.

4: VDD voltage must remain at Vss for a minimum of 200 µs to ensure POR.

## dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

|                  | OTEDIOTIO              |     |           | Operating Co<br>herwise state | nditions: 3.0V<br>ed)                                                                     | to 3.6V                           |  |  |  |  |  |
|------------------|------------------------|-----|-----------|-------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------|--|--|--|--|--|
|                  | CTERISTICS             | 5   | Operating | temperature                   | -40°C $\leq$ TA $\leq$ +85°C for Industrial<br>-40°C $\leq$ TA $\leq$ +125°C for Extended |                                   |  |  |  |  |  |
| Parameter<br>No. | Typical <sup>(1)</sup> | Max | Units     |                               | Conditions                                                                                |                                   |  |  |  |  |  |
| Operating C      | Current (IDD)          | (2) | •         |                               |                                                                                           |                                   |  |  |  |  |  |
| DC20d            | 21                     | 30  | mA        | -40°C                         |                                                                                           |                                   |  |  |  |  |  |
| DC20a            | 21                     | 30  | mA        | +25°C                         | 3.3V                                                                                      | 10 MIPS                           |  |  |  |  |  |
| DC20b            | 21                     | 30  | mA        | +85°C                         | 3.3V                                                                                      | See Note 2                        |  |  |  |  |  |
| DC20c            | 22                     | 30  | mA        | +125°C                        |                                                                                           |                                   |  |  |  |  |  |
| DC21d            | 28                     | 40  | mA        | -40°C                         |                                                                                           |                                   |  |  |  |  |  |
| DC21a            | 28                     | 40  | mA        | +25°C                         | 2 2)/                                                                                     | 16 MIPS                           |  |  |  |  |  |
| DC21b            | 28                     | 40  | mA        | +85°C                         | - 3.3V                                                                                    | See Note 2 and Note 3             |  |  |  |  |  |
| DC21c            | 29                     | 40  | mA        | +125°C                        | 1                                                                                         |                                   |  |  |  |  |  |
| DC22d            | 35                     | 45  | mA        | -40°C                         | 1                                                                                         |                                   |  |  |  |  |  |
| DC22a            | 35                     | 45  | mA        | +25°C                         |                                                                                           | 20 MIPS                           |  |  |  |  |  |
| DC22b            | 35                     | 45  | mA        | +85°C                         | 3.3V                                                                                      | See Note 2 and Note 3             |  |  |  |  |  |
| DC22c            | 36                     | 45  | mA        | +125°C                        | 1                                                                                         |                                   |  |  |  |  |  |
| DC23d            | 49                     | 60  | mA        | -40°C                         |                                                                                           |                                   |  |  |  |  |  |
| DC23a            | 49                     | 60  | mA        | +25°C                         |                                                                                           | 30 MIPS                           |  |  |  |  |  |
| DC23b            | 49                     | 60  | mA        | +85°C                         | - 3.3V                                                                                    | See Note 2 and Note 3             |  |  |  |  |  |
| DC23c            | 50                     | 60  | mA        | +125°C                        | 1                                                                                         |                                   |  |  |  |  |  |
| DC24d            | 66                     | 75  | mA        | -40°C                         |                                                                                           |                                   |  |  |  |  |  |
| DC24a            | 66                     | 75  | mA        | +25°C                         |                                                                                           | 40 MIPS                           |  |  |  |  |  |
| DC24b            | 66                     | 75  | mA        | +85°C                         | 3.3V                                                                                      | See Note 2                        |  |  |  |  |  |
| DC24c            | 67                     | 75  | mA        | +125°C                        | 1                                                                                         |                                   |  |  |  |  |  |
| DC25d            | 153                    | 170 | mA        | -40°C                         |                                                                                           | 40 MIPS                           |  |  |  |  |  |
| DC25a            | 154                    | 170 | mA        | +25°C                         |                                                                                           | See <b>Note 2</b> , except PWM is |  |  |  |  |  |
| DC25b            | 155                    | 170 | mA        | +85°C                         | 3.3V                                                                                      | operating at maximum speed        |  |  |  |  |  |
| DC25c            | 156                    | 170 | mA        | +125°C                        | 1                                                                                         | (PTCON2 = 0x0000)                 |  |  |  |  |  |
| DC26d            | 122                    | 135 | mA        | -40°C                         |                                                                                           | 40 MIPS                           |  |  |  |  |  |
| DC26a            | 123                    | 135 | mA        | +25°C                         | 2.01                                                                                      | See <b>Note 2</b> , except PWM is |  |  |  |  |  |
| DC26b            | 124                    | 135 | mA        | +85°C                         | 3.3V                                                                                      | operating at 1/2 speed            |  |  |  |  |  |
| DC26c            | 125                    | 135 | mA        | +125°C                        | 1                                                                                         | (PTCON2 = 0x0001)                 |  |  |  |  |  |
| DC27d            | 107                    | 120 | mA        | -40°C                         | 1                                                                                         | 40 MIPS                           |  |  |  |  |  |
| DC27a            | 108                    | 120 | mA        | +25°C                         | 2.01/                                                                                     | See <b>Note 2</b> , except PWM is |  |  |  |  |  |
| DC27b            | 109                    | 120 | mA        | +85°C                         | 3.3V                                                                                      | operating at 1/4 speed            |  |  |  |  |  |
| DC27c            | 110                    | 120 | mA        | +125°C                        | 1                                                                                         | (PTCON2 = 0x0002)                 |  |  |  |  |  |
| DC28d            | 88                     | 100 | mA        | -40°C                         |                                                                                           | 40 MIPS                           |  |  |  |  |  |
| DC28a            | 89                     | 100 | mA        | +25°C                         |                                                                                           | See <b>Note 2</b> , except PWM is |  |  |  |  |  |
| DC28b            | 89                     | 100 | mA        | +85°C                         | 3.3V                                                                                      | operating at 1/8 speed            |  |  |  |  |  |
| DC28c            | 89                     | 100 | mA        | +125°C                        | 1                                                                                         | (PTCON2 = 0x0003)                 |  |  |  |  |  |

## TABLE 27-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: These parameters are characterized but not tested in manufacturing.

<sup>2:</sup> The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to Vss. MCLR = VDD, WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating (PMD bits are all set).

# dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610

| DC CHARACT       | ERISTICS               |            | (unless oth                | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$ |        |                        |  |  |  |
|------------------|------------------------|------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------|--|--|--|
| Parameter<br>No. | Typical <sup>(1)</sup> | Max        | Units                      | Units Conditions                                                                                                                                                                                                                                                                    |        |                        |  |  |  |
| Idle Current (I  | DLE): Core Of          | f Clock On | Base Current <sup>(2</sup> | 2)                                                                                                                                                                                                                                                                                  |        |                        |  |  |  |
| DC40d            | 8                      | 15         | mA                         | -40°C                                                                                                                                                                                                                                                                               |        |                        |  |  |  |
| DC40a            | 9                      | 15         | mA                         | +25°C                                                                                                                                                                                                                                                                               | 3.3∨   | 10 MIPS                |  |  |  |
| DC40b            | 9                      | 15         | mA                         | +85°C                                                                                                                                                                                                                                                                               | 3.3V   | 10 1011175             |  |  |  |
| DC40c            | 10                     | 15         | mA                         | +125°C                                                                                                                                                                                                                                                                              | ]      |                        |  |  |  |
| DC41d            | 11                     | 20         | mA                         | -40°C                                                                                                                                                                                                                                                                               |        |                        |  |  |  |
| DC41a            | 11                     | 20         | mA                         | +25°C                                                                                                                                                                                                                                                                               | 3.3V   | 16 MIPS <sup>(3)</sup> |  |  |  |
| DC41b            | 11                     | 20         | mA                         | +85°C                                                                                                                                                                                                                                                                               |        | TO IVIT S              |  |  |  |
| DC41c            | 12                     | 20         | mA                         | +125°C                                                                                                                                                                                                                                                                              |        |                        |  |  |  |
| DC42d            | 14                     | 25         | mA                         | -40°C                                                                                                                                                                                                                                                                               |        |                        |  |  |  |
| DC42a            | 14                     | 25         | mA                         | +25°C                                                                                                                                                                                                                                                                               | 2.21/  | 20 MIPS <sup>(3)</sup> |  |  |  |
| DC42b            | 14                     | 25         | mA                         | +85°C                                                                                                                                                                                                                                                                               | 3.3V   | 20 MIPS**              |  |  |  |
| DC42c            | 15                     | 25         | mA                         | +125°C                                                                                                                                                                                                                                                                              | 1      |                        |  |  |  |
| DC43d            | 20                     | 30         | mA                         | -40°C                                                                                                                                                                                                                                                                               |        |                        |  |  |  |
| DC43a            | 20                     | 30         | mA                         | +25°C                                                                                                                                                                                                                                                                               | 2.01/  | 30 MIPS <sup>(3)</sup> |  |  |  |
| DC43b            | 21                     | 30         | mA                         | +85°C                                                                                                                                                                                                                                                                               | 3.3V   | 30 MIPS(0)             |  |  |  |
| DC43c            | 22                     | 30         | mA                         | +125°C                                                                                                                                                                                                                                                                              | 1      |                        |  |  |  |
| DC44d            | 29                     | 40         | mA                         | -40°C                                                                                                                                                                                                                                                                               |        |                        |  |  |  |
| DC44a            | 29                     | 40         | mA                         | +25°C                                                                                                                                                                                                                                                                               | 0.01/  | 40 14150               |  |  |  |
| DC44b            | 30                     | 40         | mA                         | +85°C                                                                                                                                                                                                                                                                               | - 3.3V | 40 MIPS                |  |  |  |
| DC44c            | 31                     | 40         | mA                         | +125°C                                                                                                                                                                                                                                                                              | 1      |                        |  |  |  |

#### TABLE 27-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

**Note 1:** Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: Base IIDLE current is measured with core off, clock on and all modules turned off. Peripheral module Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to Vss.

3: These parameters are characterized but not tested in manufacturing.

© 2010 Microchip Technology Inc.

| DC CHARACT                                | TERISTICS              | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$ |       |        |            |                                              |  |  |  |  |  |
|-------------------------------------------|------------------------|-------------------------------------------------------|-------|--------|------------|----------------------------------------------|--|--|--|--|--|
| Parameter<br>No.                          | Typical <sup>(1)</sup> | Мах                                                   | Units |        | Conditions |                                              |  |  |  |  |  |
| Power-Down Current (IPD) <sup>(2,4)</sup> |                        |                                                       |       |        |            |                                              |  |  |  |  |  |
| DC60d                                     | 50                     | 200                                                   | μA    | -40°C  |            |                                              |  |  |  |  |  |
| DC60a                                     | 50                     | 200                                                   | μA    | +25°C  | - 3.3V     | Reas Dower Down Current                      |  |  |  |  |  |
| DC60b                                     | 200                    | 500                                                   | μΑ    | +85°C  | 3.3V       | Base Power-Down Current                      |  |  |  |  |  |
| DC60c                                     | 600                    | 1000                                                  | μΑ    | +125°C |            |                                              |  |  |  |  |  |
| DC61d                                     | 8                      | 13                                                    | μΑ    | -40°C  |            |                                              |  |  |  |  |  |
| DC61a                                     | 10                     | 15                                                    | μA    | +25°C  | 2.21/      | Watchdog Timer Current: ∆IwDT <sup>(3)</sup> |  |  |  |  |  |
| DC61b                                     | 12                     | 20                                                    | μA    | +85°C  | - 3.3V     | watchdog Timer Current: AlwD107              |  |  |  |  |  |
| DC61c                                     | 13                     | 25                                                    | μΑ    | +125°C |            |                                              |  |  |  |  |  |

#### TABLE 27-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

**Note 1:** Data in the Typical column is at 3.3V, +25°C unless otherwise stated.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.

**3:** The ∆ current is the additional current consumed when the WDT module is enabled. This current should be added to the base IPD current.

4: These currents are measured on the device containing the most memory in this family.

#### TABLE 27-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

| DC CHARACTER  | STICS                  | Standard C<br>(unless oth<br>Operating to | nerwise s | <b>tated)</b><br><sup>.</sup> e -40°C | ≤ TA ≤ +8 | <b>5 3.6V</b><br>5°C for Industrial<br>25°C for Extended |         |      |         |
|---------------|------------------------|-------------------------------------------|-----------|---------------------------------------|-----------|----------------------------------------------------------|---------|------|---------|
| Parameter No. | Typical <sup>(1)</sup> | Doze<br>Ratio                             | Units     |                                       | Conc      | litions                                                  |         |      |         |
| DC73a         | 105                    | 120                                       | 1:2       | mA                                    |           |                                                          |         |      |         |
| DC73f         | 82                     | 100                                       | 1:64      | mA                                    | -40°C     | 3.3V                                                     | 40 MIPS |      |         |
| DC73g         | 82                     | 100                                       | 1:128     | mA                                    |           |                                                          |         |      |         |
| DC70a         | 105                    | 120                                       | 1:2       | mA                                    |           |                                                          |         |      |         |
| DC70f         | 80                     | 100                                       | 1:64      | mA                                    | +25°C     | +25°C                                                    | +25°C   | 3.3V | 40 MIPS |
| DC70g         | 79                     | 100                                       | 1:128     | mA                                    |           |                                                          |         |      |         |
| DC71a         | 105                    | 120                                       | 1:2       | mA                                    |           |                                                          |         |      |         |
| DC71f         | 77                     | 100                                       | 1:64      | mA                                    | +85°C     | 3.3V                                                     | 40 MIPS |      |         |
| DC71g         | 77                     | 100                                       | 1:128     | mA                                    |           |                                                          |         |      |         |
| DC72a         | 105                    | 120                                       | 1:2       | mA                                    |           |                                                          |         |      |         |
| DC72f         | 76                     | 100                                       | 1:64      | mA                                    | +125°C    | 125°C 3.3V                                               | 40 MIPS |      |         |
| DC72g         | 76                     | 100                                       | 1:128     | mA                                    |           |                                                          |         |      |         |

**Note 1:** Data in the Typical column is at 3.3V, +25°C unless otherwise stated.

| DC CHA       | RACTER | ISTICS                                                                                                                                                                  | (unless | d Operatir<br>otherwise<br>g tempera | <b>stated)</b><br>ture -40 | °C ≤ Ta | <b>.0V to 3.6V</b><br>≤ +85°C for Industrial<br>≤ +125°C for Extended |
|--------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------|----------------------------|---------|-----------------------------------------------------------------------|
| Param<br>No. | Symbol | Characteristic                                                                                                                                                          | Min     | Тур <sup>(1)</sup>                   | Max                        | Units   | Conditions                                                            |
|              | VIL    | Input Low Voltage                                                                                                                                                       |         |                                      |                            |         |                                                                       |
| DI10         |        | I/O Pins                                                                                                                                                                | Vss     | —                                    | 0.2 Vdd                    | V       |                                                                       |
| DI15         |        | MCLR                                                                                                                                                                    | Vss     | —                                    | 0.2 Vdd                    | V       |                                                                       |
| DI16         |        | I/O Pins with OSC1 or SOSCI                                                                                                                                             | Vss     | —                                    | 0.2 Vdd                    | V       |                                                                       |
| DI18         |        | I/O Pins with SDAx, SCLx, U2RX, U2TX                                                                                                                                    | Vss     | —                                    | 0.3 Vdd                    | V       | SMBus disabled                                                        |
| DI19         |        | I/O Pins with SDAx, SCLx, U2RX, U2TX                                                                                                                                    | Vss     | —                                    | 0.2 Vdd                    | V       | SMBus enabled                                                         |
|              | VIH    | Input High Voltage                                                                                                                                                      |         |                                      |                            |         |                                                                       |
| DI20         |        | I/O Pins Not 5V Tolerant <sup>(4)</sup>                                                                                                                                 | 0.7 Vdd | —                                    | Vdd                        | V       |                                                                       |
| DI21         |        | I/O Pins 5V Tolerant <sup>(4)</sup>                                                                                                                                     | 0.7 Vdd | _                                    | 5.5                        | V       |                                                                       |
| DI30         | ICNPU  | CNx Pull-up Current                                                                                                                                                     | _       | 250                                  |                            | μA      | VDD = 3.3V, VPIN = VSS                                                |
|              | lı∟    | Input Leakage Current <sup>(2,3,4)</sup>                                                                                                                                |         |                                      |                            |         |                                                                       |
| DI50         |        | I/O Pins with:                                                                                                                                                          |         |                                      |                            |         |                                                                       |
| 2100         |        | 4 mA Source/Sink Capability                                                                                                                                             | —       | —                                    | ±2                         | μA      | Vss $\leq$ VPIN $\leq$ VDD,<br>Pin at high-impedance                  |
|              |        | 8 mA Source/Sink Capability                                                                                                                                             | —       | —                                    | ±4                         | μA      | Vss $\leq$ VPIN $\leq$ VDD,<br>Pin at high-impedance                  |
|              |        | 16 mA Source/Sink Capability                                                                                                                                            | —       | —                                    | ±8                         | μA      | $VSS \le VPIN \le VDD$ ,<br>Pin at high-impedance                     |
| DI55         |        | MCLR                                                                                                                                                                    | _       | _                                    | ±2                         | μA      | $Vss \leq Vpin \leq Vdd$                                              |
| DI56         |        | OSC1                                                                                                                                                                    | —       | —                                    | ±2                         | μA      | VSS $\leq$ VPIN $\leq$ VDD, XT and HS modes                           |
| DI57         | Isink  | Sink Current<br>Pins:                                                                                                                                                   |         |                                      |                            |         |                                                                       |
|              |        | RA9, RA10, RD3-RD7, RD13,<br>RE0-RE7, RG12, RG13                                                                                                                        | —       | —                                    | 16                         | mA      |                                                                       |
|              |        | Pins:<br>RC15                                                                                                                                                           | _       | —                                    | 8                          | mA      |                                                                       |
|              |        | Pins:<br>RA0-RA7, RA14, RA15, RB0-<br>RB15, RC1-RC4, RC12-RC14,<br>RD0-RD2, RD8-RD12, RD14,<br>RD15, RE8, RE9, RF0-RF8,<br>RF12, RF13, RG0-RG3, RG6-<br>RG9, RG14, RG15 | _       | _                                    | 4                          | mA      |                                                                       |
|              |        | Pins:<br>MCLR                                                                                                                                                           | —       | —                                    | 2                          | mA      |                                                                       |

## TABLE 27-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

**Note 1:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

**3:** Negative current is defined as current sourced by the pin.

4: See "Pin Diagrams" for the list of 5V tolerant I/O pins.

| DC CHA       | RACTER  | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$ |                      |     |            |             |                                                                                |  |
|--------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----|------------|-------------|--------------------------------------------------------------------------------|--|
| Param<br>No. | Symbol  | Characteristic                                                                                                                                                                                                                                                                      | Min                  | Тур | Max        | Units       | Conditions                                                                     |  |
| DO10         | Vol     | Output Low Voltage<br>I/O Ports:<br>4 mA Source/Sink Capability<br>8 mA Source/Sink Capability                                                                                                                                                                                      | _                    | _   | 0.4<br>0.4 | V<br>V      | IOL = 4 mA, VDD = 3.3V<br>IOL = 8 mA, VDD = 3.3V                               |  |
|              |         | 16 mA Source/Sink Capability                                                                                                                                                                                                                                                        | _                    | _   | 0.4        | V           | IOL = 16 mA, VDD = 3.3V                                                        |  |
| DO16<br>DO20 | Voн     | OSC2/CLKO<br>Output High Voltage<br>I/O Ports:                                                                                                                                                                                                                                      | _                    | _   | 0.4        | V           | IOL = 2 mA, VDD = 3.3V                                                         |  |
|              |         | 4 mA Source/Sink Capability<br>8 mA Source/Sink Capability<br>16 mA Source/Sink Capability                                                                                                                                                                                          | 2.40<br>2.40<br>2.40 |     |            | V<br>V<br>V | IOH = -4 mA, VDD = 3.3V<br>IOH = -8 mA, VDD = 3.3V<br>IOH = -16 mA, VDD = 3.3V |  |
| DO26         |         | OSC2/CLKO                                                                                                                                                                                                                                                                           | 2.41                 | _   | _          | V           | IOH = -1.3 mA, VDD = 3.3V                                                      |  |
| DO27         | ISOURCE | <b>Source Current</b><br>Pins:<br>RA9, RA10, RD3-RD7, RD13,<br>RE0-RE7, RG12, RG13                                                                                                                                                                                                  | _                    | _   | 16         | mA          |                                                                                |  |
|              |         | Pins:<br>RC15                                                                                                                                                                                                                                                                       | _                    | _   | 8          | mA          |                                                                                |  |
|              |         | Pins:<br>RA0-RA7, RA14, RA15, RB0-<br>RB15, RC1-RC4, RC12-RC14,<br>RD0-RD2, RD8-RD12, RD14,<br>RD15, RE8, RE9, RF0-RF8,<br>RF12, RF13, RG0-RG3, RG6-<br>RG9, RG14, RG15                                                                                                             | _                    |     | 4          | mA          |                                                                                |  |
|              |         | Pins:<br>MCLR                                                                                                                                                                                                                                                                       | —                    | —   | 2          | mA          |                                                                                |  |

#### TABLE 27-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

## TABLE 27-11: ELECTRICAL CHARACTERISTICS: BOR

| DC CHAR      | ACTERIST | ICS                                                                               | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$ |                    |     |      |       |            |  |  |
|--------------|----------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|------|-------|------------|--|--|
| Param<br>No. | Symbol   | Character                                                                         | istic                                                                                                                                                                                                                                                                               | Min <sup>(1)</sup> | Тур | Max  | Units | Conditions |  |  |
| BO10         | VBOR     | BOR Event on VDD Tra<br>High-to-Low<br>BOR Event is Tied to V<br>Voltage Decrease |                                                                                                                                                                                                                                                                                     | 2.6                | _   | 2.95 | V     |            |  |  |

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

| DC CHA       | DC CHARACTERISTICS |                                      |        | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for } \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for } \end{array}$ |      |       |                                                                |  |  |  |  |
|--------------|--------------------|--------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|----------------------------------------------------------------|--|--|--|--|
| Param<br>No. | Symbol             | Characteristic                       | Min    | Typ <sup>(1)</sup>                                                                                                                                                                                                                                              | Max  | Units | Conditions                                                     |  |  |  |  |
|              |                    | Program Flash Memory                 |        |                                                                                                                                                                                                                                                                 |      |       |                                                                |  |  |  |  |
| D130         | Eр                 | Cell Endurance                       | 10,000 | —                                                                                                                                                                                                                                                               | _    | E/W   | -40°C to +125°C                                                |  |  |  |  |
| D131         | Vpr                | VDD for Read                         | Vmin   | —                                                                                                                                                                                                                                                               | 3.6  | V     | VMIN = Minimum operating<br>voltage                            |  |  |  |  |
| D132B        | Vpew               | VDD for Self-Timed Write             | Vmin   | —                                                                                                                                                                                                                                                               | 3.6  | V     | VMIN = Minimum operating<br>voltage                            |  |  |  |  |
| D134         | TRETD              | Characteristic Retention             | 20     | —                                                                                                                                                                                                                                                               | —    | Year  | Provided no other specifications are violated, -40°C to +125°C |  |  |  |  |
| D135         | IDDP               | Supply Current during<br>Programming | _      | 10                                                                                                                                                                                                                                                              | —    | mA    |                                                                |  |  |  |  |
| D136a        | Trw                | Row Write Time                       | 1.43   | —                                                                                                                                                                                                                                                               | 1.58 | ms    | Trw = 11064 FRC cycles,<br>Ta = +85°C, See <b>Note 2</b>       |  |  |  |  |
| D136b        | Trw                | Row Write Time                       | 1.39   | —                                                                                                                                                                                                                                                               | 1.63 | ms    | Trw = 11064 FRC cycles,<br>Ta = +125°C, See <b>Note 2</b>      |  |  |  |  |
| D137a        | TPE                | Page Erase Time                      | 21.8   | —                                                                                                                                                                                                                                                               | 24.1 | ms    | TPE = 168517 FRC cycles,<br>TA = +85°C, See <b>Note 2</b>      |  |  |  |  |
| D137b        | Тре                | Page Erase Time                      | 21.1   | —                                                                                                                                                                                                                                                               | 24.8 | ms    | TPE = 168517 FRC cycles,<br>TA = +125°C, See <b>Note 2</b>     |  |  |  |  |
| D138a        | Tww                | Word Write Cycle Time                | 45.8   | —                                                                                                                                                                                                                                                               | 50.7 | μs    | Tww = 355 FRC cycles,<br>Ta = +85°C, See <b>Note 2</b>         |  |  |  |  |
| D138b        | Tww                | Word Write Cycle Time                | 44.5   | —                                                                                                                                                                                                                                                               | 52.3 | μs    | Tww = 355 FRC cycles,<br>Ta = +125°C, See <b>Note 2</b>        |  |  |  |  |

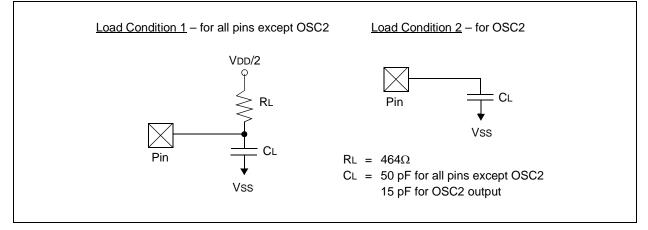
### TABLE 27-12: DC CHARACTERISTICS: PROGRAM MEMORY

**Note 1:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 27-20) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time see Section 5.3 "Programming Operations".

#### TABLE 27-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

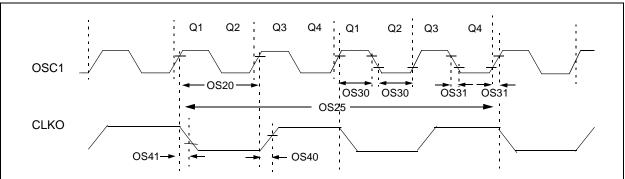
| Operatin     | g Conditio |                                    | $0^{\circ}C \le TA \le +85^{\circ}C$ for Industrial<br>$0^{\circ}C \le TA \le +125^{\circ}C$ for Extended |     |     |       |                                                            |  |  |  |
|--------------|------------|------------------------------------|-----------------------------------------------------------------------------------------------------------|-----|-----|-------|------------------------------------------------------------|--|--|--|
| Param<br>No. | Symbol     | Characteristics                    | Min                                                                                                       | Тур | Max | Units | Comments                                                   |  |  |  |
|              | Cefc       | External Filter Capacitor<br>Value | 22                                                                                                        | _   | _   | μF    | Capacitor must be low<br>series resistance<br>(< 0.5 Ohms) |  |  |  |


### 27.2 AC Characteristics and Timing Parameters

This section defines dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 AC characteristics and timing parameters.

#### TABLE 27-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

|                    | Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) |
|--------------------|-----------------------------------------------------------------------|
| AC CHARACTERISTICS | $\begin{array}{llllllllllllllllllllllllllllllllllll$                  |


#### FIGURE 27-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS



#### TABLE 27-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

| Param<br>No. | Symbol | Characteristic        | Min | Тур | Max | Units | Conditions                                                         |
|--------------|--------|-----------------------|-----|-----|-----|-------|--------------------------------------------------------------------|
| DO50         | Cosco  | OSC2 Pin              | _   | —   | 15  |       | In XT and HS modes when<br>external clock is used to drive<br>OSC1 |
| DO56         | Сю     | All I/O Pins and OSC2 | —   | —   | 50  | pF    | EC mode                                                            |
| DO58         | Св     | SCLx, SDAx            | _   | —   | 400 | pF    | In I <sup>2</sup> C™ mode                                          |





### TABLE 27-16: EXTERNAL CLOCK TIMING REQUIREMENTS

| AC CHA       | RACTEF        | RISTICS                                                                            | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$ |     |              |            |          |  |  |  |
|--------------|---------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|------------|----------|--|--|--|
| Param<br>No. | Symb          | Characteristic                                                                     | Min Typ <sup>(1)</sup> Max Units Cond                                                                                                                                                                                                                                               |     |              |            |          |  |  |  |
| OS10         | FIN           | External CLKI Frequency<br>(External clocks allowed only<br>in EC and ECPLL modes) | DC                                                                                                                                                                                                                                                                                  | —   | 40           | MHz        | EC       |  |  |  |
|              |               | Oscillator Crystal Frequency                                                       | 3.5<br>10                                                                                                                                                                                                                                                                           |     | 10<br>40     | MHz<br>MHz | XT<br>HS |  |  |  |
| OS20         | Tosc          | Tosc = 1/Fosc                                                                      | 12.5                                                                                                                                                                                                                                                                                | _   | DC           | ns         |          |  |  |  |
| OS25         | Тсү           | Instruction Cycle Time <sup>(2)</sup>                                              | 25                                                                                                                                                                                                                                                                                  |     | DC           | ns         |          |  |  |  |
| OS30         | TosL,<br>TosH | External Clock in (OSC1)<br>High or Low Time                                       | 0.375 x Tosc                                                                                                                                                                                                                                                                        | —   | 0.625 x Tosc | ns         | EC       |  |  |  |
| OS31         | TosR,<br>TosF | External Clock in (OSC1)<br>Rise or Fall Time                                      | —                                                                                                                                                                                                                                                                                   | —   | 20           | ns         | EC       |  |  |  |
| OS40         | TckR          | CLKO Rise Time <sup>(3)</sup>                                                      | —                                                                                                                                                                                                                                                                                   | 5.2 | _            | ns         |          |  |  |  |
| OS41         | TckF          | CLKO Fall Time <sup>(3)</sup>                                                      | —                                                                                                                                                                                                                                                                                   | 5.2 | —            | ns         |          |  |  |  |

**Note 1:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: Instruction cycle period (TCY) equals two times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.

| AC CHA       | RACTERI | STICS                                                               | stated) | $\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |                    |     |                                |                    |  |  |  |
|--------------|---------|---------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|--------------------------------|--------------------|--|--|--|
| Param<br>No. | Symbol  | Characteris                                                         | stic    | Min                                                                                                                                                                                                                                                                           | Typ <sup>(1)</sup> | Max | Units                          | Conditions         |  |  |  |
| OS50         | Fplli   | PLL Voltage Controlled<br>Oscillator (VCO) Input<br>Frequency Range |         | 0.8                                                                                                                                                                                                                                                                           | _                  | 8   | MHz                            | ECPLL, XTPLL modes |  |  |  |
| OS51         | Fsys    | On-Chip VCO Syster<br>Frequency                                     | m       | 100                                                                                                                                                                                                                                                                           | —                  | 200 | MHz                            |                    |  |  |  |
| OS52         | TLOCK   | PLL Start-up Time (Lock Time)                                       |         | 0.9                                                                                                                                                                                                                                                                           | 1.5                | 3.1 | mS                             |                    |  |  |  |
| OS53         | DCLK    | CLKO Stability (Jitter                                              | -3      | 0.5                                                                                                                                                                                                                                                                           | 3                  | %   | Measured over 100 ms<br>period |                    |  |  |  |

#### TABLE 27-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

**Note 1:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

#### TABLE 27-18: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

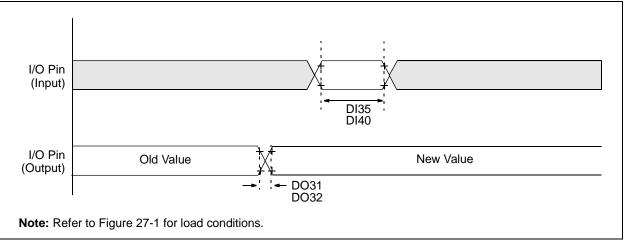
| AC CHA                             | RACTERI | STICS                                      | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |     |                    |     |       |            |  |  |  |
|------------------------------------|---------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------|-----|-------|------------|--|--|--|
| Param<br>No. Symbol Characteristic |         |                                            | stic                                                                                                                                                                                                                                                                        | Min | Тур <sup>(1)</sup> | Max | Units | Conditions |  |  |  |
| OS56                               | Fhpout  | 0n-Chip 16x PLL CC<br>Frequency            | 0                                                                                                                                                                                                                                                                           | 112 | 118                | 120 | MHz   |            |  |  |  |
| OS57                               | Fhpin   | On-Chip 16x PLL Ph<br>Detector Input Frequ |                                                                                                                                                                                                                                                                             | 7.0 | 7.37               | 7.5 | MHz   |            |  |  |  |
| OS58                               | Tsu     | Frequency Generator Lock<br>Time           |                                                                                                                                                                                                                                                                             |     | —                  | 10  | μs    |            |  |  |  |

**Note 1:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

#### TABLE 27-19: AC CHARACTERISTICS: INTERNAL RC ACCURACY

| АС СНА       | RACTERISTICS            |        | $\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |          |                      |                                                                                   |                |  |  |  |  |
|--------------|-------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|-----------------------------------------------------------------------------------|----------------|--|--|--|--|
| Param<br>No. | Characteristic          | Min    | Тур                                                                                                                                                                                                                                                                          | Max      | Units Conditions     |                                                                                   |                |  |  |  |  |
|              | Internal FRC Accuracy @ | FRC Fr | equency                                                                                                                                                                                                                                                                      | = 7.37 N | 1Hz <sup>(1,2)</sup> |                                                                                   |                |  |  |  |  |
| F20a         | FRC                     | -1     | —                                                                                                                                                                                                                                                                            | +1       | %                    | $-40^{\circ}C \le TA \le +85^{\circ}C \qquad \text{VDD} = 3.0\text{-}3.6\text{V}$ |                |  |  |  |  |
| F20b         | FRC                     | -2     |                                                                                                                                                                                                                                                                              | +2       | %                    | $-40^{\circ}C \leq TA \leq +125^{\circ}C$                                         | VDD = 3.0-3.6V |  |  |  |  |

**Note 1:** Frequency calibrated at +25°C and 3.3V. The TUN<5:0> bits can be used to compensate for temperature drift.


2: FRC is set to initial frequency of 7.37 MHz (±2%) at +25°C.

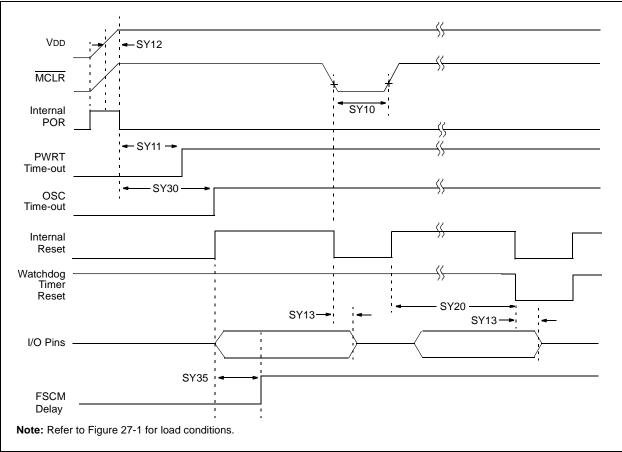
#### TABLE 27-20: INTERNAL RC ACCURACY

| AC CH        | ARACTERISTICS                                                                                      | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |     |     |       |                                        |  |  |  |
|--------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------|-----|-----|-------|----------------------------------------|--|--|--|
| Param<br>No. | Characteristic                                                                                     | Min                                                  | Тур | Max | Units | Conditions                             |  |  |  |
|              | LPRC @ 32.768 kHz <sup>(1)</sup>                                                                   |                                                      |     |     |       |                                        |  |  |  |
| F21a         | LPRC                                                                                               | -40                                                  | _   | +40 | %     | $-40^{\circ}C \le TA \le +85^{\circ}C$ |  |  |  |
| F21b         | 21b         LPRC         -70         -         +70         %         -40°C $\leq$ TA $\leq$ +125°C |                                                      |     |     |       |                                        |  |  |  |

**Note 1:** Change of LPRC frequency as VDD changes.

#### FIGURE 27-3: I/O TIMING CHARACTERISTICS




#### TABLE 27-21: I/O TIMING REQUIREMENTS

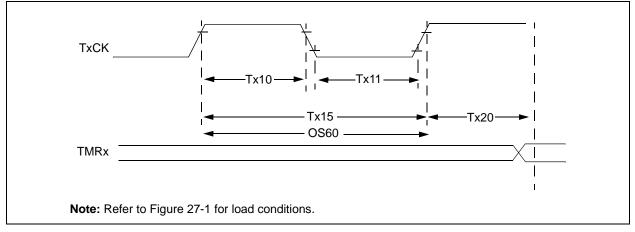
| AC CHARACTERISTICS |        |                      | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |    |                    |     |       |                                          |  |  |
|--------------------|--------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------|-----|-------|------------------------------------------|--|--|
| Param<br>No.       | Symbol | characteristic       |                                                                                                                                                                                                                                                                                         |    | Typ <sup>(1)</sup> | Мах | Units | Conditions                               |  |  |
| DO31               | TIOR   | Port Output Rise Tin | ne                                                                                                                                                                                                                                                                                      | _  | 10                 | 25  | ns    | Refer to Figure 27-1 for test conditions |  |  |
| DO32               | TIOF   | Port Output Fall Tim | e                                                                                                                                                                                                                                                                                       | _  | 10                 | 25  | ns    | Refer to Figure 27-1 for test conditions |  |  |
| DI35               | TINP   | INTx Pin High or Lov | w Time (output)                                                                                                                                                                                                                                                                         | 20 | —                  | _   | ns    |                                          |  |  |
| DI40               | Trbp   |                      |                                                                                                                                                                                                                                                                                         |    | —                  | _   | Тсү   |                                          |  |  |

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

 $\ensuremath{\textcircled{}^{\odot}}$  2010 Microchip Technology Inc.






# TABLE 27-22: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS

| AC CHA       | AC CHARACTERISTICS                        |                                                             |      | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$ |     |       |                                                                                                    |  |  |  |  |
|--------------|-------------------------------------------|-------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|----------------------------------------------------------------------------------------------------|--|--|--|--|
| Param<br>No. | Symbol                                    | Characteristic <sup>(1)</sup>                               | Min  | Тур <sup>(2)</sup>                                                                                                                                                                                                                                                                  | Max | Units | Conditions                                                                                         |  |  |  |  |
| SY10         | TMCL                                      | MCLR Pulse Width (low)                                      | 2    | —                                                                                                                                                                                                                                                                                   | —   | μS    | -40°C to +85°C                                                                                     |  |  |  |  |
| SY11         | TPWRT                                     | Power-up Timer Period                                       |      | 2<br>4<br>16<br>32<br>64<br>128                                                                                                                                                                                                                                                     | _   | ms    | -40°C to +85°C<br>User programmable                                                                |  |  |  |  |
| SY12         | TPOR                                      | Power-on Reset Delay                                        | 3    | 10                                                                                                                                                                                                                                                                                  | 30  | μS    | -40°C to +85°C                                                                                     |  |  |  |  |
| SY13         | Tioz                                      | I/O High-Impedance from MCLR<br>Low or Watchdog Timer Reset | 0.68 | 0.72                                                                                                                                                                                                                                                                                | 1.2 | μS    |                                                                                                    |  |  |  |  |
| SY20         | SY20 TwDT1 Watchdog Timer Time-out Period |                                                             | —    | —                                                                                                                                                                                                                                                                                   | —   | ms    | See <b>Section 24.4 "Watch-<br/>dog Timer (WDT)</b> " and<br>LPRC parameter F21a<br>(Table 27-20). |  |  |  |  |
| SY30         | Tost                                      | Oscillator Start-up Time                                    | _    | 1024<br>Tosc                                                                                                                                                                                                                                                                        | _   |       | Tosc = OSC1 period                                                                                 |  |  |  |  |

**Note 1:** These parameters are characterized but not tested in manufacturing.

**2:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

#### FIGURE 27-5: TIMER1, 2 AND 3 EXTERNAL CLOCK TIMING CHARACTERISTICS



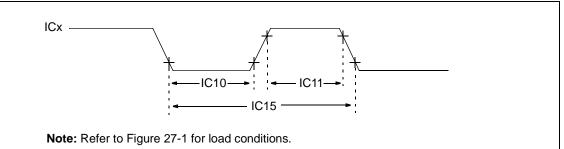
| AC CHA       | RACTERIST |                                                                  | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$ |      |                                         |     |              |       |                                          |    |                                  |
|--------------|-----------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------|-----|--------------|-------|------------------------------------------|----|----------------------------------|
| Param<br>No. | Symbol    | Characte                                                         | eristic                                                                                                                                                                                                                                                                             |      | Min                                     | Тур | Max          | Units | Conditions                               |    |                                  |
| TA10         | ТтхН      | TxCK High Time                                                   | Synchron<br>no presca                                                                                                                                                                                                                                                               | ,    | 0.5 TCY + 20                            |     | _            | ns    | Must also meet parameter TA15            |    |                                  |
|              |           |                                                                  | Synchronous,<br>with prescaler                                                                                                                                                                                                                                                      |      | 10                                      | _   | _            | ns    |                                          |    |                                  |
|              |           |                                                                  | Asynchro                                                                                                                                                                                                                                                                            | nous | 10                                      |     | _            | ns    |                                          |    |                                  |
| TA11         | ΤτxL      | TxCK Low Time                                                    | Synchronous,                                                                                                                                                                                                                                                                        |      | Synchronous,<br>no prescaler            |     | 0.5 Tcy + 20 | _     | _                                        | ns | Must also meet<br>parameter TA15 |
|              |           |                                                                  | Synchror with pres                                                                                                                                                                                                                                                                  |      | 10                                      |     | —            | ns    |                                          |    |                                  |
|              |           |                                                                  | Asynchro                                                                                                                                                                                                                                                                            | nous | 10                                      | _   |              | ns    |                                          |    |                                  |
| TA15         | ΤτχΡ      | TxCK Input Period                                                | Synchror<br>no presca                                                                                                                                                                                                                                                               |      | Tcy + 40                                |     | —            | ns    |                                          |    |                                  |
|              |           |                                                                  | Synchror<br>with pres                                                                                                                                                                                                                                                               |      | Greater of:<br>20 ns or<br>(TcY + 40)/N | _   | _            | _     | N = prescale<br>value<br>(1, 8, 64, 256) |    |                                  |
|              |           |                                                                  | Asynchro                                                                                                                                                                                                                                                                            | nous | 20                                      | _   | _            | ns    |                                          |    |                                  |
| OS60         | Ft1       | T1CK Oscillator Inp<br>Range (oscillator er<br>bit, TCS (T1CON<1 | nabled by s                                                                                                                                                                                                                                                                         |      | DC                                      | —   | 50           | kHz   |                                          |    |                                  |
| TA20         | TCKEXTMRL | Delay from Externa<br>Edge to Timer Incre                        |                                                                                                                                                                                                                                                                                     | ock  | 0.5 TCY                                 |     | 1.5 TCY      |       |                                          |    |                                  |

# TABLE 27-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS<sup>(1)</sup>

**Note 1:** Timer1 is a Type A.

| AC CHARACTERISTICS |           |                                          | Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |       |                                         |     |         |       |                                  |
|--------------------|-----------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------|-----|---------|-------|----------------------------------|
| Param<br>No.       | Symbol    | Charact                                  | eristic                                                                                                                                                                                              |       | Min                                     | Тур | Max     | Units | Conditions                       |
| TB10               | ТтхН      | TxCK High Time                           | Synchronous,<br>no prescaler<br>Synchronous,<br>with prescaler                                                                                                                                       |       | 0.5 TCY + 20                            |     | —       | ns    | Must also meet<br>parameter TB15 |
|                    |           |                                          |                                                                                                                                                                                                      |       | 10                                      | _   | —       | ns    |                                  |
| TB11               | TTXL      | TxCK Low Time                            | Synchronous,<br>no prescaler                                                                                                                                                                         |       | 0.5 TCY + 20                            | _   |         | ns    | Must also meet parameter TB15    |
|                    |           |                                          | Synchro<br>with pre                                                                                                                                                                                  |       | 10                                      |     |         | ns    |                                  |
| TB15               | ΤτχΡ      | TxCK Input<br>Period                     | Synchro<br>no prese                                                                                                                                                                                  |       | Tcy + 40                                | _   | —       | ns    | N = prescale<br>value            |
|                    |           |                                          | Synchro<br>with pre                                                                                                                                                                                  |       | Greater of:<br>20 ns or<br>(TCY + 40)/N |     |         |       | (1, 8, 64, 256)                  |
| TB20               | TCKEXTMRL | Delay from Externa<br>Edge to Timer Incr |                                                                                                                                                                                                      | Clock | 0.5 TCY                                 | _   | 1.5 TCY | _     |                                  |

#### TABLE 27-24: TIMER2 EXTERNAL CLOCK TIMING REQUIREMENTS

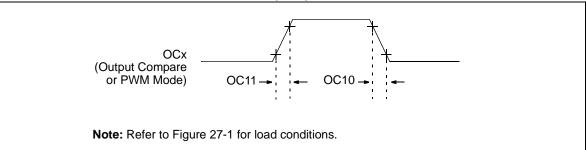

#### TABLE 27-25: TIMER3 EXTERNAL CLOCK TIMING REQUIREMENTS

| AC CHARACTERISTICS (un |           |                                           |                             |      | Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |     |            |       |                               |  |
|------------------------|-----------|-------------------------------------------|-----------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|-------|-------------------------------|--|
| Param<br>No.           | Symbol    | Characte                                  | eristic                     |      | Min                                                                                                                                                                                                  | Тур | Max        | Units | Conditions                    |  |
| TC10                   | Т⊤хН      | TxCK High Time                            | Synchro                     | nous | 0.5 TCY + 20                                                                                                                                                                                         |     | 1          | ns    | Must also meet parameter TC15 |  |
| TC11                   | T⊤xL      | TxCK Low Time                             | Synchronous                 |      | 0.5 TCY + 20                                                                                                                                                                                         |     |            | ns    | Must also meet parameter TC15 |  |
| TC15                   | ΤτχΡ      | TxCK Input Period                         | Synchro<br>no preso         |      | Tcy + 40                                                                                                                                                                                             | _   |            | ns    | N = prescale<br>value         |  |
|                        |           |                                           | Synchronous, with prescaler |      | Greater of:<br>20 ns or<br>(Tcy + 40)/N                                                                                                                                                              |     |            |       | (1, 8, 64, 256)               |  |
| TC20                   | TCKEXTMRL | Delay from Externa<br>Edge to Timer Incre |                             | lock | 0.5 TCY                                                                                                                                                                                              | _   | 1.5<br>Тсү | _     |                               |  |

© 2010 Microchip Technology Inc.

DS70591C-page 369

#### FIGURE 27-6: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

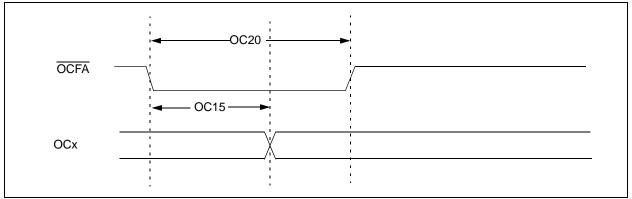



#### TABLE 27-26: INPUT CAPTURE TIMING REQUIREMENTS

| AC CHARACTERISTICS (unless |        |                     | (unless otherwis      | andard Operating Conditions: 3.0V to 3.6V<br>hless otherwise stated)<br>verating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial<br>$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |     |       |                                  |  |  |  |
|----------------------------|--------|---------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|----------------------------------|--|--|--|
| Param<br>No.               | Symbol | Characte            | ristic <sup>(1)</sup> | Min                                                                                                                                                                                                        | Мах | Units | Conditions                       |  |  |  |
| IC10                       | TccL   | ICx Input Low Time  | No prescaler          | 0.5 Tcy + 20                                                                                                                                                                                               |     | ns    |                                  |  |  |  |
|                            |        |                     | With prescaler        | 10                                                                                                                                                                                                         | _   | ns    |                                  |  |  |  |
| IC11                       | TccH   | ICx Input High Time | No prescaler          | 0.5 Tcy + 20                                                                                                                                                                                               |     | ns    |                                  |  |  |  |
|                            |        |                     | With prescaler        | 10                                                                                                                                                                                                         | _   | ns    |                                  |  |  |  |
| IC15                       | TccP   | ICx Input Period    | •                     | (Tcy + 40)/N                                                                                                                                                                                               | _   | ns    | N = prescale<br>value (1, 4, 16) |  |  |  |

**Note 1:** These parameters are characterized but not tested in manufacturing.

#### FIGURE 27-7: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS



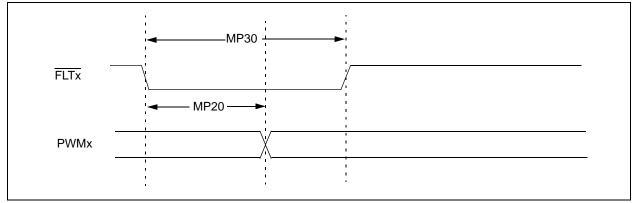

#### TABLE 27-27: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

| AC CHARACTERISTICS |        |                               | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$ |     |     |       |                    |  |
|--------------------|--------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-------|--------------------|--|
| Param<br>No.       | Symbol | Characteristic <sup>(1)</sup> | Min                                                                                                                                                                                                                                                                               | Тур | Max | Units | Conditions         |  |
| OC10               | TccF   | OCx Output Fall Time          | _                                                                                                                                                                                                                                                                                 | _   | -   | ns    | See parameter D032 |  |
| OC11               | TccR   | OCx Output Rise Time          | — — ns See parameter D031                                                                                                                                                                                                                                                         |     |     |       |                    |  |

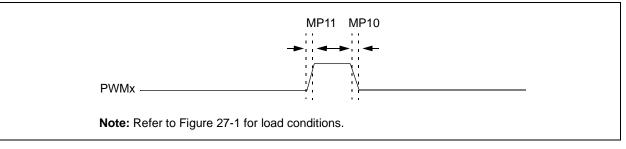
**Note 1:** These parameters are characterized but not tested in manufacturing.

#### FIGURE 27-8: OC/PWM MODULE TIMING CHARACTERISTICS




#### TABLE 27-28: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

| AC CHAF      | C CHARACTERISTICS |                                  |     | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |    |    |            |  |  |
|--------------|-------------------|----------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|------------|--|--|
| Param<br>No. | Symbol            | Characteristic <sup>(1)</sup>    | Min | Min Typ Max                                                                                                                                                                                                                                                                             |    |    | Conditions |  |  |
| OC15         | TFD               | Fault Input to PWM I/O<br>Change | _   | _                                                                                                                                                                                                                                                                                       | 50 | ns |            |  |  |
| OC20         | TFLT              | Fault Input Pulse Width          | 50  | _                                                                                                                                                                                                                                                                                       | —  | ns |            |  |  |

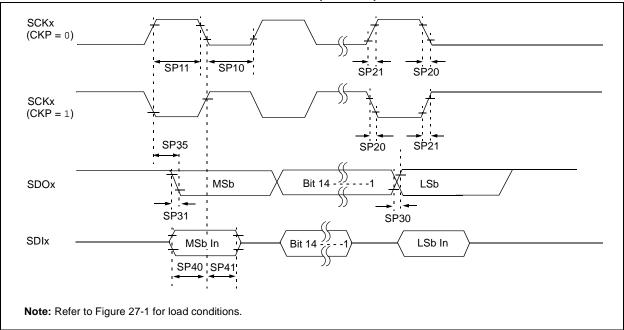

**Note 1:** These parameters are characterized but not tested in manufacturing.

© 2010 Microchip Technology Inc.

#### FIGURE 27-9: HIGH-SPEED PWM MODULE FAULT TIMING CHARACTERISTICS



#### FIGURE 27-10: HIGH-SPEED PWM MODULE TIMING CHARACTERISTICS




#### TABLE 27-29: HIGH-SPEED PWM MODULE TIMING REQUIREMENTS

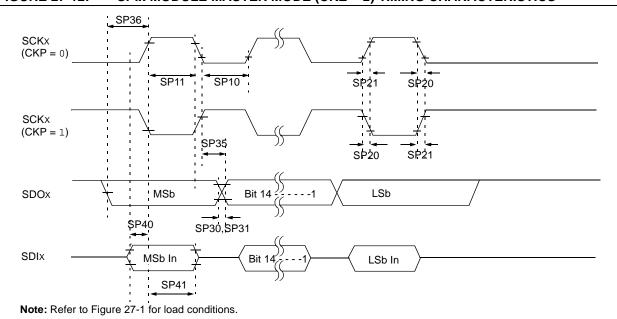
|              |        |                                    | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |     |     |     |                |  |
|--------------|--------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|----------------|--|
| Param<br>No. | Symbol | Characteristic <sup>(1)</sup>      | Min Typ Max Units                                                                                                                                                                                                                                                                       |     |     |     | Conditions     |  |
| MP10         | TFPWM  | PWM Output Fall Time               |                                                                                                                                                                                                                                                                                         | 2.5 | _   | ns  |                |  |
| MP11         | TRPWM  | PWM Output Rise Time               | _                                                                                                                                                                                                                                                                                       | 2.5 | _   | ns  |                |  |
| MP20         | TFD    | Fault Input ↓ to PWM<br>I/O Change |                                                                                                                                                                                                                                                                                         |     | 15  | ns  | DTC<10> = 10   |  |
| MP30         | Тғн    | Minimum PWM Fault Pulse Width      | 8                                                                                                                                                                                                                                                                                       | -   | -   | ns  |                |  |
| MP31         | TPDLY  | Tap Delay                          | 1.04                                                                                                                                                                                                                                                                                    | —   | —   | ns  | ACLK = 120 MHz |  |
| MP32         | ACLK   | PWM Input Clock                    | _                                                                                                                                                                                                                                                                                       | _   | 120 | MHz | See Note 2     |  |

**Note 1:** These parameters are characterized but not tested in manufacturing.

2: This parameter is a maximum allowed input clock for the PWM module.



#### FIGURE 27-11: SPIX MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS


#### TABLE 27-30: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

| AC CHARACTERISTICS |                       |                                            | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$ |                    |     |       |                                         |  |
|--------------------|-----------------------|--------------------------------------------|-------------------------------------------------------|--------------------|-----|-------|-----------------------------------------|--|
| Param<br>No.       | Symbol                | Characteristic <sup>(1)</sup>              | Min                                                   | Тур <sup>(2)</sup> | Max | Units | Conditions                              |  |
| SP10               | TscL                  | SCKx Output Low Time                       | Tcy/2                                                 | _                  |     | ns    | See Note 3                              |  |
| SP11               | TscH                  | SCKx Output High Time                      | Tcy/2                                                 | _                  |     | ns    | See Note 3                              |  |
| SP20               | TscF                  | SCKx Output Fall Time                      | —                                                     | —                  | _   | ns    | See parameter D032 and <b>Note 4</b>    |  |
| SP21               | TscR                  | SCKx Output Rise Time                      | —                                                     | —                  |     | ns    | See parameter D031<br>and <b>Note 4</b> |  |
| SP30               | TdoF                  | SDOx Data Output Fall Time                 | —                                                     | —                  | _   | ns    | See parameter D032 and <b>Note 4</b>    |  |
| SP31               | TdoR                  | SDOx Data Output Rise Time                 | —                                                     | —                  |     | ns    | See parameter D031 and Note 4           |  |
| SP35               | TscH2doV,<br>TscL2doV | SDOx Data Output Valid after<br>SCKx Edge  | —                                                     | 6                  | 20  | ns    |                                         |  |
| SP40               | TdiV2scH,<br>TdiV2scL | Setup Time of SDIx Data Input to SCKx Edge | 23                                                    | —                  | _   | ns    |                                         |  |
| SP41               | TscH2diL,<br>TscL2diL | Hold Time of SDIx Data Input to SCKx Edge  | 30                                                    | —                  | _   | ns    |                                         |  |

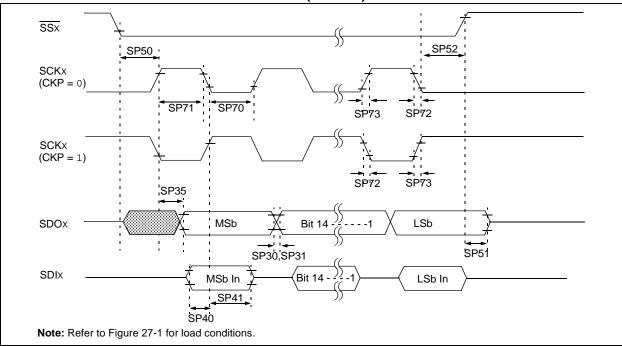
**Note 1:** These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.



#### FIGURE 27-12: SPIX MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS


#### TABLE 27-31: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

| АС СНА       | RACTERIST             | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |       |                    |     |       |                                         |
|--------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|-----|-------|-----------------------------------------|
| Param<br>No. | Symbol                | Characteristic <sup>(1)</sup>                                                                                                                                                                                                                                                           | Min   | Тур <sup>(2)</sup> | Max | Units | Conditions                              |
| SP10         | TscL                  | SCKx Output Low Time                                                                                                                                                                                                                                                                    | Tcy/2 | _                  | _   | ns    | See Note 3                              |
| SP11         | TscH                  | SCKx Output High Time                                                                                                                                                                                                                                                                   | Tcy/2 | —                  |     | ns    | See Note 3                              |
| SP20         | TscF                  | SCKx Output Fall Time                                                                                                                                                                                                                                                                   | _     | —                  | _   | ns    | See parameter D032<br>and <b>Note 4</b> |
| SP21         | TscR                  | SCKx Output Rise Time                                                                                                                                                                                                                                                                   | _     | —                  | _   | ns    | See parameter D031<br>and <b>Note 4</b> |
| SP30         | TdoF                  | SDOx Data Output Fall Time                                                                                                                                                                                                                                                              | _     | —                  | _   | ns    | See parameter D032 and <b>Note 4</b>    |
| SP31         | TdoR                  | SDOx Data Output Rise Time                                                                                                                                                                                                                                                              | _     | —                  | _   | ns    | See parameter D031<br>and <b>Note 4</b> |
| SP35         | TscH2doV,<br>TscL2doV | SDOx Data Output Valid after<br>SCKx Edge                                                                                                                                                                                                                                               | _     | 6                  | 20  | ns    |                                         |
| SP36         | TdoV2sc,<br>TdoV2scL  | SDOx Data Output Setup to<br>First SCKx Edge                                                                                                                                                                                                                                            | 30    | —                  | _   | ns    |                                         |
| SP40         | TdiV2scH,<br>TdiV2scL | Setup Time of SDIx Data<br>Input to SCKx Edge                                                                                                                                                                                                                                           | 23    | —                  | _   | ns    |                                         |
| SP41         | TscH2diL,<br>TscL2diL | Hold Time of SDIx Data Input to SCKx Edge                                                                                                                                                                                                                                               | 30    |                    |     | ns    |                                         |

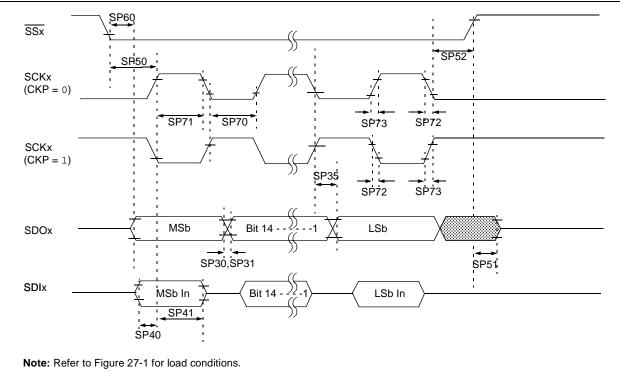
**Note 1:** These parameters are characterized but not tested in manufacturing.

**2:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.



#### FIGURE 27-13: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS


#### TABLE 27-32: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

| AC CHARACTERISTICS |                       |                                                              | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$ |                    |     |       |                                      |  |
|--------------------|-----------------------|--------------------------------------------------------------|-------------------------------------------------------|--------------------|-----|-------|--------------------------------------|--|
| Param<br>No.       | Symbol                | Characteristic <sup>(1)</sup>                                | Min                                                   | Тур <sup>(2)</sup> | Max | Units | Conditions                           |  |
| SP70               | TscL                  | SCKx Input Low Time                                          | 30                                                    | —                  | _   | ns    |                                      |  |
| SP71               | TscH                  | SCKx Input High Time                                         | 30                                                    | _                  | _   | ns    |                                      |  |
| SP72               | TscF                  | SCKx Input Fall Time                                         | —                                                     | 10                 | 25  | ns    | See Note 3                           |  |
| SP73               | TscR                  | SCKx Input Rise Time                                         | —                                                     | 10                 | 25  | ns    | See Note 3                           |  |
| SP30               | TdoF                  | SDOx Data Output Fall Time                                   | —                                                     | —                  | —   | ns    | See parameter D032 and <b>Note 3</b> |  |
| SP31               | TdoR                  | SDOx Data Output Rise Time                                   | —                                                     | —                  | _   | ns    | See parameter D031 and <b>Note 3</b> |  |
| SP35               | TscH2doV,<br>TscL2doV | SDOx Data Output Valid after<br>SCKx Edge                    | —                                                     | _                  | 30  | ns    |                                      |  |
| SP40               | TdiV2scH,<br>TdiV2scL | Setup Time of SDIx Data Input to SCKx Edge                   | 20                                                    | _                  |     | ns    |                                      |  |
| SP41               | TscH2diL,<br>TscL2diL | Hold Time of SDIx Data Input to SCKx Edge                    | 20                                                    | _                  | _   | ns    |                                      |  |
| SP50               | TssL2scH,<br>TssL2scL | $\overline{SSx} \downarrow$ to SCKx $\uparrow$ or SCKx Input | 120                                                   | _                  | _   | ns    |                                      |  |
| SP51               | TssH2doZ              | SSx ↑ to SDOx Output<br>High-Impedance                       | 10                                                    | —                  | 50  | ns    | See Note 3                           |  |
| SP52               | TscH2ssH<br>TscL2ssH  | SSx after SCKx Edge                                          | 1.5 TCY +40                                           | —                  | _   | ns    |                                      |  |

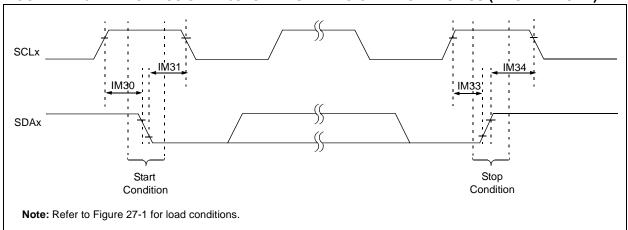
Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

**3:** Assumes 50 pF load on all SPIx pins.

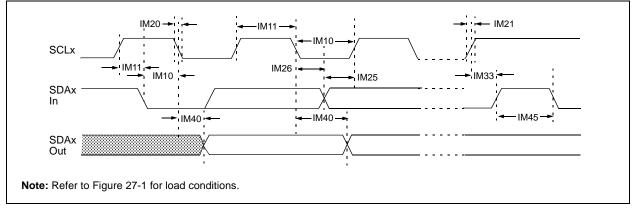


#### FIGURE 27-14: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS


| AC CHARACTERISTICS |                       |                                            | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |                    |     |       |                                      |  |
|--------------------|-----------------------|--------------------------------------------|------------------------------------------------------|--------------------|-----|-------|--------------------------------------|--|
| Param<br>No.       | Symbol                | Characteristic <sup>(1)</sup>              | Min                                                  | Тур <sup>(2)</sup> | Max | Units | Conditions                           |  |
| SP70               | TscL                  | SCKx Input Low Time                        | 30                                                   | _                  | _   | ns    |                                      |  |
| SP71               | TscH                  | SCKx Input High Time                       | 30                                                   | _                  | _   | ns    |                                      |  |
| SP72               | TscF                  | SCKx Input Fall Time                       | —                                                    | 10                 | 25  | ns    | See Note 3                           |  |
| SP73               | TscR                  | SCKx Input Rise Time                       | —                                                    | 10                 | 25  | ns    | See Note 3                           |  |
| SP30               | TdoF                  | SDOx Data Output Fall Time                 | _                                                    |                    | _   | ns    | See parameter D032 and <b>Note 3</b> |  |
| SP31               | TdoR                  | SDOx Data Output Rise Time                 | _                                                    |                    | —   | ns    | See parameter D031 and <b>Note 3</b> |  |
| SP35               | TscH2doV,<br>TscL2doV | SDOx Data Output Valid after<br>SCKx Edge  | —                                                    | _                  | 30  | ns    |                                      |  |
| SP40               | TdiV2scH,<br>TdiV2scL | Setup Time of SDIx Data Input to SCKx Edge | 20                                                   | _                  | —   | ns    |                                      |  |
| SP41               | TscH2diL,<br>TscL2diL | Hold Time of SDIx Data Input to SCKx Edge  | 20                                                   | _                  | _   | ns    |                                      |  |
| SP50               | TssL2scH,<br>TssL2scL | SSx ↓ to SCKx ↓ or SCKx ↑<br>Input         | 120                                                  |                    | —   | ns    |                                      |  |
| SP51               | TssH2doZ              | SSx ↑ to SDOx Output<br>High-Impedance     | 10                                                   | —                  | 50  | ns    | See Note 4                           |  |
| SP52               | TscH2ssH<br>TscL2ssH  | SSx ↑ after SCKx Edge                      | 1.5 TCY + 40                                         | —                  | —   | ns    |                                      |  |
| SP60               | TssL2doV              | SDOx Data Output Valid after<br>SSx Edge   | —                                                    | —                  | 50  | ns    |                                      |  |

**Note 1:** These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.


**3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.

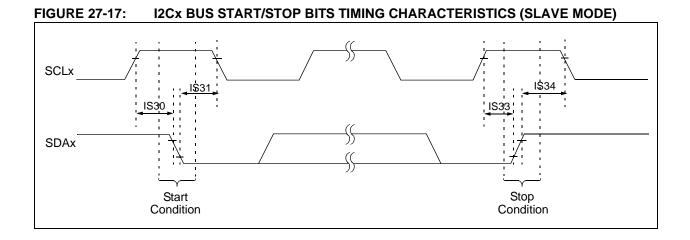
4: Assumes 50 pF load on all SPIx pins.



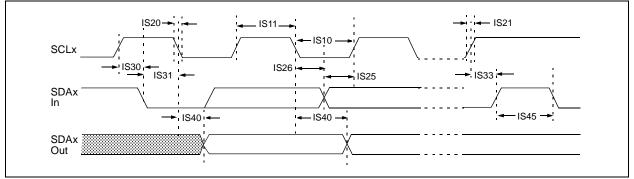
#### FIGURE 27-15: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)






| AC CHA       | RACTER  | ISTICS           |                           | (unless otherwise  | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$ |       |                       |  |  |  |
|--------------|---------|------------------|---------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------|--|--|--|
| Param<br>No. | Symbol  | Charact          | teristic                  | Min <sup>(1)</sup> | Max                                                                                                                                                                                                                                                                                 | Units | Conditions            |  |  |  |
| IM10         | TLO:SCL | Clock Low Time   | 100 kHz mode              | Tcy/2 (BRG + 1)    | _                                                                                                                                                                                                                                                                                   | μs    |                       |  |  |  |
|              |         |                  | 400 kHz mode              | Tcy/2 (BRG + 1)    |                                                                                                                                                                                                                                                                                     | μS    |                       |  |  |  |
|              |         |                  | 1 MHz mode <sup>(2)</sup> | Tcy/2 (BRG + 1)    | _                                                                                                                                                                                                                                                                                   | μs    |                       |  |  |  |
| IM11         | THI:SCL | Clock High Time  | 100 kHz mode              | Tcy/2 (BRG + 1)    | —                                                                                                                                                                                                                                                                                   | μs    |                       |  |  |  |
|              |         |                  | 400 kHz mode              | TCY/2 (BRG + 1)    | —                                                                                                                                                                                                                                                                                   | μS    |                       |  |  |  |
|              |         |                  | 1 MHz mode <sup>(2)</sup> | Tcy/2 (BRG + 1)    |                                                                                                                                                                                                                                                                                     | μS    |                       |  |  |  |
| IM20         | TF:SCL  | SDAx and SCLx    | 100 kHz mode              | _                  | 300                                                                                                                                                                                                                                                                                 | ns    | CB is specified to be |  |  |  |
|              |         | Fall Time        | 400 kHz mode              | 20 + 0.1 Св        | 300                                                                                                                                                                                                                                                                                 | ns    | from 10 to 400 pF     |  |  |  |
|              |         |                  | 1 MHz mode <sup>(2)</sup> | —                  | 100                                                                                                                                                                                                                                                                                 | ns    |                       |  |  |  |
| IM21         | TR:SCL  | SDAx and SCLx    | 100 kHz mode              | —                  | 1000                                                                                                                                                                                                                                                                                | ns    | CB is specified to be |  |  |  |
|              |         | Rise Time        | 400 kHz mode              | 20 + 0.1 Св        | 300                                                                                                                                                                                                                                                                                 | ns    | from 10 to 400 pF     |  |  |  |
|              |         |                  | 1 MHz mode <sup>(2)</sup> | _                  | 300                                                                                                                                                                                                                                                                                 | ns    |                       |  |  |  |
| IM25         | TSU:DAT | Data Input       | 100 kHz mode              | 250                | —                                                                                                                                                                                                                                                                                   | ns    |                       |  |  |  |
|              |         | Setup Time       | 400 kHz mode              | 100                | —                                                                                                                                                                                                                                                                                   | ns    |                       |  |  |  |
|              |         |                  | 1 MHz mode <sup>(2)</sup> | 40                 | _                                                                                                                                                                                                                                                                                   | ns    |                       |  |  |  |
| IM26         | THD:DAT | Data Input       | 100 kHz mode              | 0                  | —                                                                                                                                                                                                                                                                                   | μS    |                       |  |  |  |
|              |         | Hold Time        | 400 kHz mode              | 0                  | 0.9                                                                                                                                                                                                                                                                                 | μS    | -                     |  |  |  |
|              |         |                  | 1 MHz mode <sup>(2)</sup> | 0.2                |                                                                                                                                                                                                                                                                                     | μS    | -                     |  |  |  |
| IM30         | TSU:STA | Start Condition  | 100 kHz mode              | Tcy/2 (BRG + 1)    | _                                                                                                                                                                                                                                                                                   | μS    | Only relevant for     |  |  |  |
|              |         | Setup Time       | 400 kHz mode              | Tcy/2 (BRG + 1)    |                                                                                                                                                                                                                                                                                     | μS    | Repeated Start        |  |  |  |
|              |         |                  | 1 MHz mode <sup>(2)</sup> | Tcy/2 (BRG + 1)    | _                                                                                                                                                                                                                                                                                   | μS    | condition             |  |  |  |
| IM31         | THD:STA | Start Condition  | 100 kHz mode              | Tcy/2 (BRG + 1)    |                                                                                                                                                                                                                                                                                     | μS    | After this period the |  |  |  |
|              |         | Hold Time        | 400 kHz mode              | TCY/2 (BRG + 1)    |                                                                                                                                                                                                                                                                                     | μS    | first clock pulse is  |  |  |  |
|              |         |                  | 1 MHz mode <sup>(2)</sup> | Tcy/2 (BRG + 1)    |                                                                                                                                                                                                                                                                                     | μS    | generated             |  |  |  |
| IM33         | Tsu:sto | Stop Condition   | 100 kHz mode              | TCY/2 (BRG + 1)    |                                                                                                                                                                                                                                                                                     | μS    |                       |  |  |  |
|              |         | Setup Time       | 400 kHz mode              | Tcy/2 (BRG + 1)    |                                                                                                                                                                                                                                                                                     | μs    | -                     |  |  |  |
|              |         |                  | 1 MHz mode <sup>(2)</sup> | Tcy/2 (BRG + 1)    | _                                                                                                                                                                                                                                                                                   | μS    | -                     |  |  |  |
| IM34         | THD:STO | Stop Condition   | 100 kHz mode              | TCY/2 (BRG + 1)    |                                                                                                                                                                                                                                                                                     | ns    |                       |  |  |  |
|              |         | Hold Time        | 400 kHz mode              | Tcy/2 (BRG + 1)    | _                                                                                                                                                                                                                                                                                   | ns    | -                     |  |  |  |
|              |         |                  | 1 MHz mode <sup>(2)</sup> | Tcy/2 (BRG + 1)    |                                                                                                                                                                                                                                                                                     | ns    | -                     |  |  |  |
| IM40         | TAA:SCL | Output Valid     | 100 kHz mode              |                    | 3500                                                                                                                                                                                                                                                                                | ns    |                       |  |  |  |
|              |         | From Clock       | 400 kHz mode              | _                  | 1000                                                                                                                                                                                                                                                                                | ns    |                       |  |  |  |
|              |         |                  | 1 MHz mode <sup>(2)</sup> | _                  | 400                                                                                                                                                                                                                                                                                 | ns    |                       |  |  |  |
| IM45         | TBF:SDA | Bus Free Time    | 100 kHz mode              | 4.7                | _                                                                                                                                                                                                                                                                                   | μS    | Time the bus must be  |  |  |  |
|              |         |                  | 400 kHz mode              | 1.3                |                                                                                                                                                                                                                                                                                     | μS    | free before a new     |  |  |  |
|              |         |                  | 1 MHz mode <sup>(2)</sup> | 0.5                |                                                                                                                                                                                                                                                                                     | μS    | transmission can star |  |  |  |
| IM50         | Св      | Bus Capacitive L |                           |                    | 400                                                                                                                                                                                                                                                                                 | pF    |                       |  |  |  |
| IM51         | TPGD    | Pulse Gobbler De | -                         | 65                 | 390                                                                                                                                                                                                                                                                                 | ns    | See Note 3            |  |  |  |

| TABLE 27-34: | <b>I2Cx BUS DATA TIMING REQUIREMENTS</b> | (MASTER MODE) |
|--------------|------------------------------------------|---------------|
|              |                                          |               |


Note 1: BRG is the value of the I<sup>2</sup>C<sup>™</sup> Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit (I<sup>2</sup>C<sup>™</sup>)" (DS70195) in the "dsPIC33F/PIC24F Family Reference Manual".

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

**3:** Typical value for this parameter is 130 ns.







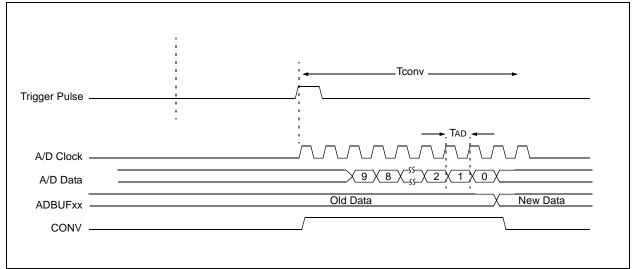
| АС СНА | RACTERI | STICS             |                           | Standard Op<br>(unless other<br>Operating ten | rwise sta | a <b>ted)</b><br>ə -40°C | <b>bns: 3.0V to 3.6V</b><br>$C \le TA \le +85^{\circ}C$ for Industrial<br>$C \le TA \le +125^{\circ}C$ for Extended |
|--------|---------|-------------------|---------------------------|-----------------------------------------------|-----------|--------------------------|---------------------------------------------------------------------------------------------------------------------|
| Param. | Symbol  | Charac            | teristic                  | Min                                           | Max       | Units                    | Conditions                                                                                                          |
| IS10   | TLO:SCL | Clock Low Time    | 100 kHz mode              | 4.7                                           |           | μS                       | Device must operate at a minimum of 1.5 MHz                                                                         |
|        |         |                   | 400 kHz mode              | 1.3                                           | —         | μS                       | Device must operate at a minimum of 10 MHz                                                                          |
|        |         |                   | 1 MHz mode <sup>(1)</sup> | 0.5                                           |           | μs                       |                                                                                                                     |
| IS11   | THI:SCL | Clock High Time   | 100 kHz mode              | 4.0                                           | —         | μS                       | Device must operate at a minimum of 1.5 MHz                                                                         |
|        |         |                   | 400 kHz mode              | 0.6                                           | —         | μS                       | Device must operate at a minimum of 10 MHz                                                                          |
|        |         |                   | 1 MHz mode <sup>(1)</sup> | 0.5                                           |           | μS                       |                                                                                                                     |
| IS20   | TF:SCL  | SDAx and SCLx     | 100 kHz mode              | —                                             | 300       | ns                       | CB is specified to be from                                                                                          |
|        |         | Fall Time         | 400 kHz mode              | 20 + 0.1 Св                                   | 300       | ns                       | 10 to 400 pF                                                                                                        |
|        |         |                   | 1 MHz mode <sup>(1)</sup> | —                                             | 100       | ns                       |                                                                                                                     |
| IS21   | TR:SCL  | SDAx and SCLx     | 100 kHz mode              | —                                             | 1000      | ns                       | CB is specified to be from                                                                                          |
|        |         | Rise Time         | 400 kHz mode              | 20 + 0.1 Св                                   | 300       | ns                       | 10 to 400 pF                                                                                                        |
|        |         |                   | 1 MHz mode <sup>(1)</sup> | —                                             | 300       | ns                       |                                                                                                                     |
| IS25   | TSU:DAT | Data Input        | 100 kHz mode              | 250                                           | _         | ns                       |                                                                                                                     |
|        |         | Setup Time        | 400 kHz mode              | 100                                           |           | ns                       |                                                                                                                     |
|        |         |                   | 1 MHz mode <sup>(1)</sup> | 100                                           |           | ns                       |                                                                                                                     |
| IS26   | THD:DAT | Data Input        | 100 kHz mode              | 0                                             |           | μs                       |                                                                                                                     |
|        |         | Hold Time         | 400 kHz mode              | 0                                             | 0.9       | μs                       |                                                                                                                     |
|        |         |                   | 1 MHz mode <sup>(1)</sup> | 0                                             | 0.3       | μs                       |                                                                                                                     |
| IS30   | TSU:STA | Start Condition   | 100 kHz mode              | 4.7                                           |           | μs                       | Only relevant for Repeated                                                                                          |
|        |         | Setup Time        | 400 kHz mode              | 0.6                                           |           | μS                       | Start condition                                                                                                     |
|        |         |                   | 1 MHz mode <sup>(1)</sup> | 0.25                                          |           | μS                       |                                                                                                                     |
| IS31   | THD:STA | Start Condition   | 100 kHz mode              | 4.0                                           |           | μs                       | After this period, the first                                                                                        |
|        |         | Hold Time         | 400 kHz mode              | 0.6                                           | —         | μs                       | clock pulse is generated                                                                                            |
|        |         |                   | 1 MHz mode <sup>(1)</sup> | 0.25                                          | —         | μs                       |                                                                                                                     |
| IS33   | TSU:STO | Stop Condition    | 100 kHz mode              | 4.7                                           |           | μS                       |                                                                                                                     |
|        |         | Setup Time        | 400 kHz mode              | 0.6                                           |           | μS                       |                                                                                                                     |
|        |         |                   | 1 MHz mode <sup>(1)</sup> | 0.6                                           | —         | μS                       |                                                                                                                     |
| IS34   | THD:STO | Stop Condition    | 100 kHz mode              | 4000                                          | —         | ns                       |                                                                                                                     |
|        |         | Hold Time         | 400 kHz mode              | 600                                           | —         | ns                       | -                                                                                                                   |
|        |         |                   | 1 MHz mode <sup>(1)</sup> | 250                                           |           | ns                       |                                                                                                                     |
| IS40   | TAA:SCL | Output Valid      | 100 kHz mode              | 0                                             | 3500      | ns                       |                                                                                                                     |
|        |         | From Clock        | 400 kHz mode              | 0                                             | 1000      | ns                       |                                                                                                                     |
|        |         |                   | 1 MHz mode <sup>(1)</sup> | 0                                             | 350       | ns                       |                                                                                                                     |
| IS45   | TBF:SDA | Bus Free Time     | 100 kHz mode              | 4.7                                           | —         | μS                       | Time the bus must be free                                                                                           |
|        |         |                   | 400 kHz mode              | 1.3                                           | _         | μS                       | before a new transmission can start                                                                                 |
|        |         |                   | 1 MHz mode <sup>(1)</sup> | 0.5                                           | —         | μS                       |                                                                                                                     |
| S50    | Св      | Bus Capacitive Lo | ading                     | —                                             | 400       | pF                       |                                                                                                                     |

#### TABLE 27-35: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

**Note 1:** Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

| AC CHA       |           | STICS                                             | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |           |                                  |       |                                                                      |  |
|--------------|-----------|---------------------------------------------------|------------------------------------------------------|-----------|----------------------------------|-------|----------------------------------------------------------------------|--|
| Param<br>No. | Symbol    | Characteristic                                    | Min                                                  | Тур       | Max                              | Units | Conditions                                                           |  |
|              |           |                                                   | Device S                                             | upply     |                                  |       |                                                                      |  |
| AD01         | AVDD      | Module VDD Supply                                 | Greater of<br>VDD – 0.3<br>or 3.0                    |           | Lesser of<br>VDD + 0.3<br>or 3.6 | V     |                                                                      |  |
| AD02         | AVss      | Module Vss Supply                                 | Vss – 0.3                                            |           | Vss + 0.3                        | V     |                                                                      |  |
|              |           | ·                                                 | Analog I                                             | nput      |                                  |       | ·                                                                    |  |
| AD10         | VINH-VINL | Full-Scale Input Span                             | Vss                                                  |           | Vdd                              | V     |                                                                      |  |
| AD11         | Vin       | Absolute Input Voltage                            | AVss                                                 |           | AVdd                             | V     |                                                                      |  |
| AD12         | IAD       | Operating Current                                 | —                                                    | 8         | —                                | mA    |                                                                      |  |
| AD13         | —         | Leakage Current                                   | _                                                    | ±0.6      | —                                | μA    | VINL = AVSS = 0V,<br>AVDD = $3.3V$<br>Source Impedance = $100\Omega$ |  |
| AD17         | Rin       | Recommended Impedance<br>Of Analog Voltage Source | —                                                    |           | 100                              | Ω     |                                                                      |  |
|              |           |                                                   | DC Accu                                              | racy      |                                  |       |                                                                      |  |
| AD20         | Nr        | Resolution                                        | 1                                                    | 0 data bi | its                              | bits  |                                                                      |  |
| AD21A        | INL       | Integral Nonlinearity                             | > -2                                                 | ±0.5      | < 2                              | LSb   | VINL = AVSS = 0V,<br>AVDD = 3.3V                                     |  |
| AD22A        | DNL       | Differential Nonlinearity                         | > -1                                                 | ±0.5      | < 1                              | LSb   | VINL = AVSS = 0V,<br>AVDD = 3.3V                                     |  |
| AD23A        | Gerr      | Gain Error                                        | > -5                                                 | ±2.0      | < 5                              | LSb   | VINL = AVSS = 0V,<br>AVDD = 3.3V                                     |  |
| AD24A        | EOFF      | Offset Error                                      | > -3                                                 | ±0.75     | < 3                              | LSb   | VINL = AVSS = VSS = 0V,<br>AVDD = VDD = 3.3V                         |  |
| AD25         | —         | Monotonicity <sup>(1)</sup>                       | —                                                    | _         | —                                | —     | Guaranteed                                                           |  |
|              |           | Dy                                                | ynamic Per                                           | ormanc    | e                                |       |                                                                      |  |
| AD30         | THD       | Total Harmonic Distortion                         | —                                                    | -73       | —                                | dB    |                                                                      |  |
| AD31         | SINAD     | Signal to Noise and<br>Distortion                 | —                                                    | 58        | —                                | dB    |                                                                      |  |
| AD32         | SFDR      | Spurious Free Dynamic<br>Range                    | _                                                    | -73       | _                                | dB    |                                                                      |  |
| AD33         | Fnyq      | Input Signal Bandwidth                            | _                                                    | _         | 1                                | MHz   |                                                                      |  |
| AD34         | ENOB      | Effective Number of Bits                          | _                                                    | 9.4       | _                                | bits  |                                                                      |  |

### TABLE 27-36: 10-BIT HIGH-SPEED A/D MODULE SPECIFICATIONS


**Note 1:** The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.

| AC CH/       | AC CHARACTERISTICS |                                                                      |           | $ \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array} $ |     |            |  |  |  |
|--------------|--------------------|----------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|--|--|--|
| Param<br>No. | Symbol             | bol Characteristic Min Typ <sup>(1)</sup> Max Units Co               |           |                                                                                                                                                                                                                                                                                           |     | Conditions |  |  |  |
|              |                    | Cloc                                                                 | k Parame  | ters                                                                                                                                                                                                                                                                                      |     |            |  |  |  |
| AD50b        | Tad                | ADC Clock Period                                                     | 35.8      | —                                                                                                                                                                                                                                                                                         | _   | ns         |  |  |  |
|              |                    | Con                                                                  | version F | late                                                                                                                                                                                                                                                                                      |     |            |  |  |  |
| AD55b        | tCONV              | Conversion Time                                                      | _         | 14 Tad                                                                                                                                                                                                                                                                                    | _   | —          |  |  |  |
| AD56b        | FCNV               | Throughput Rate                                                      |           |                                                                                                                                                                                                                                                                                           |     |            |  |  |  |
|              |                    | Devices with Single SAR                                              |           |                                                                                                                                                                                                                                                                                           | 2.0 | Msps       |  |  |  |
|              |                    | Devices with Dual SARs                                               | —         | —                                                                                                                                                                                                                                                                                         | 4.0 | Msps       |  |  |  |
|              | •                  | Timir                                                                | ng Param  | eters                                                                                                                                                                                                                                                                                     |     | •          |  |  |  |
| AD63b        | tdpu               | Time to Stabilize Analog Stage from ADC Off to ADC On <sup>(1)</sup> | 1.0       | —                                                                                                                                                                                                                                                                                         | 10  | μS         |  |  |  |

#### TABLE 27-37: 10-BIT HIGH-SPEED A/D MODULE TIMING REQUIREMENTS

**Note 1:** These parameters are characterized but not tested in manufacturing.

#### FIGURE 27-19: A/D CONVERSION TIMING PER INPUT



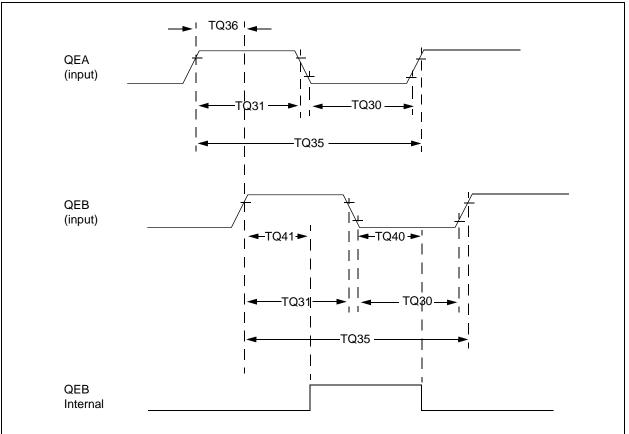
© 2010 Microchip Technology Inc.

| AC and DC CHARACTERISTICS |        |                                                   |                            | Standard Operating Conditions (unless otherwise stated)<br>Operating temperature: $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial<br>$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |            |    |                                                                                                                         |  |  |  |
|---------------------------|--------|---------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|-------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Param.<br>No.             | Symbol | Characteristic                                    | Min Typ Max Units Comments |                                                                                                                                                                                                 |            |    | Comments                                                                                                                |  |  |  |
| CM10                      | VIOFF  | Input Offset Voltage                              |                            | ±5                                                                                                                                                                                              | ±15        | mV |                                                                                                                         |  |  |  |
| CM11                      | VICM   | Input Common Mode<br>Voltage Range <sup>(1)</sup> | 0                          | —                                                                                                                                                                                               | AVDD - 1.5 | V  |                                                                                                                         |  |  |  |
| CM12                      | VGAIN  | Open Loop Gain <sup>(1)</sup>                     | 90                         |                                                                                                                                                                                                 | _          | db |                                                                                                                         |  |  |  |
| CM13                      | CMRR   | Common Mode<br>Rejection Ratio <sup>(1)</sup>     | 70                         | _                                                                                                                                                                                               | —          | db |                                                                                                                         |  |  |  |
| CM14                      | TRESP  | Large Signal Response                             |                            | 20                                                                                                                                                                                              | 30         | ns | V+ input step of 100 mv while<br>V- input held at AVDD/2. Delay<br>measured from analog input pin to<br>PWM output pin. |  |  |  |

#### TABLE 27-38: COMPARATOR MODULE SPECIFICATIONS

**Note 1:** Parameters are for design guidance only and are not tested in manufacturing.

### TABLE 27-39: DAC MODULE SPECIFICATIONS


| AC and        | AC and DC CHARACTERISTICS |                                           | $\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature: } -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |             |            |       |                                                                                                     |  |  |
|---------------|---------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|-------|-----------------------------------------------------------------------------------------------------|--|--|
| Param.<br>No. | Symbol                    | Characteristic                            | Min                                                                                                                                                                                                                                                           | Min Typ Max |            | Units | Comments                                                                                            |  |  |
| DA01          | CVRSRC                    | External Reference Voltage <sup>(1)</sup> | 0                                                                                                                                                                                                                                                             |             | AVDD - 1.6 | V     |                                                                                                     |  |  |
| DA02          | CVRES                     | Resolution                                |                                                                                                                                                                                                                                                               | 10 data     | bits       | bits  |                                                                                                     |  |  |
| DA03          | INL                       | Integral Nonlinearity Error               | —                                                                                                                                                                                                                                                             | ±1.0        | —          |       | AVDD = 3.3V,<br>DACREF = (AVDD/2)V                                                                  |  |  |
| DA04          | DNL                       | Differential Nonlinearity Error           | —                                                                                                                                                                                                                                                             | ±0.8        | —          | LSB   |                                                                                                     |  |  |
| DA05          | EOFF                      | Offset Error                              | —                                                                                                                                                                                                                                                             | ±2.0        | —          | LSB   |                                                                                                     |  |  |
| DA06          | EG                        | Gain Error                                | —                                                                                                                                                                                                                                                             | ±2.0        | —          | LSB   |                                                                                                     |  |  |
| DA07          | TSET                      | Settling Time <sup>(1)</sup>              |                                                                                                                                                                                                                                                               |             | 650        | nsec  | Measured when<br>range = 1 (high range),<br>and CMREF<9:0> transi-<br>tions from 0x1FF to<br>0x300. |  |  |

**Note 1:** Parameters are for design guidance only and are not tested in manufacturing.

| DC CHA        | RACTER  | ISTICS                                                             | Standard Operating Conditions (unless otherwise stated)Operating temperature: $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |     |               |       |                                                                                               |  |  |
|---------------|---------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|-------|-----------------------------------------------------------------------------------------------|--|--|
| Param.<br>No. | Symbol  | Characteristic                                                     | Min                                                                                                                                                                                      | Тур | Max           | Units | Comments                                                                                      |  |  |
| DA10          | RLOAD   | Resistive Output Load<br>Impedance                                 | ЗК                                                                                                                                                                                       | _   | —             | Ω     |                                                                                               |  |  |
| DA11          | CLOAD   | Output Load<br>Capacitance                                         | —                                                                                                                                                                                        | 20  | 35            | pF    |                                                                                               |  |  |
| DA12          | Ιουτ    | Output Current Drive<br>Strength                                   | 200                                                                                                                                                                                      | 300 | 400           | μΑ    | Sink and source                                                                               |  |  |
| DA13          | VRANGE  | Full Output Drive<br>Strength Voltage Range                        | Avss + 250<br>mV                                                                                                                                                                         | _   | AVDD – 900 mV | V     |                                                                                               |  |  |
| DA14          | VLRANGE | Output Drive Voltage<br>Range at Reduced<br>Current Drive of 50 μA | AVss + 50 mV                                                                                                                                                                             | _   | AVDD – 500 mV | V     |                                                                                               |  |  |
| DA15          | IDD     | Current Consumed when<br>Module is Enabled,<br>High-Power Mode     | —                                                                                                                                                                                        | _   | 1.3 x lout    | μΑ    | Module will always<br>consume this curren<br>even if no load is<br>connected to the<br>output |  |  |
| DA16          | ROUTON  | Output Impedance when<br>Module is Enabled                         | —                                                                                                                                                                                        | _   | 10            | Ω     | Closed loop output resistance                                                                 |  |  |

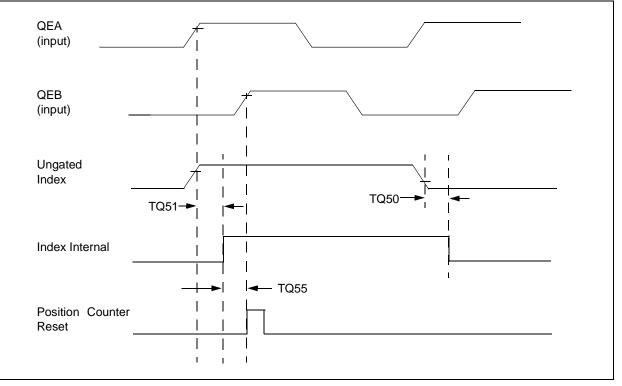
### TABLE 27-40: DAC OUTPUT BUFFER SPECIFICATIONS

#### FIGURE 27-20: QEA/QEB INPUT CHARACTERISTICS



© 2010 Microchip Technology Inc.

|              |        | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |  |                    |     |       |                                                         |
|--------------|--------|------------------------------------------------------|--|--------------------|-----|-------|---------------------------------------------------------|
| Param<br>No. | Symbol | Characteristic <sup>(1)</sup>                        |  | Тур <sup>(2)</sup> | Мах | Units | Conditions                                              |
| TQ30         | TQUL   | Quadrature Input Low Time                            |  | 6 Tcy              | _   | ns    | —                                                       |
| TQ31         | ΤουΗ   | Quadrature Input High Time                           |  | 6 Tcy              | _   | ns    | —                                                       |
| TQ35         | TQUIN  | Quadrature Input Period                              |  | 12 TCY             | —   | ns    | —                                                       |
| TQ36         | TQUP   | Quadrature Phase Period                              |  | 3 TCY              | —   | ns    | —                                                       |
| TQ40         | TQUFL  | Filter Time to Recognize Low, with Digital Filter    |  | 3 * N * Tcy        | —   | ns    | N = 1, 2, 4, 16, 32, 64,<br>128 and 256 <b>(Note 3)</b> |
| TQ41         | TqufH  | Filter Time to Recognize High, with Digital Filter   |  | 3 * N * Tcy        | —   | ns    | N = 1, 2, 4, 16, 32, 64,<br>128 and 256 <b>(Note 3)</b> |


#### TABLE 27-41: QUADRATURE DECODER TIMING REQUIREMENTS

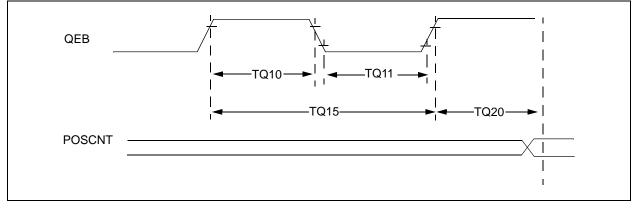
**Note 1:** These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

**3:** N = Index Channel Digital Filter Clock Divide Select bits. Refer to **Section 15. "Quadrature Encoder** Interface (QEI)" in the "dsPIC33F/PIC24H Family Reference Manual".

#### FIGURE 27-21: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS

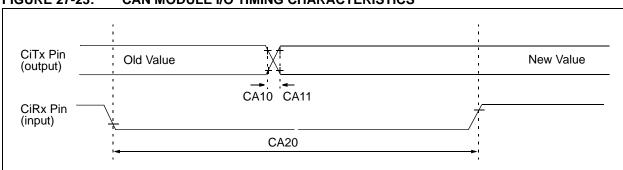



| АС СНА       | AC CHARACTERISTICS |                                                                     |                  | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |     |       |                                                         |  |  |
|--------------|--------------------|---------------------------------------------------------------------|------------------|------------------------------------------------------|-----|-------|---------------------------------------------------------|--|--|
| Param<br>No. | Symbol             | Characteristic                                                      | ; <sup>(1)</sup> | Min                                                  | Max | Units | Conditions                                              |  |  |
| TQ50         | TqIL               | Filter Time to Recognize with Digital Filter                        | Low,             | 3 * N * Tcy                                          | _   | ns    | N = 1, 2, 4, 16, 32, 64,<br>128 and 256 <b>(Note 2)</b> |  |  |
| TQ51         | TqiH               | Filter Time to Recognize High, with Digital Filter                  |                  | 3 * N * Tcy                                          | —   | ns    | N = 1, 2, 4, 16, 32, 64,<br>128 and 256 <b>(Note 2)</b> |  |  |
| TQ55         | Tqidxr             | Index Pulse Recognized to Position<br>Counter Reset (ungated index) |                  | 3 TCY                                                | —   | ns    | —                                                       |  |  |

#### TABLE 27-42: QEI INDEX PULSE TIMING REQUIREMENTS

**Note 1:** These parameters are characterized but not tested in manufacturing.

2: Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but index pulse recognition occurs on falling edge.


### FIGURE 27-22: TIMERQ (QEI MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS



#### TABLE 27-43: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS

| AC CHARACTERISTICS |           |                                            | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |     |              |     |         |            |                               |
|--------------------|-----------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|-----|---------|------------|-------------------------------|
| Param<br>No.       | Symbol    | Characteristic <sup>(1)</sup>              |                                                                                                                                                                                                                                                                                       | Min | Тур          | Max | Units   | Conditions |                               |
| TQ10               | TtQH      | TQCK High Time                             | Synchronous, with prescaler                                                                                                                                                                                                                                                           |     | Тсү + 20     | _   | _       | ns         | Must also meet parameter TQ15 |
| TQ11               | TtQL      | TQCK Low Time                              | Synchro<br>with pre                                                                                                                                                                                                                                                                   |     | Tcy + 20     | —   | _       | ns         | Must also meet parameter TQ15 |
| TQ15               | TtQP      | TQCP Input<br>Period                       | Synchronous, with prescaler                                                                                                                                                                                                                                                           |     | 2 * TCY + 40 | _   | _       | ns         |                               |
| TQ20               | TCKEXTMRL | Delay from External<br>Edge to Timer Incre |                                                                                                                                                                                                                                                                                       |     | 0.5 TCY      |     | 1.5 TCY | —          | —                             |

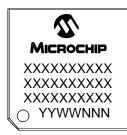
**Note 1:** These parameters are characterized but not tested in manufacturing.



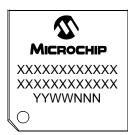
#### FIGURE 27-23: CAN MODULE I/O TIMING CHARACTERISTICS

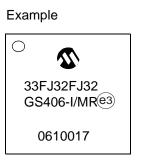
#### TABLE 27-44: ECAN™ MODULE I/O TIMING REQUIREMENTS

| AC CHARACTERISTICS |        | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |     |     |     |       |                    |
|--------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-------|--------------------|
| Param<br>No.       | Symbol | Characteristic <sup>(1)</sup>                                                                                                                                                                                                                                                           | Min | Тур | Max | Units | Conditions         |
| CA10               | TioF   | Port Output Fall Time                                                                                                                                                                                                                                                                   | _   |     |     | ns    | See parameter D032 |
| CA11               | TioR   | Port Output Rise Time                                                                                                                                                                                                                                                                   | —   | —   | —   | ns    | See parameter D031 |
| CA20               | Tcwf   | Pulse Width to Trigger<br>CAN Wake-up Filter                                                                                                                                                                                                                                            | 120 |     | _   | ns    | _                  |


**Note 1:** These parameters are characterized but not tested in manufacturing.

### 28.0 PACKAGING INFORMATION


64-Lead QFN (9x9x0.9mm)




64-Lead TQFP (10x10x1mm)

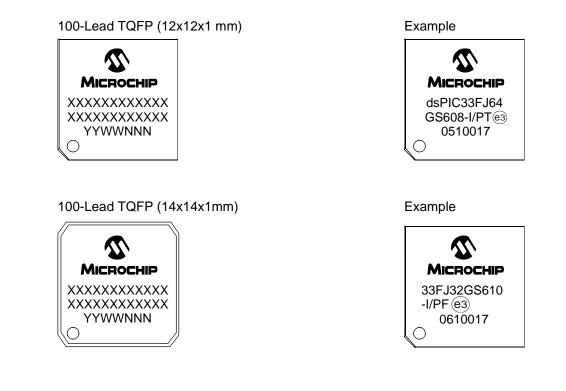


80-Lead TQFP (12x12x1mm)





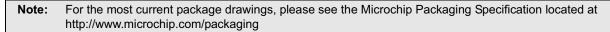
Example

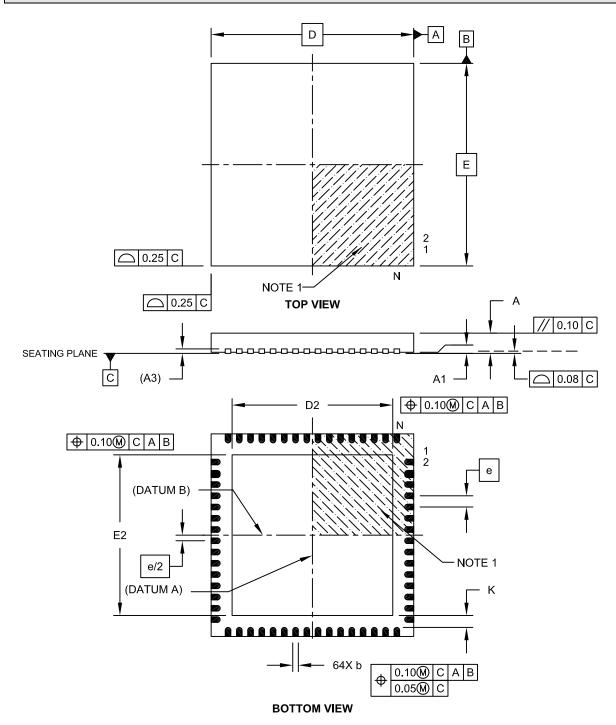



Example



| Legend | : XXX<br>Y<br>YY<br>WW<br>NNN<br>@3 | Customer-specific information<br>Year code (last digit of calendar year)<br>Year code (last 2 digits of calendar year)<br>Week code (week of January 1 is week '01')<br>Alphanumeric traceability code<br>Pb-free JEDEC designator for Matte Tin (Sn)<br>This package is Pb-free. The Pb-free JEDEC designator (@3)<br>can be found on the outer packaging for this package. |
|--------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Note:  |                                     | Aicrochip part number cannot be marked on one line, it is carried over to the next limiting the number of available characters for customer-specific information.                                                                                                                                                                                                            |

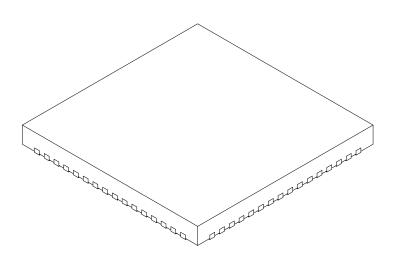

© 2010 Microchip Technology Inc.




| Legend | : XXX                                                                                                                                                                                    | Customer-specific information                                |  |  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|
|        | Y                                                                                                                                                                                        | Year code (last digit of calendar year)                      |  |  |
|        | ΥY                                                                                                                                                                                       | Year code (last 2 digits of calendar year)                   |  |  |
|        | WW                                                                                                                                                                                       | Week code (week of January 1 is week '01')                   |  |  |
|        | NNN                                                                                                                                                                                      | Alphanumeric traceability code                               |  |  |
|        | <b>e</b> 3                                                                                                                                                                               | Pb-free JEDEC designator for Matte Tin (Sn)                  |  |  |
|        | *                                                                                                                                                                                        | This package is Pb-free. The Pb-free JEDEC designator ((e3)) |  |  |
|        |                                                                                                                                                                                          | can be found on the outer packaging for this package.        |  |  |
| Note:  | If the full Microchip part number cannot be marked on one line, it is carried over to the next line, thus limiting the number of available characters for customer-specific information. |                                                              |  |  |

#### 28.1 Package Details

#### 64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN]






Microchip Technology Drawing C04-149B Sheet 1 of 2

#### 64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

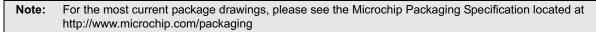


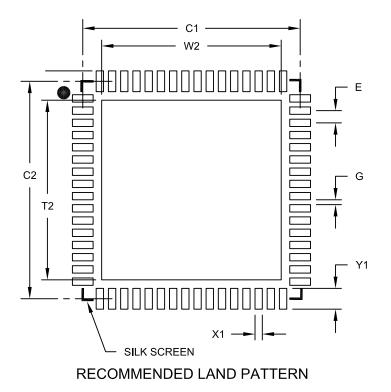
| Units                  |    | MILLIMETERS |          |      |  |
|------------------------|----|-------------|----------|------|--|
| Dimension Li           |    | MIN         | NOM      | MAX  |  |
| Number of Pins         | N  | 64          |          |      |  |
| Pitch                  | е  |             | 0.50 BSC |      |  |
| Overall Height         | Α  | 0.80        | 0.90     | 1.00 |  |
| Standoff               | A1 | 0.00        | 0.02     | 0.05 |  |
| Contact Thickness      | A3 | 0.20 REF    |          |      |  |
| Overall Width          | E  | 9.00 BSC    |          |      |  |
| Exposed Pad Width      | E2 | 7.05        | 7.15     | 7.50 |  |
| Overall Length         | D  | 9.00 BSC    |          |      |  |
| Exposed Pad Length     | D2 | 7.05        | 7.15     | 7.50 |  |
| Contact Width          | b  | 0.18        | 0.25     | 0.30 |  |
| Contact Length         | L  | 0.30        | 0.40     | 0.50 |  |
| Contact-to-Exposed Pad | K  | 0.20        | -        | -    |  |

#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.


3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

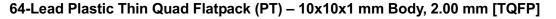
REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149B Sheet 2 of 2

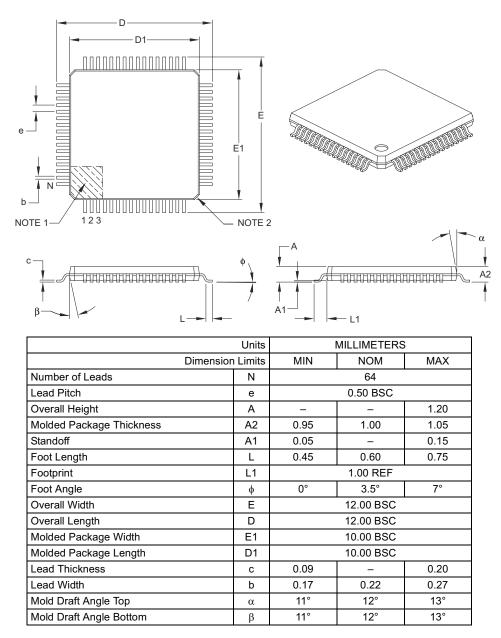
64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length






|                            | MILLIMETERS |          |      |      |
|----------------------------|-------------|----------|------|------|
| Dimension Limits           |             | MIN      | NOM  | MAX  |
| Contact Pitch              | E           | 0.50 BSC |      |      |
| Optional Center Pad Width  | W2          |          |      | 7.35 |
| Optional Center Pad Length | T2          |          |      | 7.35 |
| Contact Pad Spacing        | C1          |          | 8.90 |      |
| Contact Pad Spacing        | C2          |          | 8.90 |      |
| Contact Pad Width (X64)    | X1          |          |      | 0.30 |
| Contact Pad Length (X64)   | Y1          |          |      | 0.85 |
| Distance Between Pads      | G           | 0.20     |      |      |

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A



**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



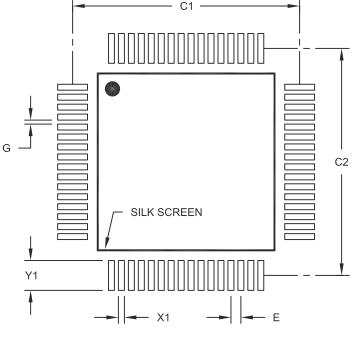
#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B

#### 64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

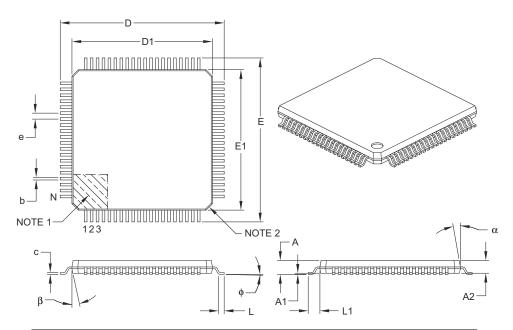
**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



RECOMMENDED LAND PATTERN

| Units                    |    | MILLIMETERS |       |      |
|--------------------------|----|-------------|-------|------|
| Dimension Limits         |    | MIN         | NOM   | MAX  |
| Contact Pitch            | E  | 0.50 BSC    |       |      |
| Contact Pad Spacing      | C1 |             | 11.40 |      |
| Contact Pad Spacing      | C2 |             | 11.40 |      |
| Contact Pad Width (X64)  | X1 |             |       | 0.30 |
| Contact Pad Length (X64) | Y1 |             |       | 1.50 |
| Distance Between Pads    | G  | 0.20        |       |      |

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085A

#### 80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



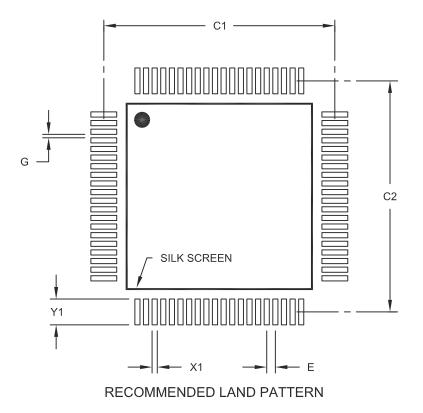
|                          | Units            |           | MILLIMETERS |      |  |
|--------------------------|------------------|-----------|-------------|------|--|
|                          | Dimension Limits |           | NOM         | MAX  |  |
| Number of Leads          | N                | 80        |             |      |  |
| Lead Pitch               | е                | 0.50 BSC  |             |      |  |
| Overall Height           | А                | _         | -           | 1.20 |  |
| Molded Package Thickness | A2               | 0.95      | 1.00        | 1.05 |  |
| Standoff                 | A1               | 0.05      | -           | 0.15 |  |
| Foot Length              | L                | 0.45      | 0.60        | 0.75 |  |
| Footprint                | L1               | 1.00 REF  |             |      |  |
| Foot Angle               | ф                | 0°        | 3.5°        | 7°   |  |
| Overall Width            | E                | 14.00 BSC |             |      |  |
| Overall Length           | D                | 14.00 BSC |             |      |  |
| Molded Package Width     | E1               | 12.00 BSC |             |      |  |
| Molded Package Length    | D1               | 12.00 BSC |             |      |  |
| Lead Thickness           | С                | 0.09      | -           | 0.20 |  |
| Lead Width               | b                | 0.17      | 0.22        | 0.27 |  |
| Mold Draft Angle Top     | α                | 11°       | 12°         | 13°  |  |
| Mold Draft Angle Bottom  | β                | 11°       | 12°         | 13°  |  |

#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.


- 4. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-092B

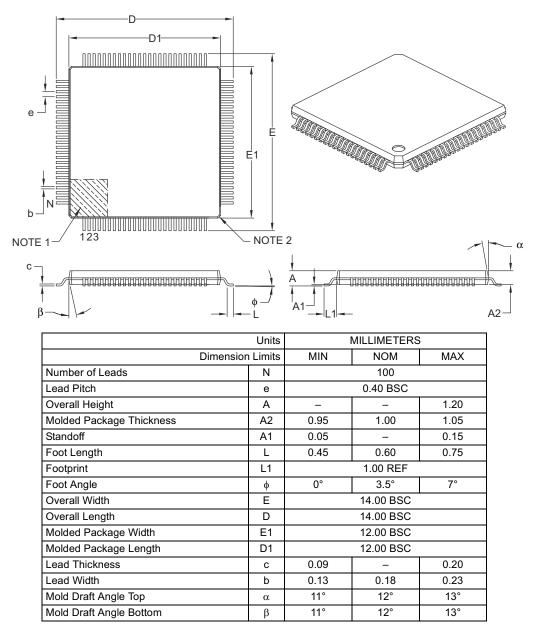
#### 80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                          | Units | MILLIM | ETERS    |      |
|--------------------------|-------|--------|----------|------|
| Dimension Limits         |       | MIN    | NOM      | MAX  |
| Contact Pitch            | E     |        | 0.50 BSC |      |
| Contact Pad Spacing      | C1    |        | 13.40    |      |
| Contact Pad Spacing      | C2    |        | 13.40    |      |
| Contact Pad Width (X80)  | X1    |        |          | 0.30 |
| Contact Pad Length (X80) | Y1    |        |          | 1.50 |
| Distance Between Pads    | G     | 0.20   |          |      |

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092A

#### 100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

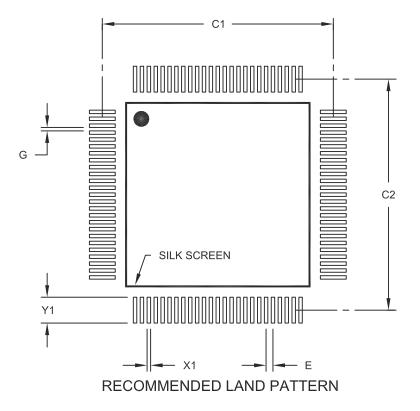


Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.


- 4. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B

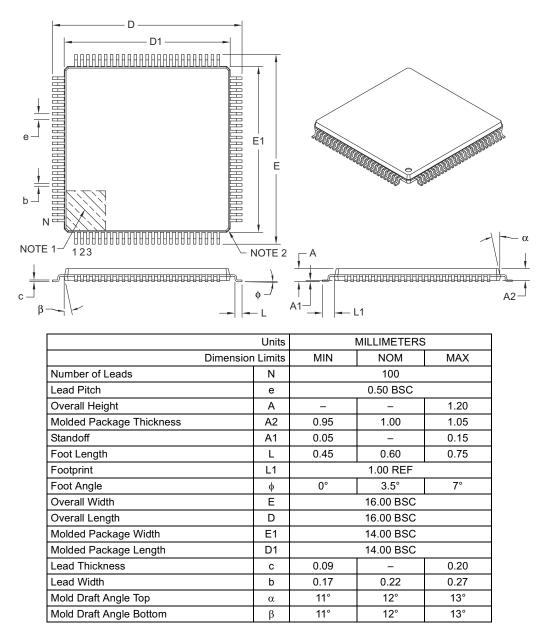
#### 100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



| Units                     |    | MILLIMETERS |          |      |
|---------------------------|----|-------------|----------|------|
| Dimension Limits          |    | MIN         | NOM      | MAX  |
| Contact Pitch             | E  |             | 0.40 BSC |      |
| Contact Pad Spacing       | C1 |             | 13.40    |      |
| Contact Pad Spacing       | C2 |             | 13.40    |      |
| Contact Pad Width (X100)  | X1 |             |          | 0.20 |
| Contact Pad Length (X100) | Y1 |             |          | 1.50 |
| Distance Between Pads     | G  | 0.20        |          |      |

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100A

#### 100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

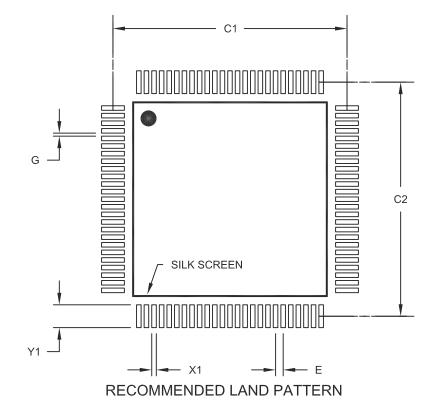


Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.


- 4. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B

#### 100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



| Units                     |    | MILLIMETERS |          |      |
|---------------------------|----|-------------|----------|------|
| Dimension Limits          |    | MIN         | NOM      | MAX  |
| Contact Pitch             | E  |             | 0.50 BSC |      |
| Contact Pad Spacing       | C1 |             | 15.40    |      |
| Contact Pad Spacing       | C2 |             | 15.40    |      |
| Contact Pad Width (X100)  | X1 |             |          | 0.30 |
| Contact Pad Length (X100) | Y1 |             |          | 1.50 |
| Distance Between Pads     | G  | 0.20        |          |      |

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110A

NOTES:

## APPENDIX A: MIGRATING FROM dsPIC33FJ06GS101/X02 AND dsPIC33FJ16GSX02/X04 TO dsPIC33FJ32GS406/606/608/610 AND dsPIC33FJ64GS406/606/608/610 DEVICES

This appendix provides an overview of considerations for migrating from the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 family of devices to the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 family of devices. The code developed for the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices can be ported dsPIC33FJ32GS406/606/608/610 to the and dsPIC33FJ64GS406/606/608/610 devices after making the appropriate changes outlined below.

## A.1 Device Pins and Peripheral Pin Select (PPS)

On dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices, some peripherals such as the Timer, Input Capture, Output Compare, UART, SPI, External Interrupts, Analog Comparator Output, as well as the PWM4 pin pair, were mapped to physical pins via Peripheral Pin Select (PPS) functionality. On dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices, these peripherals are hard-coded to dedicated pins. Because of this, as well as pinout differences between the two devices families, software must be updated to utilize peripherals on the desired pin locations.

## A.2 High-Speed PWM

#### A.2.1 FAULT AND CURRENT-LIMIT CONTROL SIGNAL SOURCE SELECTION

Fault and Current-Limit Control Signal Source selection has changed between the two families of devices. On dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices, Fault1 through Fault8 were assigned to Fault and Current-Limit Controls with the following values:

- 00000 = Fault 1
- 00001 = Fault 2
- 00010 = Fault 3
- 00011 = Fault 4
- 00100 = Fault 5
- 00101 = Fault 6
- 00110 = Fault 7
- 00111 = Fault 8

On dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices, Fault1 through Fault8 were assigned to Fault and Current-Limit Controls with the following values:

- 01000 = Fault 1
- 01001 = Fault 2
- 01010 = Fault 3
- 01011 = Fault 4
- 01100 = Fault 5
- 01101 = Fault 6
- 01110 = Fault 7
- 01111 = Fault 8

#### A.2.2 ANALOG COMPARATORS CONNECTION

Connection of analog comparators to the PWM Fault and Current-Limit Control Signal Sources on dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices is performed by assigning a comparator to one of the Fault sources via the virtual PPS pins, and then selecting the desired Fault as the source for Fault and Current-Limit Control. On dsPIC33FJ32GS406/ 606/608/610 and dsPIC33FJ64GS406/606/608/610 devices, analog comparators have a direct connection to Fault and Current-Limit Control, and can be selected with the following values for the CLSRC or FLTSRC bits:

- 00000 = Analog Comparator 1
- 00001 = Analog Comparator 2
- 00010 = Analog Comparator 3
- 00011 = Analog Comparator 4

#### A.2.3 LEADING-EDGE BLANKING (LEB)

The Leading-Edge Blanking Delay (LEB) bits have been moved from the LEBCOx register on dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices to the LEBDLYx register on dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices.

# APPENDIX B: REVISION HISTORY

#### **Revision A (March 2009)**

This is the initial release of this document.

#### **Revision B (November 2009)**

The revision includes the following global update:

 Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits

This revision also includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table B-1.

| Section Name                                          | Update Description                                                                                                                                                                                                                           |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "High-Performance, 16-Bit Digital Signal Controllers" | Added "DMA Channels" column and updated the RAM size to 9K for the dsPIC33FJ64GS406 devices in the controller families table (see Table 1).                                                                                                  |
|                                                       | Updated the pin diagrams as follows:                                                                                                                                                                                                         |
|                                                       | 64-pin TQFP and QFN                                                                                                                                                                                                                          |
|                                                       | - Removed FLT8 from pin 51                                                                                                                                                                                                                   |
|                                                       | - Added FLT8 to pin 60                                                                                                                                                                                                                       |
|                                                       | - Added FLT17 to pin 31                                                                                                                                                                                                                      |
|                                                       | - Added FLT18 to pin32                                                                                                                                                                                                                       |
|                                                       | • 80-pin TQFP                                                                                                                                                                                                                                |
|                                                       | - Removed FLT8 from pin 63                                                                                                                                                                                                                   |
|                                                       | - Added FLT8 to pin 76                                                                                                                                                                                                                       |
|                                                       | - Added FLT19 to pin 53                                                                                                                                                                                                                      |
|                                                       | - Added FLT20 to pin 52                                                                                                                                                                                                                      |
|                                                       | • 100-pin TQFP                                                                                                                                                                                                                               |
|                                                       | - Removed FLT8 from pin 78                                                                                                                                                                                                                   |
|                                                       | - Added FLT8 to pin 93                                                                                                                                                                                                                       |
|                                                       | - Added SYNCO1 to pin 95                                                                                                                                                                                                                     |
| Section 4.0 "Memory Organization"                     | Added Data Memory Map for Devices with 8 KB RAM (see Figure 4-4).                                                                                                                                                                            |
|                                                       | Removed SFRs IPC25 and IPC26 from the Interrupt Controller Register<br>Map for dsPIC33FJ32GS406 and dsPIC33FJ64GS406 devices (see<br>Table 4-7).                                                                                             |
|                                                       | The following bits in the Interrupt Controller Register Map for dsPIC33FJ32GS406 and dsPIC33FJ64GS406 devices were changed to unimplemented (see Table 4-7):                                                                                 |
|                                                       | <ul> <li>Bit 2 of IFS1</li> <li>Bits 9-7 of IFS6</li> <li>Bit 2 of IEC1</li> <li>Bits 9-7 of IEC6</li> </ul>                                                                                                                                 |
|                                                       | • Bits 10-8 of IPC4                                                                                                                                                                                                                          |
|                                                       | Removed OSCTUN2 and LFSR, updated OSCCON and OSCTUN, renamed bit 13 of the REFOCON SFR in the System Control Register Map from ROSIDL to ROSSLP and changed the All Resets value from '0000' to '2300' for the ACLKCON SFR (see Table 4-56). |
|                                                       | Updated bit 1 of the PMD Register Map for dsPIC33FJ64GS608 devices from unimplemented to C1MD (see Table 4-60).                                                                                                                              |

#### TABLE B-1: MAJOR SECTION UPDATES

| Section Name                                                            | Update Description                                                                                                                                                                                     |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Section 9.0 "Oscillator Configuration"                                  | Removed Section 9.2 "FRC Tuning".                                                                                                                                                                      |
|                                                                         | Removed the PRCDEN, TSEQEN, and LPOSCEN bits from the Oscillator Control Register (see Register 9-1).                                                                                                  |
|                                                                         | Updated the Oscillator Tuning Register (see Register 9-4).                                                                                                                                             |
|                                                                         | Removed the Oscillator Tuning Register 2 and the Linear Feedback Shift Register.                                                                                                                       |
|                                                                         | Updated the default reset values from R/W-0 to R/W-1 for the SELACLK and APSTSCLR<2:0> bits in the ACLKCON register (see Register 9-5).                                                                |
|                                                                         | Renamed the ROSIDL bit to ROSSLP in the REFOCON register (see Register 9-6).                                                                                                                           |
| Section 10.0 "Power-Saving Features"                                    | Updated the last paragraph of <b>Section 10.2.2</b> "Idle Mode" to clarify when instruction execution begins.                                                                                          |
|                                                                         | Added Note 1 to the PMD1 register (see Register 10-1).                                                                                                                                                 |
| Section 11.0 "I/O Ports"                                                | Changed the reference to digital-only pins to 5V tolerant pins in the second paragraph of <b>Section 11.2 "Open-Drain Configuration"</b> .                                                             |
| Section 16.0 "High-Speed PWM"                                           | Updated the High-Speed PWM Module Register Interconnect Diagram (see Figure 16-2).                                                                                                                     |
|                                                                         | Updated the SYNCSRC<2:0> = $111$ , $101$ , and $100$ definitions to Reserved in the PTCON and STCON registers (see Register 16-1 and Register 16-5).                                                   |
|                                                                         | Updated the PWM time base maximum value from 0xFFFB to 0xFFF8 in the PTPER register (Register 16-3).                                                                                                   |
|                                                                         | Updated the smallest pulse width value from 0x0008 to 0x0009 in Note 1 of the shaded note that follows the MDC register (see Register 16-10).                                                          |
|                                                                         | Updated the smallest pulse width value from 0x0008 to 0x0009 in Note 2 of the shaded note that follows the PDCx and SDCx registers (see Register 16-12 and Register 16-13).                            |
|                                                                         | Added Note 2 and updated the FLTDAT<1:0> and CLDAT<1:0> bits, changing the word 'data' to 'state' in the IOCONx register (see Register 16-19).                                                         |
| Section 20.0 "Universal<br>Asynchronous Receiver Transmitter<br>(UART)" | Updated the two baud rate range features to: 10 Mbps to 38 bps at 40 MIPS.                                                                                                                             |
| Section 22.0 "High-Speed 10-bit<br>Analog-to-Digital Converter (ADC)"   | Updated the TRGSRCx<4:0> = 01101 definition from Reserved to PWM secondary special event trigger selected, and updated Note 1 in the ADCP0-ADCP6 registers (see Register 22-6 through Register 22-12). |
| Section 24.0 "Special Features"                                         | Updated the second paragraph and removed the fourth paragraph in Section 24.1 "Configuration Bits".                                                                                                    |
|                                                                         | Updated the Device Configuration Register Map (see Table 24-1).                                                                                                                                        |

## TABLE B-1: MAJOR SECTION UPDATES (CONTINUED)

| Section Name                                 | Update Description                                                                                                                                                                                            |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Section 27.0 "Electrical<br>Characteristics" | Updated the Absolute Maximum Ratings for high temperature and added Note 4.                                                                                                                                   |
|                                              | Updated all Operating Current (IDD) Typical and Max values in Table 27-5                                                                                                                                      |
|                                              | Updated all Idle Current (IIDLE) Typical and Max values in Table 27-6.                                                                                                                                        |
|                                              | Updated all Power-Down Current (IPD) Typical and Max values in Table 27-7.                                                                                                                                    |
|                                              | Updated all Doze Current (IDOZE) Typical and Max values in Table 27-8.                                                                                                                                        |
|                                              | Updated the Typ and Max values for parameter D150 and removed parameters DI26, DI28, and DI29 from the I/O Pin Input Specifications (see Table 27-9).                                                         |
|                                              | Updated the Typ and Max values for parameter DO10 and DO27 and the Min and Typ values for parameter DO20 in the I/O Pin Output Specifications (see Table 27-10).                                              |
|                                              | Added parameter numbers to the Auxiliary PLL Clock Timing Specifications (see Table 27-18).                                                                                                                   |
|                                              | Added parameters numbers and updated the Internal RC Accuracy Min, Typ, and Max values (see Table 27-19 and Table 27-20).                                                                                     |
|                                              | Added parameter numbers, Note 2, updated the Min and Typ parameter values for MP31 and MP32, and removed the conditions for MP10 and MP11 in the High-Speed PWM Module Timing Requirements (see Table 27-29). |
|                                              | Updated the SPIx Module Slave Mode (CKE = 1) Timing Characteristics (see Figure 27-14).                                                                                                                       |
|                                              | Added parameter IM51 to the I2Cx Bus Data Timing Requirements (Master Mode) (see Table 27-34).                                                                                                                |
|                                              | Updated the Max value for parameter AD33 in the 10-bit High-Speed A/D Module Specifications (see Table 27-36).                                                                                                |
|                                              | Updated the titles and added parameter numbers to the Comparator and DAC Module Specifications (see Table 27-38 and Table 27-39) and the DAC Output Buffer Specifications (see Table 27-40).                  |

#### TABLE B-1: MAJOR SECTION UPDATES (CONTINUED)

## **Revision C (February 2010)**

This revision includes minor typographical and formatting changes throughout the data sheet text.

All other changes are referenced by their respective section in Table B-2.

| TABLE B-2: | MAJOR SECTION UPDATES |
|------------|-----------------------|
|------------|-----------------------|

| Section Name                                 | Update Description                                                                                                              |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Section 16.0 "High-Speed PWM"                | Added Note 2 to PTPER (Register 16-3).                                                                                          |
|                                              | Added Note 1 to SEVTCMP (Register 16-4).                                                                                        |
|                                              | Updated Note 1 in MDC (Register 16-10).                                                                                         |
|                                              | Updated Note 5 and added Note 6 to PWMCONx (Register 16-11).                                                                    |
|                                              | Updated Note 1 in PDCx (Register 16-12).                                                                                        |
|                                              | Updated Note 1 in SDCx (Register 16-13).                                                                                        |
|                                              | Updated Note 1 and Note 2 in PHASEx (Register 16-14).                                                                           |
|                                              | Updated Note 2 in SPHASEx (Register 16-15).                                                                                     |
|                                              | Updated Note 1 in FCLCONx (Register 16-21).                                                                                     |
|                                              | Added Note 1 to STRIGx (Register 16-22).                                                                                        |
|                                              | Updated Leading-Edge Blanking Delay increment value from 8.4 ns to 8.32 ns and added a shaded note in LEBDLYx (Register 16-24). |
|                                              | Added Note 3 and Note 4 to PWMCAPx (Register 16-26).                                                                            |
| Section 27.0 "Electrical<br>Characteristics" | Updated the Min and Typ values for the Internal Voltage Regulator specifications in Table 27-13.                                |
|                                              | Updated the Min and Max values for the Internal RC Accuracy specifications in Table 27-20.                                      |

NOTES:

## INDEX

| 1 | ١ |
|---|---|
| • | • |

| AC Characteristics            |  |
|-------------------------------|--|
| Internal RC Accuracy          |  |
| Load Conditions               |  |
| Alternate Vector Table (AIVT) |  |
| Arithmetic Logic Unit (ALU)   |  |
| Assembler                     |  |
| MPASM Assembler               |  |
|                               |  |

# В

| Barrel Shifter                            |            |
|-------------------------------------------|------------|
| Bit-Reversed Addressing                   |            |
| Example 10                                |            |
| Implementation10                          |            |
| Sequence Table (16-Entry)10               | )4         |
| Block Diagrams                            |            |
| 16-bit Timer1 Module21                    |            |
| Comparator 32                             |            |
| Connections for On-Chip Voltage Regulator |            |
| Device Clock 19                           | <b>)</b> 1 |
| DSP Engine4                               | 12         |
| dsPIC33FJ32GS406/606/608/610 an           |            |
| dsPIC33FJ64GS406/606/608/6102             | 20         |
| dsPIC33FJ32GS406/606/608/610 an           | ۱d         |
| dsPIC33FJ64GS406/606/608/610 CPU Core 3   | 36         |
| ECAN Module28                             |            |
| I <sup>2</sup> C26                        | 6          |
| Input Capture 21                          | 9          |
| Oscillator System 18                      | 38         |
| Output Compare 22                         | 21         |
| PLL                                       |            |
| Quadrature Encoder Interface25            | 55         |
| Reset System11                            | 5          |
| Shared Port Structure 20                  | )9         |
| Simplified Conceptual High-Speed PWM22    | 26         |
| SPI                                       | 59         |
| Timer2/3 (32-bit)21                       | 5          |
| Type B Timer                              | 3          |
| Type C Timer21                            | 13         |
| UART                                      |            |
| Watchdog Timer (WDT)33                    | 38         |
| Brown-out Reset (BOR)                     | 33         |
|                                           |            |

# С

| C Compilers                       |          |
|-----------------------------------|----------|
| Hi-Tech C                         | 350      |
| MPLAB C                           | 350      |
| Clock Switching                   | 198      |
| Enabling                          | 198      |
| Sequence                          | 198      |
| Code Examples                     |          |
| Erasing a Program Memory Page     | 113      |
| Initiating a Programming Sequence | 114      |
| Loading Write Buffers             | 114      |
| Port Write/Read                   | 210      |
| PWRSAV Instruction Syntax         | 199      |
| Code Protection                   | 333, 339 |
| CodeGuard Security                |          |
| Configuration Bits                | 333      |
| Configuration Register Map        | 333      |
| Configuring Analog Port Pins      | 210      |
| CPU                               |          |
| Control Registers                 |          |

| 189 |
|-----|
| 190 |
| 189 |
| 189 |
| 415 |
| 415 |
| 415 |
|     |

## D

| DAC                                                | 330  |
|----------------------------------------------------|------|
| Output Range                                       |      |
| Data Accumulators and Adder/Subtracter             |      |
| Data Space Write Saturation                        |      |
| Overflow and Saturation                            |      |
| Round Logic                                        |      |
| Write Back                                         |      |
| Data Address Space                                 |      |
| Alignment                                          |      |
| Memory Map for dsPIC33FJ32GS406/606/608/610        |      |
| vices with 4 KB RAM                                |      |
| Memory Map for dsPIC33FJ64GS406/606/608/610        | De-  |
| vices with 8 KB RAM                                |      |
| Memory Map for dsPIC33FJ64GS406/606/608/610        | De-  |
| vices with 9 KB RAM                                |      |
| Near Data Space                                    | . 49 |
| Software Stack                                     |      |
| Width                                              |      |
| DC Characteristics                                 | 354  |
| Doze Current (IDOZE)                               | 358  |
| I/O Pin Input Specifications                       |      |
| I/O Pin Output Specifications                      |      |
| Idle Current (IIDLE)                               | 357  |
| Operating Current (IDD)                            | 356  |
| Power-Down Current (IPD)                           | 358  |
| Program Memory                                     | 361  |
| Temperature and Voltage Specifications             | 355  |
| Demonstration/Development Boards, Evaluation Kits, | and  |
| Starter Kits                                       | 352  |
| Development Support                                | 349  |
| DMAC Registers                                     | 178  |
| DMAxCNT                                            | 178  |
| DMAxCON                                            | 178  |
| DMAxPAD                                            | 178  |
| DMAxREQ                                            | 178  |
| DMAxSTA                                            | 178  |
| DMAxSTB                                            | 178  |
| Doze Mode                                          |      |
| DSP Engine                                         |      |
| Multiplier                                         | 43   |
|                                                    |      |

# Е

| ECAN Module        |     |
|--------------------|-----|
| CiBUFPNT1 register | 291 |
| CiBUFPNT2 register | 292 |
| CiBUFPNT3 register | 292 |
| CiBUFPNT4 register | 293 |
| CiCFG1 register    | 289 |
| CiCFG2 register    | 290 |
| CiCTRL1 register   | 282 |
| CiCTRL2 register   | 283 |
| CiEC register      | 289 |
| CiFCTRL register   | 285 |
| CiFEN1 register    | 291 |
| CiFIFO register    | 286 |
|                    |     |

Н

| CiFMSKSEL1 register                                                                                      |
|----------------------------------------------------------------------------------------------------------|
| CiFMSKSEL2 register                                                                                      |
| CiINTE register                                                                                          |
| CiINTF register                                                                                          |
| CIRXFnEID register                                                                                       |
| CiRXFnSID register                                                                                       |
| CiRXFUL2 register                                                                                        |
| CiRXMnEID register                                                                                       |
| CiRXMnSID register                                                                                       |
| CiRXOVF1 register                                                                                        |
| CiRXOVF2 register                                                                                        |
| CiTRmnCON register                                                                                       |
| CiVEC register                                                                                           |
| Frame Types279                                                                                           |
| Modes of Operation                                                                                       |
| Overview                                                                                                 |
| ECAN Registers                                                                                           |
| Acceptance Filter Enable Register (CiFEN1)                                                               |
| Acceptance Filter Extended Identifier Register n (CiRXF-<br>nEID)295                                     |
| Acceptance Filter Mask Extended Identifier Register n                                                    |
| (CiRXMnEID)                                                                                              |
| Acceptance Filter Mask Standard Identifier Register n<br>(CiRXMnSID)                                     |
| Acceptance Filter Standard Identifier Register n (CiRXF-                                                 |
| nSID)294                                                                                                 |
| Baud Rate Configuration Register 1 (CiCFG1)289                                                           |
| Baud Rate Configuration Register 2 (CiCFG2)290                                                           |
| Control Register 1 (CiCTRL1)                                                                             |
| Control Register 2 (CiCTRL2)                                                                             |
| FIFO Control Register (CiFCTRL)                                                                          |
| FIFO Status Register (CiFIFO)                                                                            |
| Filter 0-3 Buffer Pointer Register (CiBUFPNT1)291<br>Filter 12-15 Buffer Pointer Register (CiBUFPNT4)293 |
| Filter 15-8 Mask Selection Register (CiBOFFN14) 293                                                      |
| Filter 4-7 Buffer Pointer Register (CiBUFPNT2) 292                                                       |
| Filter 7-0 Mask Selection Register (CiFMSKSEL1)295                                                       |
| Filter 8-11 Buffer Pointer Register (CiBUFPNT3) 292                                                      |
| Interrupt Code Register (CiVEC)                                                                          |
| Interrupt Enable Register (CiINTE)                                                                       |
| Interrupt Flag Register (CiINTF)                                                                         |
| Receive Buffer Full Register 1 (CiRXFUL1)                                                                |
| Receive Buffer Full Register 2 (CiRXFUL2)                                                                |
| Receive Buffer Overflow Register 2 (CiRXOVF2) 299                                                        |
| Receive Overflow Register (CiRXOVF1)                                                                     |
| ECAN Transmit/Receive Error Count Register (CiEC) 289                                                    |
| ECAN TX/RX Buffer m Control Register (CiTRmnCON) 300                                                     |
| Electrical Characteristics                                                                               |
| AC Characteristics and Timing Parameters                                                                 |
| BOR                                                                                                      |
| Enhanced CAN Module                                                                                      |
| Device Operating Frequency                                                                               |
| Fosc Calculation 190                                                                                     |
| XT with PLL Mode Example190                                                                              |
| Errata                                                                                                   |
| F                                                                                                        |
| Fail-Safe Clock Monitor (FSCM) 198                                                                       |
| Flash Program Memory109                                                                                  |

Control Registers110Operations110Programming Algorithm113RTSP Operation110Table Instructions109

| High-Speed PWM 225                                     |
|--------------------------------------------------------|
| I                                                      |
| I/O Ports                                              |
| Parallel I/O (PIO)209                                  |
| Write/Read Timing                                      |
| I <sup>2</sup> C Operating Modes                       |
| Registers                                              |
| In-Circuit Debugger                                    |
| In-Circuit Emulation                                   |
| In-Circuit Serial Programming (ICSP)                   |
| Input Capture                                          |
| Registers                                              |
| Input Change Notification                              |
| File Register Instructions                             |
| Fundamental Modes Supported 101                        |
| MAC Instructions 101                                   |
| MCU Instructions 100                                   |
| Move and Accumulator Instructions                      |
| Other Instructions 101<br>Instruction Set              |
| Overview                                               |
| Summary                                                |
| Instruction-Based Power-Saving Modes                   |
| Idle                                                   |
| Sleep                                                  |
| Interfacing Program and Data Memory Spaces 105         |
| Internal RC Oscillator<br>Use with WDT                 |
| Internet Address                                       |
| Interrupt Control and Status Registers                 |
| IECx                                                   |
| IFSx 127                                               |
| INTCON1 127                                            |
| INTCON2                                                |
| INTTREG                                                |
| Interrupt Setup Procedures                             |
| Initialization                                         |
| Interrupt Disable 176                                  |
| Interrupt Service Routine 176                          |
| Trap Service Routine                                   |
| Interrupt Vector Table (IVT)                           |
| Interrupts Coincident with Power Save Instructions 200 |
| J                                                      |
| JTAG Boundary Scan Interface                           |
| L                                                      |
| Leading-Edge Blanking (LEB) 225                        |
| M                                                      |
| Memory Organization                                    |
| Analog Comparators Connection 403                      |
|                                                        |

High-Speed Analog Comparator...... 329

| Device Pins and Peripheral Pin S  | Select (PPS) 403        |
|-----------------------------------|-------------------------|
| Fault and Current-Limit Control S | Signal Source Selection |
| 403                               |                         |

| 403                                                   |
|-------------------------------------------------------|
| Leading-Edge Blanking (LEB)                           |
| Modes of Operation                                    |
| Disable                                               |
| Initialization                                        |
| Listen All Messages                                   |
| Listen Only281                                        |
| Loopback                                              |
| Normal Operation281                                   |
| Modulo Addressing 102                                 |
| Applicability                                         |
| Operation Example102                                  |
| Start and End Address102                              |
| W Address Register Selection 102                      |
| MPLAB ASM30 Assembler, Linker, Librarian              |
| MPLAB ICD 3 In-Circuit Debugger System                |
| MPLAB Integrated Development Environment Software 349 |
| MPLAB PM3 Device Programmer                           |
| MPLAB REAL ICE In-Circuit Emulator System             |
| MPLINK Object Linker/MPLIB Object Librarian           |
|                                                       |

## 0

| Open-Drain Configuration            |     |
|-------------------------------------|-----|
| Oscillator Configuration            |     |
| Oscillator Tuning Register (OSCTUN) | 195 |
| Output Compare                      |     |

## Ρ

| Packaging                                                  |
|------------------------------------------------------------|
| 100-Lead TQFP 398                                          |
| 100-Lead TQFP Land Pattern                                 |
| 64-Lead QFN                                                |
| 64-Lead QFN Land Pattern 395                               |
| 64-Lead TQFP 394                                           |
| 64-Lead TQFP Land Pattern                                  |
| 80-Lead TQFP 396                                           |
| 80-Lead TQFP Land Pattern                                  |
| Marking                                                    |
| Peripheral Module Disable (PMD)201                         |
| PICkit 2 Development Programmer/Debugger and PICkit 2      |
| Debug Express                                              |
| PICkit 3 In-Circuit Debugger/Programmer and PICkit 3 Debug |
| Express                                                    |
| Pinout I/O Descriptions (table)21                          |
| Power-on Reset (POR) 119                                   |
| Power-Saving Features 199                                  |
| Clock Frequency and Switching199                           |
| Program Address Space 47                                   |
| Construction105                                            |
| Data Access from Program Memory Using Program              |
| Space Visibility108                                        |
| Data Access from Program Memory Using Table Instruc-       |
| tions107                                                   |
| Data Access from, Address Generation 106                   |
| Memory Map 47                                              |
| Table Read Instructions                                    |
| TBLRDH107                                                  |
| TBLRDL 107                                                 |
| Visibility Operation108                                    |
| Program Memory                                             |
| Interrupt Vector 48                                        |
| Organization48                                             |
| Reset Vector 48                                            |
|                                                            |

# Q

| Quadrature Encoder Interface (QEI) 255                                                                   |
|----------------------------------------------------------------------------------------------------------|
| R                                                                                                        |
| Reader Response                                                                                          |
| Change Notification (dsPIC33FJ32GS608/610 and                                                            |
| dsPIC33FJ64GS608/601 Devices)                                                                            |
| Change Notification (dsPIC33FJ64GS406/606 Devices) 56                                                    |
| CPU Core 54                                                                                              |
| DMA                                                                                                      |
| ECAN1 (C1CTRL1.WIN = 0 or 1)                                                                             |
| ECAN1 (C1CTRL1.WIN = 0)                                                                                  |
| High-Speed 10-bit ADC Module (dsPIC33FJ32GS608                                                           |
| and dsPIC33FJ64GS608 Devices)                                                                            |
| High-Speed 10-bit ADC Module (dsPIC33FJ32GS610                                                           |
| and dsPIC33FJ64GS610 Devices)                                                                            |
| High-Speed 10-bit ADC Module (for<br>dsPIC33FJ32GS406/606 and                                            |
| dsPIC33FJ32GS406/606 and<br>dsPIC33FJ64GS406/606 Devices)                                                |
| High-Speed PWM                                                                                           |
| High-Speed PWM Generator 1                                                                               |
| High-Speed PWM Generator 274                                                                             |
| High-Speed PWM Generator 375                                                                             |
| High-Speed PWM Generator 4 76                                                                            |
| High-Speed PWM Generator 5                                                                               |
| High-Speed PWM Generator 6                                                                               |
| High-Speed PWM Generator 7 (All devices except<br>dsPIC33FJ32GS406 and dsPIC33FJ64GS406) 79              |
| High-Speed PWM Generator 8 (All devices except                                                           |
| dsPIC33FJ32GS406 and dsPIC33FJ64GS406) 80                                                                |
| High-Speed PWM Generator 9 (dsPIC33FJ32GS610<br>and dsPIC33FJ64GS610 Devices)                            |
| I2C1                                                                                                     |
| I2C2                                                                                                     |
| Input Capture71                                                                                          |
| Interrupt Controller (dsPIC33FJ32GS406 and                                                               |
| dsPIC33FJ64GS406 Devices)                                                                                |
| Interrupt Controller (dsPIC33FJ32GS606 Devices) 69<br>Interrupt Controller (dsPIC33FJ32GS608 Devices) 67 |
| Interrupt Controller (dsPIC33FJ32GS610 Devices) 65                                                       |
| Interrupt Controller (dsPIC33FJ64GS606 Devices) 61                                                       |
| Interrupt Controller (dsPIC33FJ64GS608 Devices) 59                                                       |
| Interrupt Controller (dsPIC33FJ64GS610 Devices) 57                                                       |
| NVM                                                                                                      |
| Output Compare                                                                                           |
| PMD (dsIPC33FJ64GS606 Devices)                                                                           |
| Devices)                                                                                                 |
| PMD (dsPIC33FJ32GS606 Devices)                                                                           |
| PMD (dsPIC33FJ32GS608 Devices)                                                                           |
| PMD (dsPIC33FJ32GS610 Devices)                                                                           |
| PMD (dsPIC33FJ64GS608 Devices) 98                                                                        |
| PMD (dsPIC33FJ64GS610 Devices)                                                                           |
| PORTA (dsPIC33FJ32GS608 and dsPIC33FJ64GS608                                                             |
| Devices)                                                                                                 |
| Devices)                                                                                                 |
| PORTB                                                                                                    |
| PORTC (dsPIC33FJ32GS406/606 and<br>dsPIC33FJ64GS406/606 Devices)                                         |
| PORTC (dsPIC33FJ32GS608 and dsPIC33FJ64GS608                                                             |
| Devices)                                                                                                 |

| PORTC (dsPIC33FJ32GS610 and dsPIC33FJ64GS610                                                         |
|------------------------------------------------------------------------------------------------------|
| Devices)                                                                                             |
| PORTD (dsPIC33FJ32GS406/606 and<br>dsPIC33FJ64GS406/606 Devices)                                     |
| PORTD (dsPIC33FJ32GS608/610 and                                                                      |
| dsPIC33FJ64GS608/610 Devices)                                                                        |
| PORTE (dsPIC33FJ32GS406/606 and                                                                      |
| dsPIC33FJ64GS406/606 Devices)                                                                        |
| PORTE (dsPIC33FJ32GS608/610 and                                                                      |
| dsPIC33FJ64GS608/610 Devices)                                                                        |
| dsPIC33FJ64GS406/606 Devices)                                                                        |
| PORTF (dsPIC33FJ32GS608 and dsPIC33FJ64GS608                                                         |
| Devices)                                                                                             |
| PORTF (dsPIC33FJ32GS610 and dsPIC33FJ64GS610<br>Devices)                                             |
| PORTG (dsPIC33FJ32GS406/606 and                                                                      |
| dsPIC33FJ64GS406/606 Devices)                                                                        |
| PORTG (dsPIC33FJ32GS608 and dsPIC33FJ64GS608                                                         |
| Devices)                                                                                             |
| PORTG (dsPIC33FJ32GS610 and dsPIC33FJ64GS610<br>Devices)                                             |
| Quadrature Encoder Interface (QEI) 1                                                                 |
| Quadrature Encoder Interface (QEI) 2                                                                 |
| SPI1                                                                                                 |
| SPI2                                                                                                 |
| System Control                                                                                       |
| Timers                                                                                               |
| UART2                                                                                                |
| Registers                                                                                            |
| A/D Control Register (ADCON)                                                                         |
| A/D Convert Pair Control Register 0 (ADCPC0) 316                                                     |
| A/D Convert Pair Control Register 1 (ADCPC1) 318                                                     |
| A/D Convert Pair Control Register 2 (ADCPC2) 320<br>A/D Convert Pair Control Register 3 (ADCPC3) 322 |
| A/D Convert Pair Control Register 3 (ADCPC3) 322<br>A/D Convert Pair Control Register 4 (ADCPC4) 324 |
| A/D Convert Pair Control Register 5 (ADCPC5) 326                                                     |
| A/D Convert Pair Control Register 6 (ADCPC6) 328                                                     |
| A/D Port Configuration Register (ADPCFG)                                                             |
| A/D Status Register (ADSTAT)                                                                         |
| ACLKCON (Auxiliary Clock Divisor Control)                                                            |
| ADBASE (A/D Base)                                                                                    |
| ADCPC0 (A/D Convert Pair Control 0)                                                                  |
| ADCPC1 (A/D Convert Pair Control 1)                                                                  |
| ADCPC2 (A/D Convert Pair Control 2)                                                                  |
| ADCPC3 (A/D Convert Pair Control 3)                                                                  |
| ADCPC4 (A/D Convert Pair Control 4)                                                                  |
| ADCPC6 (A/D Convert Pair Control 6)                                                                  |
| ADPCFG (A/D Port Configuration)                                                                      |
| ADPCFG2 (A/D Port Configuration)                                                                     |
| ADSTAT (A/D Status)                                                                                  |
| ALTDTRx (PWM Alternate Dead Time)                                                                    |
| AUXCONx (PWM Auxiliary Control)253<br>CHOP (PWM Chop Clock Generator)235                             |
| CHOP (PWM Chop Clock Generator)                                                                      |
| CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer)                                                           |
| CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer)                                                          |
| CiBUFPNT4 (ECAN Filter 12-15 Buffer Pointer) 293                                                     |
| CiCFG1 (ECAN Baud Rate Configuration 1)                                                              |
| CiCFG2 (ECAN Baud Rate Configuration 2)                                                              |
| CiCTRL1 (ECAN Control 1)                                                                             |
|                                                                                                      |

| CIFCTRL (ECAN FIFO Control) 285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CiFEN1 (ECAN Acceptance Filter Enable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CiFIFO (ECAN FIFO Status)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CiFMSKSEL1 (ECAN Filter 7-0 Mask Selection) 295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CiFMSKSEL2 (ECAN Filter 15-8 Mask Selection) 296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CilNTE (ECAN Interrupt Enable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CiINTF (ECAN Interrupt Flag) 287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CiRXFnEID (ECAN Acceptance Filter n Extended Identi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| fier) 295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CiRXFnSID (ECAN Acceptance Filter n Standard Identi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| fier) 294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CiRXFUL1 (ECAN Receive Buffer Full 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CiRXFUL2 (ECAN Receive Buffer Full 2) 298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CiRXMnEID (ECAN Acceptance Filter Mask n Extended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Identifier)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CiRXMnSID (ECAN Acceptance Filter Mask n Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Identifier)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CiRXOVF1 (ECAN Receive Buffer Overflow 1) 299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CiRXOVF2 (ECAN Receive Buffer Overflow 2) 299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CiTRBnSID (ECAN Buffer n Standard Identifier) 301,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 302, 304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CiTRmnCON (ECAN TX/RX Buffer m Control) 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CiVEC (ECAN Interrupt Code)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CLKDIV (Clock Divisor) 193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CMPCONx (Comparator Control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CMPCPNx (Comparator Control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CMPDACx (Comparator DAC Control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CORCON (Core Control) 40, 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DFLTCON (QEI Control) 258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DFLTxCON (Digital Filter Control)258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DMACS0 (DMA Controller Status 0) 183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DMACS1 (DMA Controller Status 1) 184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DMAxCNT (DMA Channel x Transfer Count)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DMAxCON (DMA Channel x Control) 179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DMAxCON (DMA Channel x Control) 179<br>DMAxPAD (DMA Channel x Peripheral Address) 182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DMAxCON (DMA Channel x Control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DMAxCON (DMA Channel x Control)179DMAxPAD (DMA Channel x Peripheral Address)182DMAxREQ (DMA Channel x IRQ Select)180DMAxSTA (DMA Channel x RAM Start Address A)181DMAxSTB (DMA Channel x RAM Start Address B)181DSADR (Most Recent DMA RAM Address)185DTRx (PWM Dead Time)242FCLCONx (PWM Fault Current-Limit Control)247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DMAxCON (DMA Channel x Control)179DMAxPAD (DMA Channel x Peripheral Address)182DMAxREQ (DMA Channel x IRQ Select)180DMAxSTA (DMA Channel x RAM Start Address A)181DMAxSTB (DMA Channel x RAM Start Address B)181DSADR (Most Recent DMA RAM Address)185DTRx (PWM Dead Time)242FCLCONx (PWM Fault Current-Limit Control)247I2CxCON (I2Cx Control)267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DMAxCON (DMA Channel x Control)179DMAxPAD (DMA Channel x Peripheral Address)182DMAxREQ (DMA Channel x IRQ Select)180DMAxSTA (DMA Channel x RAM Start Address A)181DMAxSTB (DMA Channel x RAM Start Address B)181DSADR (Most Recent DMA RAM Address)185DTRx (PWM Dead Time)242FCLCONx (PWM Fault Current-Limit Control)247I2CxCON (I2Cx Control)267I2CxMSK (I2Cx Slave Mode Address Mask)271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DMAxCON (DMA Channel x Control)179DMAxPAD (DMA Channel x Peripheral Address)182DMAxREQ (DMA Channel x IRQ Select)180DMAxSTA (DMA Channel x RAM Start Address A)181DMAxSTB (DMA Channel x RAM Start Address B)181DSADR (Most Recent DMA RAM Address)185DTRx (PWM Dead Time)242FCLCONx (PWM Fault Current-Limit Control)247I2CxCON (I2Cx Control)267I2CxMSK (I2Cx Slave Mode Address Mask)271I2CxSTAT (I2Cx Status)269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DMAxCON (DMA Channel x Control)179DMAxPAD (DMA Channel x Peripheral Address)182DMAxREQ (DMA Channel x IRQ Select)180DMAxSTA (DMA Channel x RAM Start Address A)181DMAxSTB (DMA Channel x RAM Start Address B)181DSADR (Most Recent DMA RAM Address)185DTRx (PWM Dead Time)242FCLCONx (PWM Fault Current-Limit Control)247I2CxCON (I2Cx Control)267I2CxMSK (I2Cx Slave Mode Address Mask)271I2CxCON (Input Capture x Control, x = 1, 2)220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DMAxCON (DMA Channel x Control)179DMAxPAD (DMA Channel x Peripheral Address)182DMAxREQ (DMA Channel x IRQ Select)180DMAxSTA (DMA Channel x RAM Start Address A)181DMAxSTB (DMA Channel x RAM Start Address B)181DSADR (Most Recent DMA RAM Address)185DTRx (PWM Dead Time)242FCLCONx (PWM Fault Current-Limit Control)247I2CxCON (I2Cx Control)267I2CxMSK (I2Cx Slave Mode Address Mask)271I2CxSTAT (I2Cx Status)269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DMAxCON (DMA Channel x Control)179DMAxPAD (DMA Channel x Peripheral Address)182DMAxREQ (DMA Channel x IRQ Select)180DMAxSTA (DMA Channel x RAM Start Address A)181DMAxSTB (DMA Channel x RAM Start Address B)181DSADR (Most Recent DMA RAM Address)185DTRx (PWM Dead Time)242FCLCONx (PWM Fault Current-Limit Control)247I2CxCON (I2Cx Control)267I2CxMSK (I2Cx Slave Mode Address Mask)271I2CxCON (Input Capture x Control, x = 1, 2)220ICxCON (Input Capture x Control)220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DMAxCON (DMA Channel x Control)179DMAxPAD (DMA Channel x Peripheral Address)182DMAxREQ (DMA Channel x IRQ Select)180DMAxSTA (DMA Channel x RAM Start Address A)181DMAxSTB (DMA Channel x RAM Start Address B)181DSADR (Most Recent DMA RAM Address)185DTRx (PWM Dead Time)242FCLCONx (PWM Fault Current-Limit Control)247I2CxCON (I2Cx Control)267I2CxMSK (I2Cx Slave Mode Address Mask)271I2CxON (Input Capture x Control, x = 1, 2)220ICxCON (Input Capture x Control)220IEC0 (Interrupt Enable Control 0)141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DMAxCON (DMA Channel x Control)179DMAxPAD (DMA Channel x Peripheral Address)182DMAxREQ (DMA Channel x IRQ Select)180DMAxSTA (DMA Channel x RAM Start Address A)181DMAxSTB (DMA Channel x RAM Start Address B)181DSADR (Most Recent DMA RAM Address)185DTRx (PWM Dead Time)242FCLCONx (PWM Fault Current-Limit Control)247I2CxCON (I2Cx Control)267I2CxMSK (I2Cx Slave Mode Address Mask)271I2CxON (Input Capture x Control, x = 1, 2)220ICxCON (Input Capture x Control)220IEC0 (Interrupt Enable Control 0)141IEC1 (Interrupt Enable Control 1)143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DMAxCON (DMA Channel x Control)179DMAxPAD (DMA Channel x Peripheral Address)182DMAxREQ (DMA Channel x IRQ Select)180DMAxSTA (DMA Channel x RAM Start Address A)181DMAxSTB (DMA Channel x RAM Start Address B)181DSADR (Most Recent DMA RAM Address)185DTRx (PWM Dead Time)242FCLCONx (PWM Fault Current-Limit Control)247I2CxCON (I2Cx Control)267I2CxMSK (I2Cx Slave Mode Address Mask)271I2CxON (Input Capture x Control, x = 1, 2)220ICxCON (Input Capture x Control)220IEC0 (Interrupt Enable Control 0)141IEC1 (Interrupt Enable Control 1)143IEC2 (Interrupt Enable Control 2)144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DMAxCON (DMA Channel x Control)179DMAxPAD (DMA Channel x Peripheral Address)182DMAxREQ (DMA Channel x IRQ Select)180DMAxSTA (DMA Channel x RAM Start Address A)181DMAxSTB (DMA Channel x RAM Start Address B)181DSADR (Most Recent DMA RAM Address)185DTRx (PWM Dead Time)242FCLCONx (PWM Fault Current-Limit Control)247I2CxCON (I2Cx Control)267I2CxMSK (I2Cx Slave Mode Address Mask)271I2CxON (Input Capture x Control)220ICxCON (Input Capture x Control)220IEC0 (Interrupt Enable Control 0)141IEC1 (Interrupt Enable Control 2)144IEC3 (Interrupt Enable Control 3)145IEC4 (Interrupt Enable Control 4)146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DMAxCON (DMA Channel x Control)179DMAxPAD (DMA Channel x Peripheral Address)182DMAxREQ (DMA Channel x IRQ Select)180DMAxSTA (DMA Channel x RAM Start Address A)181DMAxSTB (DMA Channel x RAM Start Address B)181DSADR (Most Recent DMA RAM Address)185DTRx (PWM Dead Time)242FCLCONx (PWM Fault Current-Limit Control)247I2CxCON (I2Cx Control)267I2CxMSK (I2Cx Slave Mode Address Mask)271I2CxON (Input Capture x Control)220ICxCON (Input Capture x Control)220IEC0 (Interrupt Enable Control 0)141IEC1 (Interrupt Enable Control 2)144IEC3 (Interrupt Enable Control 3)145IEC4 (Interrupt Enable Control 4)146IEC5 (Interrupt Enable Control 5)147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DMAxCON (DMA Channel x Control)179DMAxPAD (DMA Channel x Peripheral Address)182DMAxREQ (DMA Channel x IRQ Select)180DMAxSTA (DMA Channel x RAM Start Address A)181DMAxSTB (DMA Channel x RAM Start Address B)181DSADR (Most Recent DMA RAM Address)185DTRx (PWM Dead Time)242FCLCONx (PWM Fault Current-Limit Control)247I2CxCON (I2Cx Control)267I2CxMSK (I2Cx Slave Mode Address Mask)271I2CxON (Input Capture x Control)220ICxCON (Input Capture x Control)220IEC0 (Interrupt Enable Control 0)141IEC1 (Interrupt Enable Control 2)144IEC3 (Interrupt Enable Control 3)145IEC4 (Interrupt Enable Control 4)146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DMAxCON (DMA Channel x Control)179DMAxPAD (DMA Channel x Peripheral Address)182DMAxREQ (DMA Channel x IRQ Select)180DMAxSTA (DMA Channel x RAM Start Address A)181DMAxSTB (DMA Channel x RAM Start Address B)181DSADR (Most Recent DMA RAM Address)185DTRx (PWM Dead Time)242FCLCONx (PWM Fault Current-Limit Control)247I2CxCON (I2Cx Control)267I2CxMSK (I2Cx Slave Mode Address Mask)271I2CxON (Input Capture x Control)220ICxCON (Input Capture x Control)220IEC0 (Interrupt Enable Control 0)141IEC1 (Interrupt Enable Control 2)144IEC3 (Interrupt Enable Control 3)145IEC4 (Interrupt Enable Control 4)146IEC5 (Interrupt Enable Control 5)147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DMAxCON (DMA Channel x Control)179DMAxPAD (DMA Channel x Peripheral Address)182DMAxREQ (DMA Channel x IRQ Select)180DMAxSTA (DMA Channel x RAM Start Address A)181DMAxSTB (DMA Channel x RAM Start Address B)181DMAxSTB (DMA Channel x RAM Start Address B)181DSADR (Most Recent DMA RAM Address)185DTRx (PWM Dead Time)242FCLCONx (PWM Fault Current-Limit Control)247I2CxCON (I2Cx Control)267I2CxXDK (I2Cx Slave Mode Address Mask)271I2CxCON (Input Capture x Control, x = 1, 2)220ICxCON (Input Capture x Control)220IEC0 (Interrupt Enable Control 0)141IEC1 (Interrupt Enable Control 2)144IEC3 (Interrupt Enable Control 3)145IEC4 (Interrupt Enable Control 4)146IEC5 (Interrupt Enable Control 5)147IEC6 (Interrupt Enable Control 6)148IEC7 (Interrupt Enable Control 7)149IFS0 (Interrupt Flag Status 0)132                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DMAxCON (DMA Channel x Control)179DMAxPAD (DMA Channel x Peripheral Address)182DMAxREQ (DMA Channel x IRQ Select)180DMAxSTA (DMA Channel x RAM Start Address A)181DMAxSTB (DMA Channel x RAM Start Address B)181DMAxSTB (DMA Channel x RAM Start Address B)181DSADR (Most Recent DMA RAM Address)185DTRx (PWM Dead Time)242FCLCONx (PWM Fault Current-Limit Control)247I2CxCON (I2Cx Control)267I2CxMSK (I2Cx Slave Mode Address Mask)271I2CxCON (Input Capture x Control, x = 1, 2)220ICxCON (Input Capture x Control)220IEC0 (Interrupt Enable Control 0)141IEC1 (Interrupt Enable Control 2)144IEC3 (Interrupt Enable Control 3)145IEC4 (Interrupt Enable Control 6)147IEC6 (Interrupt Enable Control 6)148IEC7 (Interrupt Enable Control 6)148IEC7 (Interrupt Enable Control 7)149IFS0 (Interrupt Flag Status 0)132IFS1 (Interrupt Flag Status 1)134                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DMAxCON (DMA Channel x Control)179DMAxPAD (DMA Channel x Peripheral Address)182DMAxREQ (DMA Channel x IRQ Select)180DMAxSTA (DMA Channel x RAM Start Address A)181DMAxSTB (DMA Channel x RAM Start Address B)181DMAxSTB (DMA Channel x RAM Start Address B)181DSADR (Most Recent DMA RAM Address)185DTRx (PWM Dead Time)242FCLCONx (PWM Fault Current-Limit Control)247I2CxCON (I2Cx Control)267I2CxMSK (I2Cx Slave Mode Address Mask)271I2CxCON (Input Capture x Control, x = 1, 2)220ICxCON (Input Capture x Control)220IEC0 (Interrupt Enable Control 0)141IEC1 (Interrupt Enable Control 2)144IEC3 (Interrupt Enable Control 3)145IEC4 (Interrupt Enable Control 6)148IEC7 (Interrupt Enable Control 6)148IEC7 (Interrupt Enable Control 7)149IFS0 (Interrupt Flag Status 0)132IFS1 (Interrupt Flag Status 1)134IFS2 (Interrupt Flag Status 2)135                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DMAxCON (DMA Channel x Control)       179         DMAxPAD (DMA Channel x Peripheral Address)       182         DMAxREQ (DMA Channel x IRQ Select)       180         DMAxSTA (DMA Channel x RAM Start Address A)       181         DMAxSTB (DMA Channel x RAM Start Address A)       181         DMAxSTB (DMA Channel x RAM Start Address B)       181         DSADR (Most Recent DMA RAM Address)       185         DTRx (PWM Dead Time)       242         FCLCONx (PWM Fault Current-Limit Control)       247         I2CxCON (I2Cx Control)       267         I2CxXDX (I2Cx Slave Mode Address Mask)       271         I2CxCON (I2Cx Control)       269         ICxCON (Input Capture x Control, x = 1, 2)       220         ICxCON (Input Capture x Control)       220         ICCO (Interrupt Enable Control 0)       141         IEC1 (Interrupt Enable Control 2)       144         IEC3 (Interrupt Enable Control 3)       145         IEC4 (Interrupt Enable Control 3)       145         IEC5 (Interrupt Enable Control 7)       149         IFS0 (Interrupt Enable Control 7)       149         IFS0 (Interrupt Flag Status 0)       132         IFS1 (Interrupt Flag Status 1)       134         IFS2 (Interrupt Flag Status 2)       135         <                          |
| DMAxCON (DMA Channel x Control)       179         DMAxPAD (DMA Channel x Peripheral Address)       182         DMAxREQ (DMA Channel x IRQ Select)       180         DMAxSTA (DMA Channel x RAM Start Address A)       181         DMAxSTB (DMA Channel x RAM Start Address A)       181         DMAxSTB (DMA Channel x RAM Start Address B)       181         DSADR (Most Recent DMA RAM Address)       185         DTRx (PWM Dead Time)       242         FCLCONx (PWM Fault Current-Limit Control)       247         I2CxCON (I2Cx Control)       267         I2CxXDX (I2Cx Slave Mode Address Mask)       271         I2CxCON (I2Cx Control)       269         ICxCON (Input Capture x Control, x = 1, 2)       220         ICxCON (Input Capture x Control)       220         ICxCON (Input Capture x Control)       220         ICCO (Interrupt Enable Control 0)       141         IEC1 (Interrupt Enable Control 2)       144         IEC3 (Interrupt Enable Control 3)       145         IEC4 (Interrupt Enable Control 7)       149         IFS0 (Interrupt Enable Control 7)       149         IFS0 (Interrupt Enable Control 7)       149         IFS0 (Interrupt Flag Status 0)       132         IFS1 (Interrupt Flag Status 1)       134                                  |
| DMAxCON (DMA Channel x Control)       179         DMAxPAD (DMA Channel x Peripheral Address)       182         DMAxREQ (DMA Channel x IRQ Select)       180         DMAxSTA (DMA Channel x RAM Start Address A)       181         DMAxSTB (DMA Channel x RAM Start Address B)       181         DMAxSTB (DMA Channel x RAM Start Address B)       181         DMAxSTB (DMA Channel x RAM Start Address B)       181         DSADR (Most Recent DMA RAM Address)       185         DTRx (PWM Dead Time)       242         FCLCONx (PWM Fault Current-Limit Control)       247         I2CxCON (I2Cx Control)       267         I2CxMSK (I2Cx Slave Mode Address Mask)       271         I2CxCON (Input Capture x Control, x = 1, 2)       220         ICxCON (Input Capture x Control, x = 1, 2)       220         ICxCON (Input Capture x Control)       220         ICCO (Interrupt Enable Control 0)       141         IEC1 (Interrupt Enable Control 2)       144         IEC3 (Interrupt Enable Control 3)       145         IEC4 (Interrupt Enable Control 5)       147         IEC6 (Interrupt Enable Control 7)       149         IFS0 (Interrupt Enable Control 7)       149         IFS0 (Interrupt Flag Status 0)       132         IFS1 (Interrupt Flag Status 1)       1    |
| DMAxCON (DMA Channel x Control)       179         DMAxPAD (DMA Channel x Peripheral Address)       182         DMAxREQ (DMA Channel x IRQ Select)       180         DMAxSTA (DMA Channel x RAM Start Address A)       181         DMAxSTB (DMA Channel x RAM Start Address B)       181         DMAxSTB (DMA Channel x RAM Start Address B)       181         DMAxSTB (DMA Channel x RAM Start Address B)       181         DSADR (Most Recent DMA RAM Address)       185         DTRx (PWM Dead Time)       242         FCLCONx (PWM Fault Current-Limit Control)       247         I2CxCON (I2Cx Control)       267         I2CxMSK (I2Cx Slave Mode Address Mask)       271         I2CxCON (I12Cx Control)       269         ICxCON (Input Capture x Control, x = 1, 2)       220         ICxCON (Input Capture x Control)       220         ICxCON (Input Capture x Control)       220         ICCO (Interrupt Enable Control 0)       141         IEC1 (Interrupt Enable Control 1)       143         IEC2 (Interrupt Enable Control 2)       144         IEC3 (Interrupt Enable Control 5)       147         IEC6 (Interrupt Enable Control 7)       149         IFS0 (Interrupt Enable Control 7)       149         IFS0 (Interrupt Flag Status 0)       132                    |
| DMAxCON (DMA Channel x Control)       179         DMAxPAD (DMA Channel x Peripheral Address)       182         DMAxREQ (DMA Channel x IRQ Select)       180         DMAxSTA (DMA Channel x RAM Start Address A)       181         DMAxSTB (DMA Channel x RAM Start Address A)       181         DMAxSTB (DMA Channel x RAM Start Address B)       181         DSADR (Most Recent DMA RAM Address)       185         DTRx (PWM Dead Time)       242         FCLCONx (PWM Fault Current-Limit Control)       247         I2CxCON (I2Cx Control)       267         I2CxMSK (I2Cx Slave Mode Address Mask)       271         I2CxCON (IPUt Capture x Control, x = 1, 2)       220         ICxCON (Input Capture x Control, x = 1, 2)       220         ICxCON (Input Capture x Control)       220         ICCO (Interrupt Enable Control 0)       141         IEC1 (Interrupt Enable Control 2)       144         IEC3 (Interrupt Enable Control 3)       145         IEC4 (Interrupt Enable Control 3)       145         IEC4 (Interrupt Enable Control 7)       149         IFS0 (Interrupt Flag Status 0)       132         IFS1 (Interrupt Flag Status 1)       134         IFS2 (Interrupt Flag Status 3)       136         IFS4 (Interrupt Flag Status 4)       137                   |
| DMAxCON (DMA Channel x Control)       179         DMAxPAD (DMA Channel x Peripheral Address)       182         DMAxREQ (DMA Channel x IRQ Select)       180         DMAxSTA (DMA Channel x RAM Start Address A)       181         DMAxSTB (DMA Channel x RAM Start Address B)       181         DMAxSTB (DMA Channel x RAM Start Address B)       181         DMAxSTB (DMA Channel x RAM Start Address B)       181         DSADR (Most Recent DMA RAM Address)       185         DTRx (PWM Dead Time)       242         FCLCONx (PWM Fault Current-Limit Control)       247         I2CxCON (I2Cx Control)       267         I2CxMSK (I2Cx Slave Mode Address Mask)       271         I2CxCON (I12Cx Control)       269         ICxCON (Input Capture x Control, x = 1, 2)       220         ICxCON (Input Capture x Control)       220         ICxCON (Input Capture x Control)       220         ICCO (Interrupt Enable Control 0)       141         IEC1 (Interrupt Enable Control 1)       143         IEC2 (Interrupt Enable Control 2)       144         IEC3 (Interrupt Enable Control 5)       147         IEC6 (Interrupt Enable Control 7)       149         IFS0 (Interrupt Enable Control 7)       149         IFS0 (Interrupt Flag Status 0)       132                    |
| DMAxCON (DMA Channel x Control)       179         DMAxPAD (DMA Channel x Peripheral Address)       182         DMAxREQ (DMA Channel x IRQ Select)       180         DMAxSTA (DMA Channel x RAM Start Address A)       181         DMAxSTB (DMA Channel x RAM Start Address A)       181         DMAXSTB (DMA Channel x RAM Start Address B)       181         DSADR (Most Recent DMA RAM Address)       185         DTRx (PWM Dead Time)       242         FCLCONx (PWM Fault Current-Limit Control)       247         I2CxCON (I2Cx Control)       267         I2CxMSK (I2Cx Slave Mode Address Mask)       271         I2CxCON (Iput Capture x Control, x = 1, 2)       220         ICxCON (Input Capture x Control, x = 1, 2)       220         ICxCON (Input Capture x Control)       220         ICCO (Interrupt Enable Control 0)       141         IEC1 (Interrupt Enable Control 1)       143         IEC2 (Interrupt Enable Control 2)       144         IEC3 (Interrupt Enable Control 3)       145         IEC4 (Interrupt Enable Control 7)       149         IFS0 (Interrupt Enable Control 7)       149         IFS0 (Interrupt Flag Status 1)       132         IFS1 (Interrupt Flag Status 2)       135         IFS3 (Interrupt Flag Status 3)       136 </td           |
| DMAxCON (DMA Channel x Control)       179         DMAxPAD (DMA Channel x Peripheral Address)       182         DMAxREQ (DMA Channel x IRQ Select)       180         DMAxSTA (DMA Channel x RAM Start Address A)       181         DMAxSTB (DMA Channel x RAM Start Address B)       181         DMAXSTB (DMA Channel x RAM Start Address B)       181         DMAXSTB (DMA Channel x RAM Start Address B)       181         DSADR (Most Recent DMA RAM Address)       185         DTRx (PWM Dead Time)       242         FCLCONx (PWM Fault Current-Limit Control)       247         I2CxCON (I2Cx Control)       267         I2CxMSK (I2Cx Slave Mode Address Mask)       271         I2CxCON (Iput Capture x Control, x = 1, 2)       220         ICxCON (Input Capture x Control, x = 1, 2)       220         ICxCON (Input Capture x Control)       220         ICCO (Interrupt Enable Control 0)       141         IEC1 (Interrupt Enable Control 1)       143         IEC2 (Interrupt Enable Control 2)       144         IEC3 (Interrupt Enable Control 3)       145         IEC4 (Interrupt Enable Control 7)       149         IFS0 (Interrupt Flag Status 0)       132         IFS1 (Interrupt Flag Status 1)       134         IFS2 (Interrupt Flag Status 3)       136 </td |
| DMAxCON (DMA Channel x Control)       179         DMAxPAD (DMA Channel x Peripheral Address)       182         DMAxREQ (DMA Channel x IRQ Select)       180         DMAxSTA (DMA Channel x RAM Start Address A)       181         DMAxSTB (DMA Channel x RAM Start Address A)       181         DMAXSTB (DMA Channel x RAM Start Address B)       181         DSADR (Most Recent DMA RAM Address)       185         DTRx (PWM Dead Time)       242         FCLCONx (PWM Fault Current-Limit Control)       247         I2CxCON (I2Cx Control)       267         I2CxMSK (I2Cx Slave Mode Address Mask)       271         I2CxCON (Iput Capture x Control, x = 1, 2)       220         ICxCON (Input Capture x Control, x = 1, 2)       220         ICxCON (Input Capture x Control)       220         ICCO (Interrupt Enable Control 0)       141         IEC1 (Interrupt Enable Control 1)       143         IEC2 (Interrupt Enable Control 2)       144         IEC3 (Interrupt Enable Control 3)       145         IEC4 (Interrupt Enable Control 7)       149         IFS0 (Interrupt Enable Control 7)       149         IFS0 (Interrupt Flag Status 1)       132         IFS1 (Interrupt Flag Status 2)       135         IFS3 (Interrupt Flag Status 3)       136 </td           |

| INTTREG Interrupt Control and Status                                                                                                                   | 175                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| IOCONx (PWM I/O Control)                                                                                                                               |                                              |
| IPC0 (Interrupt Priority Control 0)                                                                                                                    |                                              |
|                                                                                                                                                        |                                              |
| IPC1 (Interrupt Priority Control 1)                                                                                                                    |                                              |
| IPC12 (Interrupt Priority Control 12)                                                                                                                  |                                              |
| IPC13 (Interrupt Priority Control 13)                                                                                                                  |                                              |
| IPC14 (Interrupt Priority Control 14)                                                                                                                  | 162                                          |
| IPC16 (Interrupt Priority Control 16)                                                                                                                  |                                              |
| IPC17 (Interrupt Priority Control 17)                                                                                                                  |                                              |
| IPC18 (Interrupt Priority Control 18)                                                                                                                  | 165                                          |
|                                                                                                                                                        |                                              |
| IPC2 (Interrupt Priority Control 2)                                                                                                                    |                                              |
| IPC20 (Interrupt Priority Control 20)                                                                                                                  |                                              |
| IPC21 (Interrupt Priority Control 21)                                                                                                                  | 167                                          |
| IPC23 (Interrupt Priority Control 23)                                                                                                                  | 168                                          |
| IPC24 (Interrupt Priority Control 24)                                                                                                                  | 169                                          |
| IPC25 (Interrupt Priority Control 25)                                                                                                                  | 170                                          |
| IPC26 (Interrupt Priority Control 26)                                                                                                                  |                                              |
|                                                                                                                                                        |                                              |
| IPC27 (Interrupt Priority Control 27)                                                                                                                  |                                              |
| IPC28 (Interrupt Priority Control 28)                                                                                                                  |                                              |
| IPC29 (Interrupt Priority Control 29)                                                                                                                  |                                              |
| IPC3 (Interrupt Priority Control 3)                                                                                                                    | 153                                          |
| IPC4 (Interrupt Priority Control 4)                                                                                                                    |                                              |
| IPC5 (Interrupt Priority Control 5)                                                                                                                    |                                              |
| IPC6 (Interrupt Priority Control 6)                                                                                                                    |                                              |
| IPC6 (Interrupt Priority Control 6)                                                                                                                    | 457                                          |
| IPC7 (Interrupt Priority Control 7)                                                                                                                    |                                              |
| IPC8 (Interrupt Priority Control 8)                                                                                                                    |                                              |
| IPC9 (Interrupt Priority Control 9)                                                                                                                    |                                              |
| LEBCONx (Leading-Edge Blanking Control)                                                                                                                | 251                                          |
| LEBDLYx (Leading-Edge Blanking Delay)                                                                                                                  |                                              |
| MDC (PWM Master Duty Cycle)                                                                                                                            |                                              |
| NVMCON (Flash Memory Control)                                                                                                                          |                                              |
| NVMKEY (Non-Volatile Memory Key)                                                                                                                       |                                              |
|                                                                                                                                                        |                                              |
| NVMKEY (Nonvolatile Memory Key)                                                                                                                        |                                              |
| OCxCON (Output Compare x Control, x = 1, 2)                                                                                                            |                                              |
| OSCCON (Oscillator Control)                                                                                                                            | 192                                          |
| OSCTUN (Oscillator Tuning)                                                                                                                             | 195                                          |
| PDCx (PWM Generator Duty Cycle)                                                                                                                        |                                              |
| PHASEx (PWM Primary Phase Shift)                                                                                                                       |                                              |
| PLLFBD (PLL Feedback Divisor)                                                                                                                          |                                              |
| PMD1 (Peripheral Module Disable Control 1                                                                                                              |                                              |
|                                                                                                                                                        |                                              |
| PMD1 (Peripheral Module Disable Control 1)                                                                                                             |                                              |
| PMD2 (Peripheral Module Disable Control 2)                                                                                                             |                                              |
| PMD3 (Peripheral Module Disable Control 3)                                                                                                             |                                              |
| PMD4 (Peripheral Module Disable Control 4)                                                                                                             |                                              |
| PMD6 (Peripheral Module Disable Control 6)                                                                                                             | 206                                          |
| PMD7 (Peripheral Module Disable Control 7)                                                                                                             |                                              |
| PTCON (PWM Time Base Control)                                                                                                                          |                                              |
| PTCON2 (PWM Clock Divider Select)                                                                                                                      |                                              |
| PTPER (Primary Master Time Base Period)                                                                                                                |                                              |
|                                                                                                                                                        |                                              |
| PWMCAPx (Primary PWM Time Base Capture)                                                                                                                | 254                                          |
| PWMCONx (PWM Control)                                                                                                                                  | 237                                          |
| QEICON (QEI Control)                                                                                                                                   | 256                                          |
| QEIxCON (QEIx Control, x = 1 or 2)                                                                                                                     | 256                                          |
| RCON (Reset Control)                                                                                                                                   |                                              |
| REFOCON (Reference Oscillator Control)                                                                                                                 |                                              |
| SDCx (PWM Secondary Duty Cycle)                                                                                                                        |                                              |
|                                                                                                                                                        |                                              |
| SEVTCMP                                                                                                                                                | 235                                          |
|                                                                                                                                                        |                                              |
| SEVTCMP (Special Event Compare)                                                                                                                        | 232                                          |
| SPHASEx (PWM Secondary Phase Shift)                                                                                                                    | 232<br>241                                   |
| SPHASEx (PWM Secondary Phase Shift)<br>SPIxCON1 (SPIx Control 1)                                                                                       | 232<br>241<br>261                            |
| SPHASEx (PWM Secondary Phase Shift)<br>SPIxCON1 (SPIx Control 1)                                                                                       | 232<br>241<br>261                            |
| SPHASEx (PWM Secondary Phase Shift)<br>SPIxCON1 (SPIx Control 1)<br>SPIxCON2 (SPIx Control 2)                                                          | 232<br>241<br>261<br>263                     |
| SPHASEx (PWM Secondary Phase Shift)<br>SPIxCON1 (SPIx Control 1)<br>SPIxCON2 (SPIx Control 2)<br>SPIxSTAT (SPIx Status and Control)                    | 232<br>241<br>261<br>263<br>260              |
| SPHASEx (PWM Secondary Phase Shift)<br>SPIxCON1 (SPIx Control 1)<br>SPIxCON2 (SPIx Control 2)<br>SPIxSTAT (SPIx Status and Control)<br>SR (CPU STATUS) | 232<br>241<br>261<br>263<br>260<br>128       |
| SPHASEx (PWM Secondary Phase Shift)<br>SPIxCON1 (SPIx Control 1)<br>SPIxCON2 (SPIx Control 2)<br>SPIxSTAT (SPIx Status and Control)                    | 232<br>241<br>261<br>263<br>260<br>128<br>38 |

| 235        |                                       |
|------------|---------------------------------------|
| STCON (PWM | 1 Secondary Master Time Base Control) |
| 000        |                                       |

| STCON2 (PWM Secondary Clock Divider Select) 234STPER (Secondary Master Time Base Period)                                                                                                                                                                                                                                                                                                                                  | 233                                                        |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|
| STRIGx (PWM Secondary Trigger Compare Value) 250T1CON (Timer1 Control)212TRGCONx (PWM Trigger Control)243TRIGx (PWM Primary Trigger Compare Value)246TxCON (Timer Control, x = 2)216TyCON (Timer Control, y = 3)217UxMODE (UARTx Mode)274UxSTA (UARTx Status and Control)276ResetIllegal Opcode115, 120Trap Conflict120Uninitialized W Register115, 120Reset Sequence123Resets115Resources Required for Digital PFC29, 32 | STCON2 (PWM Secondary Clock Divider Select) 234            |  |
| T1CON (Timer1 Control)212TRGCONx (PWM Trigger Control)243TRIGx (PWM Primary Trigger Compare Value)246TxCON (Timer Control, x = 2)216TyCON (Timer Control, y = 3)217UxMODE (UARTx Mode)274UxSTA (UARTx Status and Control)276Reset115, 120Trap Conflict120Uninitialized W Register115, 120Resets115Resets115Resources Required for Digital PFC29, 32                                                                       | STPER (Secondary Master Time Base Period) 234              |  |
| TRGCONx (PWM Trigger Control)243TRIGx (PWM Primary Trigger Compare Value)246TxCON (Timer Control, x = 2)216TyCON (Timer Control, y = 3)217UxMODE (UARTx Mode)274UxSTA (UARTx Status and Control)276Reset115, 120Trap Conflict120Uninitialized W Register115, 120Resets115Resets115Resets115Resets23                                                                                                                       | STRIGx (PWM Secondary Trigger Compare Value) 250           |  |
| TRIGx (PWM Primary Trigger Compare Value)246TxCON (Timer Control, x = 2)216TyCON (Timer Control, y = 3)217UxMODE (UARTx Mode)274UxSTA (UARTx Status and Control)276Reset115, 120Trap Conflict120Uninitialized W Register115, 120Reset sequence123Resets115Resources Required for Digital PFC29, 32                                                                                                                        | T1CON (Timer1 Control) 212                                 |  |
| TxCON (Timer Control, x = 2)                                                                                                                                                                                                                                                                                                                                                                                              | TRGCONx (PWM Trigger Control) 243                          |  |
| TyCON (Timer Control, y = 3)                                                                                                                                                                                                                                                                                                                                                                                              | TRIGx (PWM Primary Trigger Compare Value) 246              |  |
| UxMODE (UARTx Mode) 274<br>UxSTA (UARTx Status and Control) 276<br>Reset<br>Illegal Opcode                                                                                                                                                                                                                                                                                                                                | TxCON (Timer Control, x = 2) 216                           |  |
| UxSTA (UARTx Status and Control)                                                                                                                                                                                                                                                                                                                                                                                          |                                                            |  |
| Reset       115, 120         Trap Conflict       120         Uninitialized W Register       115, 120         Reset Sequence       123         Resets       115         Resources Required for Digital PFC       29, 32                                                                                                                                                                                                    |                                                            |  |
| Illegal Opcode                                                                                                                                                                                                                                                                                                                                                                                                            | UxSTA (UARTx Status and Control) 276                       |  |
| Trap Conflict120Uninitialized W Register115, 120Reset Sequence123Resets115Resources Required for Digital PFC29, 32                                                                                                                                                                                                                                                                                                        |                                                            |  |
| Uninitialized W Register                                                                                                                                                                                                                                                                                                                                                                                                  | Illegal Opcode 115, 120                                    |  |
| Reset Sequence123Resets115Resources Required for Digital PFC29, 32                                                                                                                                                                                                                                                                                                                                                        |                                                            |  |
| Resets                                                                                                                                                                                                                                                                                                                                                                                                                    | Uninitialized W Register 115, 120                          |  |
| Resources Required for Digital PFC 29, 32                                                                                                                                                                                                                                                                                                                                                                                 | •                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |  |
| Resources Required for Digital Phase-Shift ZVT Converter34                                                                                                                                                                                                                                                                                                                                                                |                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                           | Resources Required for Digital Phase-Shift ZVT Converter34 |  |

### S

| Serial Peripheral Interface (SPI)                           | 20  |
|-------------------------------------------------------------|-----|
| Software Stack Pointer, Frame Pointer<br>CALL Stack Frame 1 |     |
| Special Event Compare Register (SEVTCMP)                    | 333 |

#### Т

Temperature and Voltage Specifications

| remperature and voltage Specifications               |
|------------------------------------------------------|
| AC                                                   |
| Timer1                                               |
| Timer2/3                                             |
| Timing Diagrams                                      |
| A/D Conversion per Input 383                         |
| Brown-out Situations 119                             |
| CAN I/O                                              |
| External Clock                                       |
| High-Speed PWM                                       |
| High-Speed PWM Fault                                 |
| I/O                                                  |
| I2Cx Bus Data (Master Mode) 378                      |
| I2Cx Bus Data (Slave Mode)                           |
| I2Cx Bus Start/Stop Bits (Master Mode) 378           |
| I2Cx Bus Start/Stop Bits (Slave Mode)                |
| Input Capture (CAPx)                                 |
| OC/PWM                                               |
| Output Compare (OCx)                                 |
| QEA/QEB Input 385                                    |
| QEI Module Index Pulse                               |
| Reset, Watchdog Timer, Oscillator Start-up Timer and |
| Power-up Timer                                       |
| SPIx Master Mode (CKE = 0)                           |
| SPIx Master Mode (CKE = 1) 374                       |
| SPIx Slave Mode (CKE = 0)                            |
| SPIx Slave Mode (CKE = 1)                            |
| Timer1, 2, 3 External Clock 368                      |
| TimerQ (QEI Module) External Clock                   |
| Timing Requirements                                  |
| External Clock                                       |
| I/O                                                  |
| Input Capture 370                                    |
|                                                      |

| Timing Specifications                                                               |
|-------------------------------------------------------------------------------------|
| 10-bit A/D Conversion Requirements                                                  |
| CAN I/O Requirements                                                                |
| High-Speed PWM Requirements                                                         |
| I2Cx Bus Data Requirements (Master Mode)                                            |
| I2Cx Bus Data Requirements (Slave Mode)                                             |
| Output Compare Requirements                                                         |
| PLL Clock                                                                           |
| QEI External Clock Requirements                                                     |
| QEI Index Pulse Requirements                                                        |
| Quadrature Decoder Requirements                                                     |
| Reset, Watchdog Timer, Oscillator Start-up Timer, Pow-                              |
| er-up Timer and Brown-out Reset Requirements                                        |
| 367                                                                                 |
| Simple OC/PWM Mode Requirements                                                     |
| SPIx Master Mode (CKE = 0) Requirements                                             |
| SPIx Master Mode (CKE = 1) Requirements                                             |
| SPIx Slave Mode (CKE = 0) Requirements                                              |
| SPIx Slave Mode (CKE = 1) Requirements                                              |
| Timer1 External Clock Requirements                                                  |
| Timer2 External Clock Requirements                                                  |
| Timer3 External Clock Requirements                                                  |
| U                                                                                   |
| Universal Asynchronous Receiver Transmitter (UART)273<br>Using the RCON Status Bits |

### V

| Voltage Regulator (On-Chip)    |          |
|--------------------------------|----------|
| W                              |          |
| Watchdog Time-out Reset (WDTO) | 120      |
| Watchdog Timer (WDT)           | 333, 337 |
| Programming Considerations     | 337      |
| WWW Address                    | 415      |
| WWW, On-Line Support           | 18       |

# THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software.
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing.
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives.

## CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

# **CUSTOMER SUPPORT**

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

### READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

| To:          | Technical Publications Manager                                                           | Total Pages Sent                           |  |
|--------------|------------------------------------------------------------------------------------------|--------------------------------------------|--|
| RE:          | Reader Response                                                                          |                                            |  |
| Fron         | n: Name                                                                                  |                                            |  |
|              | Company                                                                                  |                                            |  |
|              |                                                                                          |                                            |  |
|              |                                                                                          |                                            |  |
|              | Telephone: ()                                                                            | FAX: ()                                    |  |
| • •          | ication (optional):                                                                      |                                            |  |
| Wou          | ld you like a reply?YN                                                                   |                                            |  |
|              | ce: dsPIC33FJ32GS406/606/608/610 and<br>dsPIC33FJ64GS406/606/608/610                     | Literature Number: DS70591C                |  |
| Que          | stions:                                                                                  |                                            |  |
| 1. \         | What are the best features of this document                                              | ?                                          |  |
| _            |                                                                                          |                                            |  |
| -            |                                                                                          |                                            |  |
| 2. I         | How does this document meet your hardwar                                                 | e and software development needs?          |  |
| -            |                                                                                          |                                            |  |
| -            |                                                                                          |                                            |  |
| 3. I         | Do you find the organization of this document easy to follow? If not, why?               |                                            |  |
| -            |                                                                                          |                                            |  |
| -            |                                                                                          |                                            |  |
| 4. \         | What additions to the document do you thinl                                              | < would enhance the structure and subject? |  |
| -            |                                                                                          |                                            |  |
|              |                                                                                          |                                            |  |
| 5.           | What deletions from the document could be made without affecting the overall usefulness? |                                            |  |
| -            |                                                                                          |                                            |  |
| -<br>-       | a thora any incorrect or micloading information                                          | ion (what and whata)?                      |  |
| 0. I         | Is there any incorrect or misleading information (what and where)?                       |                                            |  |
| -            |                                                                                          |                                            |  |
| 7. I         | How would you improve this degument?                                                     |                                            |  |
| <i>i</i> . I | 7. How would you improve this document?                                                  |                                            |  |
| -            |                                                                                          |                                            |  |
| -            |                                                                                          |                                            |  |
|              |                                                                                          |                                            |  |

# **PRODUCT IDENTIFICATION SYSTEM**

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

|                                     |                                      | d             | <u>sPIC 33 FJ 32 GS4 06 T E / PT - XXX</u>                                                                 | Examples:                                                                                                                           |
|-------------------------------------|--------------------------------------|---------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Tape and Reel Fl<br>Temperature Rar | amily<br>y Size (<br>ag (if a<br>nge | (KB)<br>Ippli |                                                                                                            | <ul> <li>a) dsPIC33FJ32GS406-E/PT:<br/>SMPS dsPIC33, 32 KB program<br/>memory, 64-pin, Extended temp.,<br/>TQFP package.</li> </ul> |
| Γ                                   |                                      |               |                                                                                                            |                                                                                                                                     |
| Architecture:                       | 33                                   | =             | 16-bit Digital Signal Controller                                                                           |                                                                                                                                     |
| Flash Memory<br>Family:             | FJ                                   | =             | Flash program memory, 3.3V                                                                                 |                                                                                                                                     |
| Product Group:                      | GS4<br>GS6                           |               |                                                                                                            |                                                                                                                                     |
| Pin Count:                          | 06<br>08<br>10                       | =             | 64-pin<br>80-pin<br>100-pin                                                                                |                                                                                                                                     |
| Temperature Range:                  | I<br>E                               | =             | -40°C to+85°C (Industrial)<br>-40°C to+125°C (Extended)                                                    |                                                                                                                                     |
| Package:                            | PT<br>PT<br>PF<br>MR                 | =<br>=<br>=   | Plastic Thin Quad Flatpack - 12x12x1 mm body (TQFP)<br>Plastic Thin Quad Flatpack - 14x14x1 mm body (TQFP) |                                                                                                                                     |



# **Worldwide Sales and Service**

#### AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

**Cleveland** Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

**Dallas** Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

#### ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

**China - Beijing** Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

**China - Chengdu** Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

**China - Hong Kong SAR** Tel: 852-2401-1200 Fax: 852-2401-3431

**China - Nanjing** Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

**China - Shanghai** Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

**China - Shenyang** Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

**China - Shenzhen** Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

**China - Wuhan** Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

**China - Xian** Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

**China - Xiamen** Tel: 86-592-2388138 Fax: 86-592-2388130

**China - Zhuhai** Tel: 86-756-3210040 Fax: 86-756-3210049

## ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

**Japan - Yokohama** Tel: 81-45-471- 6166 Fax: 81-45-471-6122

**Korea - Daegu** Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

**Malaysia - Penang** Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

**Singapore** Tel: 65-6334-8870 Fax: 65-6334-8850

**Taiwan - Hsin Chu** Tel: 886-3-6578-300 Fax: 886-3-6578-370

**Taiwan - Kaohsiung** Tel: 886-7-536-4818 Fax: 886-7-536-4803

**Taiwan - Taipei** Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

**Thailand - Bangkok** Tel: 66-2-694-1351 Fax: 66-2-694-1350

#### EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

**Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

**Italy - Milan** Tel: 39-0331-742611 Fax: 39-0331-466781

**Netherlands - Drunen** Tel: 31-416-690399 Fax: 31-416-690340

**Spain - Madrid** Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

**UK - Wokingham** Tel: 44-118-921-5869 Fax: 44-118-921-5820